Základy aplikovanej geofyziky. gravimetria magnetometria geoelektrika seizmika karotáž rádiometria seizmológia
|
|
- Κύνθια Μαλαξός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Základy aplikovanej geofyziky gravimetria magnetometria geoelektrika seizmika karotáž rádiometria seizmológia
2 GRAVIMETRIA Obsah prednášky: ujasnene si základných pojmov trošku z histórie jednotky meranie tiažového zrýchlenia (gravimetre) spracovanie meraní (Bouguerove anomálie) interpretácia príklady využitia gravimetrie
3 GRAVIMETRIA Meranie, vyhodnocovanie a interpretácia tiažových meraní
4 UJASNENIE SI ZÁKLADNÝCH POJMOV hodnota g (tiažového zrýchlenia) je...? je táto hodnota konštantná? a) pre rôzne telesá v tom istom bode? b) pre rôzne telesá v rôznych bodoch? anomálie tiažového poľa Zeme (zo satelitných meraní)
5 UJASNENIE SI ZÁKLADNÝCH POJMOV je vlastne rozdiel medzi gravitačným a tiažovým zrýchlením? (alebo ide o synonymum?) gravitačné - čistá príťažlivosť Zeme tiažové (merané) výsledok vektorového súčtu gravitačného a odstredivého zrýchlenia Zeme (pomer odstredivého a gravitačného zrýchlenia Zeme je veľmi malý 0.005)
6 GRAVIMETRIA trošku z histórie... Galileo Galilei Isaac Newton ( ) ( ) Pierre Simon Laplace ( ) Pierre Bouguer ( )
7 meranie v gravimetrii používané jednotky v gravimetrii systém SI: m s -2 používané sú násobky: 1 µm s -2 = 10-6 m s -2 v anglosaskej literatúre: 1 mgal = 10 µm s -2 1 mgal = 10-5 m s -2 1 Gal = 10-2 m s -2 1 µgal = mgal
8 predstava o presnosti dnešných gravimetrických meraní g = m/s 2 úroveň mgal úroveň µgal súčasné prístroje merajú s presnosťou 0.01 do mgal = 10 do 1 µgal 8 dutiny oblasť mikrogravimetrie
9 jednotky pre hustotu systém SI: kg m -3 používané sú násobky: 1 g cm -3 = 1 kg dm -3 = 1 Mg m -3 = = 1000 kg m -3 (priemerná hustota vrchnej časti zemskej kôry na základe gravimetrie 2.67 g cm -3 )
10 meranie v gravimetrii prístroje na meranie tiažového zrýchlenia sa nazývajú gravimetre
11 absolútne gravimetre relatívne gravimetre laboratórne, terénne, vyššia presnosť: nižšia presnosť: mgal, mgal, voľný pád, pružinový systém pomalšie rýchlejšie Micro-g FG-5 Scintrex CG-5
12 relatívny (pružinový) gravimeterr meranie manuálne starší systém 1 torzné vlákno 2 astazujúca (zvýrazňujúca) pružina 3 rozsahová pružina 4 meracia pružina 5 - vahadlo
13 relatívny (pružinový) gravimeterr novší systém meranie automatické
14 meranie v gravimetrii musí sa odstraňovať tzv. chod prístroja spôsobený: otrasmi, zmenami teploty a tlaku, slapovými účinkami Slnka a Mesiaca
15 meranie v gravimetrii výsledkom meraní a opravy o chod je hodnota relatívneho tiažového zrýchlenia g, ktoré sa prepočítava na jeho absolútnu hodnotu g v aplikovanej gravimetrii (na geologické účely) sa však nevyhodnocuje priamo zrýchlenie g, ale sa počítajú tzv. ÚPLNÉ BOUGUEROVE ANOMÁLIE (ÚBA)
16 spracovanie v gravimetrii (tvorba ÚBA) od tiažového účinku celej (reálnej ) Zeme... P(h,ϕ,λ) m n.m.
17 spracovanie v gravimetrii (tvorba ÚBA)... sa odpočíta tiažový účinok teoretickej Zeme... P(h,ϕ,λ) 0 m n.m.
18 spracovanie v gravimetrii (tvorba ÚBA) účinok teoretickej Zeme sa skladá z účinku referenčného elipsoidu a... P(h,ϕ,λ) 0 m n.m.
19 spracovanie v gravimetrii (tvorba ÚBA) účinok teoretickej Zeme sa skladá z účinku referenčného elipsoidu a sférickej dosky... P(h,ϕ,λ) 0 m n.m.
20 spracovanie v gravimetrii (tvorba ÚBA) účinok teoretickej Zeme sa skladá z účinku referen. elipsoidu a sférickej dosky a topografie P(h,ϕ,λ) 0 m n.m.
21 spracovanie v gravimetrii (tvorba ÚBA) g B = UBA = g g n h hρ B + T g meraná tiaž (opravená o chod a prepočítaná na absolútnu hodnotu) g n normálne pole (účinok elipsoidu) h nadmorská výška bodu merania ρ tzv. korekčná (redukčná) hustota (často 2.67 g.cm -3 ) h korekcia vo voľnom vzduchu (tzv. Fayeova) hρ Bouguerova korekcia (účinok rovinnej dosky) B Bullardov člen ( ohýba rovinnú dosku) T topokorekcie (do vzdialenosti km od bodu)
22 spracovanie v gravimetrii (tvorba ÚBA) anomália NUBA = g g n h hρ sa nazýva ako tzv. neúplná Bouguerova anomália anomália g Fay = g g n h sa nazýva ako tzv. Fayeova (odstránený vplyv výšok)
23 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) m n.m.
24 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) 0 m n.m.
25 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) m n.m.
26 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) 0 m n.m.
27 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) m n.m.
28 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) 0 m n.m.
29 prejav hustotných nehomogenít v poli ÚBA P(h,ϕ,λ) m n.m. výsledkom je prejav anomálnych hustotných nehomogenít v zemskej kôre (až vo vrchnom plášti)
30 Praktické ukážky (výhod) výpočtu ÚBA: - vymapovanie priebehu kanalizačného zberača, Bratislava, Gagarinova ul. - vymapovanie rozsahu maarového telesa, Pinciná, Lučenec súčasný maar, Nemecko výplň maarového telesa
31 kanalizačný zberač, Gagarinova ul., BA g rez(mgal) m.n.m namodelované teleso kanála Gagarinova ulica Modelovanie tiažového účinku kanalizačného zberača Profil č. 1 M 1:100 metráž (m) reliéf terénu
32 kanalizačný zberač, Gagarinova ul., BA g rez(mgal) m.n.m namodelované teleso kanála Gagarinova ulica Modelovanie tiažového účinku kanalizačného zberača Profil č. 1 M 1:100 nameraná tiaž chod metráž (m) reliéf terénu
33 kanalizačný zberač, Gagarinova ul., BA g rez(mgal) Gagarinova ulica Modelovanie tiažového účinku kanalizačného zberača Profil č. 1 M 1:100 nameraná tiaž chod - odstránený m.n.m metráž (m) namodelované teleso kanála reliéf terénu
34 kanalizačný zberač, Gagarinova ul., BA g rez(mgal) Gagarinova ulica Modelovanie tiažového účinku kanalizačného zberača Profil č. 1 M 1:100 Fayova anomália - odstránenie vplyvu nadm. výšok m.n.m metráž (m) namodelované teleso kanála reliéf terénu
35 kanalizačný zberač, Gagarinova ul., BA 0.15 Gagarinova ulica Modelovanie tiažového účinku kanalizačného zberača Profil č. 1 M 1:100 g rez(mgal) 0.10 výsledok - Bouguerova anomália 0.05 m.n.m metráž (m) namodelované teleso kanála reliéf terénu
36 maarová štruktúra, Pinciná pri Lučenci nadmorské výšky
37 maarová štruktúra, Pinciná pri Lučenci merané tiažové zrýchlenie g
38 maarová štruktúra, Pinciná pri Lučenci tzv. Fayeove anomálie (odstránený hlavný vplyv výšok)
39 maarová štruktúra, Pinciná pri Lučenci Úplné Bouguerove Anomálie (odstránené všetky negeologické vplyvy )
40 mapa ÚBA - SR
41 interpretácia v gravimetrii INTERPRETÁCIA kvalitatívna/kvantitatívna kvalitatívna opisuje kvalitatívne pole ÚBA (znížené hodnoty = znížené hustoty objektov alebo vplyv geometrie telies, zvýšené... naopak) kvantitatívna určuje hĺbkové, rozmenrové, tvarové a hustotné parametre študovaných geologických objektov dôležité pojmy: a) priama úloha pri zadaných parametroch telies vypočítať ich gravitačný účinok (tzv. modelovanie) b) obrátená úloha opačná úloha (náročnejšia)
42 INTERPRETÁCIA kvalitatívna priebeh gravitačného účinku (ÚBA) nad zlomom (poklesom)
43 INTERPRETÁCIA kvalitatívna príklad: úplné Bouguerove anomálie z oblasti Mŕtveho mora (sedimenty mora sú ľahšie ako okolie)
44 INTERPRETÁCIA metódy polovičnej šírky jednoduchý príklad Bouguerova anomália prejavu soľného diapíru,lokalita Lousiana príbrežná oblasť) (Nettleton, 1976) y_local [m] dg rez z polovičnej šírky odpichnutej anomálie je možné odhadnúť vrchný okraj soľného diapíru (cvičenie) dg rez. [m] x_local [m] x_pf [m]
45 INTERPRETÁCIA modelovanie pole ÚBA gravitačný účinok modelu 3D model soľnej štruktúry
46 INTERPRETÁCIA modelovanie výsledok hustotného modelovania profil z Európskej platformy cez Západné Karpaty do Panónskej oblasti, model siaha až do hĺbky 170 km
47 využitie gravimetrie - v regionálnej a štruktúrnej geológii - v ložiskovom a ropnom prieskume - detekcia dutín (inžiniersky, environmentálny prieskum, archeológia,...) - atď. (hustotné nehomogenity)
48 Cheopsova pyramída, Egypt francúzsky mikrogravimetrický projekt
49 Cheopsova pyramída, Egypt francúzsky mikrograv. projekt štruktúra pyramídy merané priestory odhad. chyba: 2-10 µgal veľká galéria samotné meranie kráľovská komnata
50 Cheopsova pyramída, Egypt francúzsky mikrograv. projekt tvorba Bouguerovej anomálie - odstránenie gravitačných účinkov známych štruktúr známe dutiny model hustotného rozvrstvenia pyramídy
51 Cheopsova pyramída, Egypt francúzsky mikrograv. projekt hlavný výsledok: výsledky zistenie dominantnej negatívnej anomálie v západnej časti prístupovej chodby do královninej pohrebnej miestnosti overenie anomálie: 3 vrty dosiahli po 2.1 m dutinu vyplnenú pieskom, (modelovaný objem dosahuje až 40 m -3 )
52 Ďakujem za pozornosť.
kroky výpočtu Bouguerovej anomálie (tzv. korekcie/redukcie) Úvodné poznámky:
Úvodné poznámky: Bouguerove anomálie cieľom ich výpočtu je odstrániť z meraného g všetky negeologické prejavy (odstredivé zrýchlenie, vplyv výšky a topografie) jedine vtedy sa môžu prejaviť efekty hustotných
Gravimetria. - na Prif UK v rámci magisterského študijného programu Aplikovaná a environmentálna geofyzika sú v prípade gravimetrie 2 nosné predmety:
Gravimetria - na Prif UK v rámci magisterského študijného programu Aplikovaná a environmentálna geofyzika sú v prípade gravimetrie 2 nosné predmety: Gravimetria (1) (Pašteka), 1. roč., povinný predmet,
Metódy archeogeofyzikálneho výskumu. Úvod do predmetu o metódach, ktoré merajú a vyhodnocujú fyzikálne polia Zeme a tak pozerajú pod jej povrch
Metódy archeogeofyzikálneho výskumu Úvod do predmetu o metódach, ktoré merajú a vyhodnocujú fyzikálne polia Zeme a tak pozerajú pod jej povrch Metódy archeogeofyzikálneho výskumu - Úvod Obsah: - geofyzikálne
Príkladové štúdie použitia metód archeo-geofyzikálneho výskumu. Úvod
Príkladové štúdie použitia metód archeo-geofyzikálneho výskumu Úvod Motivácia: Príkladové štúdie použitia metód archeo-geofyzikálneho výskumu - úvod v prvom ročníku bakalárskeho štúdia archeológie podľa
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín
OKTÓBER SEPTEMBER Skúmanie vlastností kvapalín,, tuhých látok a Mesiac Hodina Tematic ký celok Prierezo vé témy Poznám ky Rozpis učiva predmetu: Fyzika Ročník: šiesty 2 hodiny týždenne, spolu 66 vyučovacích
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
όπου G είναι η παγκόσμια σταθερά βαρύτητας και ισούται με 6,67 x 10-11 Nm 2 kg -2 ή 6,67 x 10-11 m 3 s -2 kg -1
. Η ΒΑΡΥΤΙΚΗ ΜΕΘΟΔΟΣ.1 Εισαγωγή Όλες οι βαρυτικές μελέτες στηρίζονται στο νόμο βαρύτητας του Νεύτωνα, ο οποίος εκφράζεται ως η δύναμη (F) μεταξύ δύο σημειακών μαζών (m 1 και m ) που βρίσκονται σε μια απόσταση
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
SLOVENSKO maloobchodný cenník (bez DPH)
Hofatex UD strecha / stena - exteriér Podkrytinová izolácia vhodná aj na zaklopenie drevených rámových konštrukcií; pero a drážka EN 13171, EN 622 22 580 2500 1,45 5,7 100 145,00 3,19 829 hustota cca.
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Model redistribúcie krvi
.xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
5. VÝŠKOVÉ URČOVANIE BODOV
5. VÝŠKOVÉ URČOVANIE ODOV 5. Druhy výšok Nadmorská výška bodu P je súradnica určená v smere siločiary tiažového poľa. Podľa toho, aká je referenčná (nulová) plocha nad ktorou sa definuje výška, rozlišujeme
1 Meranie dĺžky posuvným meradlom a mikrometrom Meranie hustoty tuhej látky Meranie veľkosti zrýchlenia priamočiareho pohybu 23
Obsah 1 Laboratórny poriadok 5 2 Meranie fyzikálnych veličín 7 2.1 Metódy merania.............................. 8 2.2 Chyby merania.............................. 9 2.3 Spracovanie nameraných hodnôt.....................
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Meranie a systémy merania
Meranie a systémy merania Metódy merania prietoku prof. Ing. Ján Terpák, CSc. Technická univerzita v Košiciach Fakulta baníctva, ekológie, riadenia a geotechnológíı Ústav riadenia a informatizácie výrobných
Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie
Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
6 Gravitačné pole. 6.1 Keplerove zákony
89 6 Gravitačné pole Pojem pole patrí k najzákladnejším pojmom fyziky. Predstavuje formu interakcie (tzv. silového pôsobenia) v prostredí medzi materiálnymi objektmi ako sú častice, atómy, molekuly a zložitejšie
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]
Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom
Tematický výchovno - vzdelávací plán
Tematický výchovno - vzdelávací plán Stupeň vzdelania: ISCED 2 Vzdelávacia oblasť: Človek a príroda Predmet: Fyzika Školský rok: 2016/2017 Trieda: VI.A, VI.B Spracovala : RNDr. Réka Kosztyuová Učebný materiál:
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Meno: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf Meranie
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 5 MERANIE POMERNÉHO KOEFICIENTU ROZPÍNAVOSTI VZDUCHU Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Graf
Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.
Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým
ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK
Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
RIEŠENIA 3 ČASŤ
RIEŠENIA 3 ČASŤ - 2009-10 1. PRÁCA RAKETY Raketa s hmotnosťou 1000 kg vystúpila do výšky 2000 m nad povrch Zeme. Vypočítajte prácu, ktorú vykonali raketové motory, keď predpokladáme pohyb rakety v homogénnom
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S
1 / 5 Vyhlásenie o parametroch stavebného výrobku StoPox GH 205 S Identifikačný kód typu výrobku PROD2141 StoPox GH 205 S Účel použitia EN 1504-2: Výrobok slúžiaci na ochranu povrchov povrchová úprava
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU
DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa
MECHANIKA TEKUTÍN. Ideálna kvapalina je dokonale tekutá a celkom nestlačiteľná, pričom zanedbávame jej vnútornú štruktúru.
MECHANIKA TEKUTÍN TEKUTINY (KVAPALINY A PLYNY) ich spoločnou vlastnosťou je tekutosť, ktorá sa prejavuje tým, že kvapaliny a plynné telesá ľahko menia svoj tvar a prispôsobujú sa tvaru nádoby, v ktorej
Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania
Pozemné laserové skenovanie Prednáška 2 Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania Meranie accurancy vs. precision Polohová presnosť
Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1)
Fyzika Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1) 1 Poznámka: Silové interakcie definované v súčasnej fyzike 1. Gravitačná interakcia:
Φυσικές και χημικές ιδιότητες
Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
MPO-02 prístroj na meranie a kontrolu ochranných obvodov. Návod na obsluhu
MPO-02 prístroj na meranie a kontrolu ochranných obvodov Návod na obsluhu MPO-02 je merací prístroj, ktorý slúži na meranie malých odporov a úbytku napätia na ochrannom obvode striedavým prúdom vyšším
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
Fyzikálna olympiáda. 52. ročník. školský rok 2010/2011. Kategória D. Úlohy školského kola
Fyzikálna olympiáda 52. ročník školský rok 2010/2011 Kategória D Úlohy školského kola (ďalšie informácie na http://fpv.utc.sk/fo a www.olympiady.sk) Odporúčané študijné témy pre kategóriu D 52. ročníka
Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 7 URČENIE HUSTOTY KVPLÍN Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Meranie 1. Úlohy: a) Určte hustotu
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory
www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk
με ίσες μάζες ισορροπούν κρεμασμένα από κατακόρυφα ιδανικά ελατήρια με σταθερές k 1 και k 2 /2. Απομακρύνουμε τα σώματα Σ 1
ΑΣΚΗΣΕΙΣ ( Σε όλα τα προβλήματα - εκτός από το 9 - στα οποία υπεισέρχεται βαρύτητα να θεωρήσετε την τιμή της βαρυτικής επιτάχυνσης ίση με και 10 m/s 2, Να θεωρήσετε επίσης για την τιμή του π ότι π 2 =
PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO
ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Úloha č.:...viii... Název: Meranie momentu zotrvačnosti kolesa Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne...
Modelovanie dynamickej podmienenej korelácie kurzov V4
Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať
difúzne otvorené drevovláknité izolačné dosky - ochrana nie len pred chladom...
(TYP M) izolačná doska určená na vonkajšiu fasádu (spoj P+D) ρ = 230 kg/m3 λ d = 0,046 W/kg.K 590 1300 40 56 42,95 10,09 590 1300 60 38 29,15 15,14 590 1300 80 28 21,48 20,18 590 1300 100 22 16,87 25,23
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ Η ΜΕΣΗ ΤΙΜH
ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ Η ΜΕΣΗ ΤΙΜH ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Τι πρέπει να γνωρίζεις Θεωρία. Τι ονομάζουμε μέγεθος;.2 Τι είναι τα φυσικά φαινόμενα; Με τη μελέτη των φυσικών φαινομένων ασχολούνται οι φυσικές επιστήμες, όπως
ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ. Δυναμική
ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ Δυναμική Περιεχόμενα. Δυνάμεισ... 3.1. Η ζννοια τθσ δφναμθσ... 3.. Δυνάμεισ με τισ οποίεσ κα αςχολθκοφμε αρχικά... 5..1. Βάροσ ςϊματοσ... 5... Δφναμθ επαφισ από λείο ακλόνθτο δάπεδο... 7..3.
Trapézové profily Lindab Coverline
Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1
ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό ΕΙΣΑΓΩΓΗ. Τρόπος βαθµολόγησης. http://www.pi-schools.gr/lessons/physics/ Βαθµολογία Φυσικά
ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ Να έχετε: Τετράδιο εργαστηρίου (Physics book) File για φυλλάδια Απλό υπολογιστή (calculator) Οι σηµειώσεις του µαθήµατος βρίσκονται στην προσωπική µου ιστοσελίδα:http://www.pantelis.net
Učebné osnovy FYZIKA. FYZIKA Vzdelávacia oblasť. Názov predmetu
Učebné osnovy FYZIKA Názov predmetu FYZIKA Vzdelávacia oblasť Človek a príroda Stupeň vzdelania ISCED 2 Dátum poslednej zmeny 4. 9. 2017 UO vypracovala RNDr. Janka Schreiberová Časová dotácia Ročník piaty
η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa
1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η
3. VPLYV ATMOSFÉRICKEJ REFRAKCIE NA ŠÍRENIE ZVUKU
VPLYV METEOROLOGICKÝCH PODMIENOK NA ŠÍRENIE ZVUKU Milan DRAHOŠ 1, Richard Drahoš 1,2 1 D2R engineering, s.r.o., Na letisko 42, 058 01 Poprad, Slovensko, d2r@d2r.sk 2 Technická univerzita v Košiciach, Strojnícka
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.) Το 1960 καθορίστηκε μετά από διεθνή συμφωνία το Διεθνές Σύστημα Μονάδων S.I. (από τα αρχικά των γαλλικών λέξεων Système International d Unités). Το σύστημα
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ
Σχολή Χημικών Μηχανικών, 2 ο εξάμηνο ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ Γιώργος Μαυρωτάς, Επ. Καθηγητής Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας, Σχολή ΧΜ, ΕΜΠ Εισαγωγή
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
Z O S I L Ň O V A Č FEARLESS SÉRIA D
FEARLESS SÉRIA D FEARLESS SÉRIA D Fearless 5000 D Fearless 2200 D Fearless 4000 D Fearless 1000 D FEARLESS SÉRIA D Vlastnosti: do 2 ohmov Class-D, vysoko výkonný digitálny kanálový subwoofer, 5 kanálový
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY Katedra teoretickej elektrotechniky a elektrického merania.
TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY Katedra teoretickej elektrotechniky a elektrického merania Miroslav Mojžiš PRIEMYSELNÉ MERANIE Košice 2011 Miroslav Mojžiš PRIEMYSELNÉ