7.2. GRAFIČNI PRIKAZ PROSTORSKIH PODATKOV
|
|
- Δαίδαλος Σπηλιωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 7.2. GRAFIČNI PRIKAZ PROSTORSKIH PODATKOV Vrednosti merjene spremenljivke z, vzorčene v posameznih lokacijah kontrolnih točkah, uporabimo za izdelavo modela ali ocene vrednosti spremenljivke na celotni površini. Gladko površino podamo tako, da določimo z vrednosti za veliko število x, y koordinat. Zaobljenost dosežemo z zadostno bližino točk.
2 7.2. GRAFIČNI PRIKAZ PROSTORSKIH PODATKOV Najprej je iz podatkov potrebno izračunati mrežne točke, na osnovi katerih izdelamo karto. Grafični prikaz lahko temelji na: Rasterskem barvnem kodiranju 3D projekciji Izolinijah
3
4 Rastrsko barvno kodiranje Vsaki mrežni celici pripišemo ustrezno barvo ali odtenek. Rezultat je kvadratast, kadar je število celic majhno
5 Tridimenzionalna projekcija Vrste projekcije Razpored x, y mrežnih točk, v katerih so ocenjene vrednosti z, lahko v tlorisu povežemo z ravnimi črtami v mrežo model žičnega okvirja (wireframe). Projekcije so definirane z enačbami, ki povezujejo tri dimenzije podatkov, x, y in z, z dvema dimenzijama X, Y, papirja ali računalniškega zaslona.
6 k 1 in k 2 sta konstanti, izbrani tako, da je merilna lestvica ustrezna Izometrična projekcija x in y smeri mreže potekata pod kotom 30 0 od horizontale, vendar z merilnima lestvicama, v enakih razmerjih. Novi dvodimenzionalni koordinati izračunamo: X = k 1 (x. cos30 0 -y. cos30 0 ) Y = k 1 (x. sin30 0 -y. sin30 0 ) + k 2. z
7 Poševna (nagnjena) projekcija Mrežne smeri x so vodoravne, y pa pod kotom Učinek skrajšanja perspektive izničimo tako, da glede na x, razplovimo merilno lestvico y: X = k 1 x + (k 1 /2). y. cos45 0 Y = k 2 x + (k 1 /2). y. sin45 0
8 Izdelava perspektive Prava perspektiva se od izometrične in poševne konstrukcije razlikuje po tem, da mrežne linije niso vzporedne, temveč se stekajo proti nevidni točki v daljavi. Oddaljenosti x, y in z vzdolž linij niso stalne, temveč se z oddaljenostjo od opazovalca zmanjšujejo.
9
10 Izbira projekcije Perspektiva je po občutku najbolj naravna in privlačna, vendar ima nekaj pomembnih slabosti: Prožnost izbire navideznega gledišča dovoljuje uporabniku izbrati (prirediti) izgled površine. To zmanjša objektivnost: mogoče je povdariti ali prikriti določene poteze površja. Različni zorni koti otežkočajo primerjave med površinami. Zapletenost geometrijske konstrukcije povzroča velike težave pri ponovni pridobitvi prvotnih vrednosti v točki, podani z mrežnimi x, y referencami. Pri izometrični in poševni projekciji to zlahka naredimo že z ravnilom.
11 Stopnjevanje grafike Četrverokotnike v mreži zapolnimo. Topografijo povdarimo s simuliranjem različne osvetlitve iz določenih smeri. Polščice barvno kodiramo glede na z vrednost, kar pušča nazobčane robove četverokotnikov okrog vsake barvne kategorije.
12
13 Izdelava izolinij Izolinije so črte, ki povezujejo točke z enako vrednostjo neke lastnosti. Bistvo izrisa izolinij je, da se izognemo izračunavanju nepotrebnih vrednosti točk in poiščemo le izbor točk pri določenih y vrednostih. O vrednosti točk, ki so med izolinijami, z lahkoto sklepamo. Zaradi podobnosti s topografskimi kartami, so predvtavitve z izolinijami običajno najučinkovitejše.
14 Računalniški algoritmi Izdelava posameznega kvadrata mreže Naenkrat obravnavamo en kvadrat mreže. Na stranicah z interpolacijo med vozliščnimi vrednostmi poiščemo točke, katerih vrednosti so enake zahtevanim vrednostim izolinije. Enake vrednosti povežemo z ravnimi črtami. Vlečenje izolinij skozi mrežo Določeno izolinijo z interpolacijo sledimo preko posameznega kvadrata in postopek nadaljujemo v sosednji celici. Postopek ponavljamo dokler se črta ne zaključi oz. doseže roba karte.
15 Glajenje izolinij Izolinije so sestavljene iz ravnih segmentov in kadar bo mreža široka, bo rezultat nenaravno oglata karta. Videz zaobljenosti pogosto ustvarimo s povečanjem ločljivosti mreže, vendar pa pravo zaobljenost dosežemo le z glajenjem - splini. Splini (ang. splines) so podobni regresijskim črtam, le da potekajo gladko (zaobljeno) in točno preko kakršnegakoli števila točk v zaporedju.
16 Glajenje izolinij Kadar mora enačba povezati celotno zaporedje točk, dve točki zahtevata linearno, tri kvadratno in štiri kubično enačbo. V praksi so izolinijski splini pogosto kubični. Izračunamo jih za vsak set štirih zaporednih točk, tako da obstaja prekrivanje treh točk med sosednjimi seti štirih točk. Začetni rezultat da za vsak set štirih točk različne krivulje, s tremi alternativnimi krivuljami med vsakim parom. Končna rešitev je ena krivulja z zveznimi izpeljavami, izračunana s tehtanjem posameznih krivulj.
17 Glajenje izolinij Zglajene izolinije predvsem polepšajo izgled ne prispevajo k informativnosti ali izboljšanju ocene površja. Občasno naletimo na slabe algoritme splina, ki dovoljujejo ukrivljanje med podatkovnimi točkami, katerih posledica je lažna vijugavost.
18 7.3. Analize trenda površja Je vrsta multiple regresije, kjer neodvisne spremenljivke temeljijo na x, y, koordinatah. Iščemo najboljše prilegajočo se površino, definirano z enačbo, ki opisuje spremenljivko z kot funkcijo geografskega položaja. Površino imenujemo trend površja. Je ravna ali geometrijsko ukrivljena. Ni nujno, da je ta površina dobra ocena porazdelitve spremenljivke. Namen ni izdelava slike, temveč testiranje statistične hipoteze.
19 Površine z linearnim trendom Enačba ravnine, definirane v x, y, z prostoru je: z = b 0 + b 1 x + b 2 y Ob danih vrednostih x, y in z v kontrolnih točkah, je model za podatke: z = β 0 + β 1 x + β 2 y + ε ε je napaka z, zaradi slabega prileganja površine trenda podatkom.
20 Površine z linearnim trendom Z multiplo regresijo poiščemo vrednosti b 0, b 1 in b 2 tako, da je člen napake ε čim manjši. Vrednosti koeficientov določajo nagnjeno ravnino. Statistično značilnost trenda (koeficientov enačbe ravnine) testiramo z analizo variance.
21 Površine z linearnim trendom H 0 : β 1 = 0 in β 2 = 0 trenda ni H 0 : β 1 0 in β 2 0 trend obstaja Vir VK ν s 2 F Trend prvega reda VK R 2 s 2 R = VK R /2 s2 R / s2 D Odstopanje VK D n-3 s 2 D = VK D /(n-3) Skupaj VK C n-1 H 0 zavrnemo, kadar je F izračunana > F tabelirana. Trend izrazimo z regresijsko enačbo in ga na karti prikažemo kot izolinijo.
22 Površine z linearnim trendom Opozorila: Veljajo iste omejitve kot pri običajni regresiji. Namen AVAR površine trenda ni, potrditi oceno porazdelitve spremenljivke, temveč le opisati značilnost trenda. Če H 0 ne moremo zavrniti, površina trenda ne izraža nobene uporabne informacije. Odsotnost trenda prvega reda ne izključuje možnosti trendov višjega reda.
23 Površine s kvadratnim trendom Površina trenda je v tem primeru ukrivljena, vendar le v enem smislu konkavnem ali konveksnem ter ima enostavne parabolične prečne preseke. Model zapišemo: z = β 0 + β 1 x + β 2 y + β 3 x 2 + β 4 y 2 + β 5 xy + ε Ta in višji redi enačb, postanejo manj uporabni za preprosto testiranje hipotez, ker so alternativne hipoteze zapletene, s širokim razponom možnosti.
24 Površine s kvadratnim trendom Zavrnitev H 0 je lahko posledica značilnih visokih in nizkih delov ali pa le posledica podatkov s posebnim geometrijsko ukrivljenim trendom v enem delu karte. Podatki z značilnim trendom prvega reda, bodo neizogibno imeli tudi značilen trend drugega reda, ker ta vključuje člene prvega reda. Analiza variance zato vključuje test značilnosti izboljšanja prileganja površini drugega reda v primerjavi s prvim. Če smo že opravili test prvega reda, izvedemo le test izboljšanja.
25 Površine s kvadratnim trendom Test 1: H 0 : β 1, β 2, β 3, β 4 in β 5 = 0 H 1 : en ali več od koeficientov β 0 Test 2: H 0 : β 3, β 4 in β 5 = 0 H 1 : en ali več od koeficientov β 0
26 Površine s kvadratnim trendom Vir VK ν s 2 F Trend 2. reda VK R2 5 s 2 R2 = VK R2 /5 Test 1: s 2 R2 / s2 D Trend 1. reda VK R1 2 Povečanje 2. preko 1. reda VK R21 = 3 s 2 R21 = VK R21 /3 Test 2: VK R2 -VK R1 s 2 R21 / s2 D Odstopanje 2. reda VK D n-6 s 2 D = VK D /(n-6) Skupaj VK C n-1
27 Površine s kvadratnim trendom Opozorila: Veljajo vsa kot za linearni tren. Na obliko površin drugega in višjih redov lahko vpliva neenakomerna porazdelitev kontrolnih točk. Trendi drugega in višjih redov lahko kažejo skrajne, a lažne gradiente, zlasti pri ekstrapolaciji izven kontrolnih točk.
28
29 Površine s kubičnim in višjimi redi trenda Površine trenda tretjega reda dovoljujejo eno spremembo v smislu ukrivljenosti (konkavno ali konveksno) v poljubnem preseku. Model zapišemo: z = β 0 +β 1 x β 2 y+β 3 x 2 +β 4 y 2 +β 5 xy+β 6 x 3 +β 7 y 3 +β 8 x 2 y + β 9 xy 2 +ε
30 Površine s kubičnim in višjimi redi trenda Število členov za k-ti red je (k 2 + 3k)/2. Red Členi 1 x y 2 x y x 2 y 2 xy 3 x y x 2 y 2 xy x 3 y 3 x 2 y xy 2 4 x y x 2 y 2 xy x 3 y 3 x 2 y xy 2 x 4 y 4 x 3 y xy 3 x 2 y 2 itd.
31 Površine s kubičnim in višjimi redi trenda Splošna analiza variance za višje rede trenda površine: Test 1: H 0 : vsi koeficienti β = 0 H 1 : en ali več od koeficientov β 0 Test 2: H 0 : vsi (k+1) dodatni koeficienti β za red k preko reda (k-1)= 0 H 1 : en ali več od zgornjih koeficientov β 0
32 Površine s kubičnim in višjimi redi trenda Vir VK ν s 2 F Trend k-tega reda VK Rk ν k =(k 2 +3k)/2 s 2 Rk = VK Rk /ν k Test 1: s 2 Rk / s2 D Trend (k-1) reda Povečanje k-tega preko (k-1) reda VK Rk-1 VK R1 = k+1 s 2 R1 = VK Rk -VK Rk-1 VK R1 /(k+1) Test 2: s 2 R1 / s2 Dk Odstopanje k- tega reda VK Dk n-ν k -1 s 2 Dk = VK Dk /(n-ν k -1) Skupaj VK Ck n-1
33 Površine s kubičnim in višjimi redi trenda Dodatna opozorila: Višji redi trendov površine skoraj vedno dajo izredne gradiente in zato skrajne vrednosti na robovih in v ogljiščih (in včasih celo med kontrolnimi točkami), ki nimajo nobene zveze z resničnimi trendi podatkov. Pojav imenujemo robni učinki; pojavlja se tudi pri oceni površin, kjer lokalne trende ekstrapoliramo brez kontrole.
34 Površine s kubičnim in višjimi redi trenda Navadno naj ne bi uporabljali trendov višjega reda, ker je zelo malo verjetno, da bi enačbe opisovale vzročni geološki proces. Prileganje je skoraj popolno, ko se število točk enačbe približa številu podatkovnih točk. Vendar to ne pove nič o dejanskih statističnih trendih podatkov.
35 Površine s kubičnim in višjimi redi trenda Enačbe s trendom površine visokega reda vključujejo dvig x in y na visoke potence. Ker sta x in y mrežni referenci, izraženi v visokih številkah, lahko členi enačbe postanejo izredno visoki. V nasprotju so vrednosti z navadno nizke in na uravnoteženje enačbe vpliva množenje zelo visokih števil z zelo majhnimi koeficienti! Problem rešimo z uvedbo lokalne merilne lestvice.
36 Površine s kubičnim in višjimi redi trenda Naraščanje prileganja z naraščanjem reda trenda površine prikažemo z grafom R 2 proti redu.
37 Preostanki trenda površja Razlika med površino trenda in dejansko kontrolno točko vrednosti z, je mera napake površja, imenovana preostanek. Uporaba preostankov je dvojna: Ocena homoscedastičnosti in avtokorelacije površine. Ocenimo lahko tehnično veljavnost regresije: preostanki naj bi bili homoscedastični a ne avtokorelirani. Vzorci avtokorelacije morda nakazujejo trend, ki bi ga lahko modelirali z višjimi trendi površja. V nekaterih okoliščinah so preostanki za interpretacijo pomembnejši od samega trenda.
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
3. STATISTIKE Z DVEMA SPREMENLJIVKAMA
3. STATISTIKE Z DVEMA SPREMENLJIVKAMA Bivariatne metodo obravnavajo dve spremenljivki hkrati, zato so podatki zapisani: x 1 y 1 x 2 y 2 : : x n y n 3.1. KORELACIJSKI KOEFICIENT Mera stopnje linearne povezanosti
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Matematika 2. Diferencialne enačbe drugega reda
Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:
Dragi polinom, kje so tvoje ničle?
1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.
Statistika II z računalniško analizo podatkov. Bivariatna regresija, tipi povezanosti
Statistika II z računalniško analizo podatkov Bivariatna regresija, tipi povezanosti 1 Regresijska analiza Regresijska analiza je statistična metoda, ki nam pomaga analizirati odnos med odvisno spremenljivko
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
Bézierove krivulje. Fakulteta za matematiko in fiziko, Univerza v Ljubljani. MARS 2009, Koper, / 54
1 / 54 Bézierove krivulje Emil Žagar Fakulteta za matematiko in fiziko, Univerza v Ljubljani MARS 2009, Koper, 18.8.2009 Slika: Prepoznate lik na sliki? 2 / 54 Slika: Kaj pa ta dva? 3 / 54 Slika: In te?
Analiza 2 Rešitve 14. sklopa nalog
Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Tema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
DISKRETNA FOURIERJEVA TRANSFORMACIJA
29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo
Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki
Osnove sklepne statistike
Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja
cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
8. MULTIVARIATNE METODE 8.1. Uvod Zakaj jih uporabljati
8. MULTIVARIATNE METODE 8.1. Uvod 8.1.1. Zakaj jih uporabljati Multivariatne metode omogočajo sočasno analizo kakršnegakoli števila spremenljivk. Poseben problem predstavlja grafična predstavitev več kot
Regularizacija. Poglavje Polinomska regresija
Poglavje 5 Regularizacija Pri vpeljavi linearne regresije v prejšnjem poglavju je bil cilj gradnja modela, ki se čimbolj prilega učni množici. Pa je to res pravi kriterij za določanje parametrov modela?
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak
Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:
4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Statistika 2 z računalniško analizo podatkov. Multipla regresija in polinomski regresijski model
Statistika z računalniško analizo podatkov Multipla regresija in polinomski regresijski model 1 Multipli regresijski model Pogosto so vrednosti odvisne spremenljivke linearno odvisne od več kot ene neodvisne
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Navadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila
FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer
Multivariatna analiza variance
(MANOVA) MANOVA je multivariatna metoda za proučevanje odvisnosti med več odvisnimi (številskimi) in več neodvisnimi (opisnimi) spremenljivkami. (MANOVA) MANOVA je multivariatna metoda za proučevanje odvisnosti
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
VARIACIJSKE SUBDIVIZIJSKE SHEME
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Seminar za Numerično analizo VARIACIJSKE SUBDIVIZIJSKE SHEME Ljubljana, 004 Marjeta Krajnc . Uvod Subdivizija je postala v zadnjih letih zelo pomembno
3.1 Reševanje nelinearnih sistemov
3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n
Interpolacija in aproksimacija funkcij
Poglavje 4 Interpolacija in aproksimacija funkcij Na interpolacijo naletimo, kadar moramo vrednost funkcije, ki ima vrednosti znane le v posameznih točkah (pravimo jim interpolacijske točke), izračunati
Afina in projektivna geometrija
fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +
REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.
Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,
Zanesljivost psihološkega merjenja. Osnovni model, koeficient α in KR-21
Zanesljivost psihološkega merjenja Osnovni model, koeficient α in KR- Osnovni model in KTT V kolikšni meri na testne dosežke vplivajo slučajne napake? oziroma, kako natančno smo izmerili neko lastnost.
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb
Matematično modeliranje 3. poglavje Dinamično modeliranje: diferencialne enačbe, sistemi diferencialnih enačb Fakulteta za računalništvo in informatiko Univerza v Ljubljani 2017/2018 Za kaj rabimo diferencialne
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Reševanje sistema linearnih
Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje
INŽENIRSKA MATEMATIKA I
INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična
Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta
Matematika 1 Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 21. april 2008 102 Poglavje 4 Odvod 4.1 Definicija odvoda Naj bo funkcija f definirana na intervalu (a, b) in x 0 točka s tega intervala. Vzemimo
8. Navadne diferencialne enačbe
8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija
Navadne diferencialne enačbe
Navadne diferencialne enačbe (študijsko gradivo) Matija Cencelj 1. maja 2003 2 Kazalo 1 Uvod 5 1.1 Preprosti primeri......................... 8 2 Diferencialne enačbe prvega reda 11 2.1 Ločljivi spremenljivki.......................
Vaje iz MATEMATIKE 2. Vektorji
Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo
Regresija in korelacija
Regresija in korelacija - Kvantitativne metode v geografiji in uvod v GIS - dr. Gregor Kovačič, doc. Odvisnost in povezanost Opazujemo primere, ko na vsaki enoti gledamo dve številski spremenljivki hkrati
Kvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013
Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo
α i y n i + h β i f n i = 0, Splošni nastavek je k
10.4 Večkoračne metode Splošni nastavek je k α i y n i + h i=0 k β i f n i = 0, kjer je f i = f(x i, y i ), privzamemo pa še α 0 = 1. Če je β 0 = 0, je metoda eksplicitna, sicer pa implicitna. i=0 Adamsove
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
Projekcije in zmanjšanje dimenzionalnosti podatkov
Poglavje 9 Projekcije in zmanjšanje dimenzionalnosti podatkov Modeli, ki jih gradimo v strojnem učenju, povzemajo podatke tako, da v nekem formalnem zapisu predstavijo glavne vzorce, ki so te podatke oblikovali.
DISKRIMINANTNA ANALIZA
DISKRIMINANTNA ANALIZA Z diskriminantno analizo poiščemo tako linearno kombinacijo merjenih spremenljivk, da bo maksimalno ločila vnaprej določene skupine in da bo napaka pri uvrščanju enot v skupine najmanjša.
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.
Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba: