Základná bloková schéma je na obr. 1 Je to jedno z možných, často sa vyskytujúcich znázornení. indikácia registrácia regulácia SNÍMAČ Obr. 1.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Základná bloková schéma je na obr. 1 Je to jedno z možných, často sa vyskytujúcich znázornení. indikácia registrácia regulácia SNÍMAČ Obr. 1."

Transcript

1 1. ÚVOD Nieč senzrch je známe už z histórie, ale najmä v pslednej dbe vznikajú nárčné pžiadavky na snímanie rôznych veličín. Dstatk vhdných senzrv môže byť limitujúci faktr pre realizáciu nárčných autmatizvaných, resp. rbtických systémv. V predmete budú písané rôzne druhy senzrv pre snímanie reálne sa vyskytujúcich veličín, či už v "pčítačv riadených výrbách", aleb iných blastiach. Dôraz je kladený najmä na vstupné časti, ich vlastnsti, mžnsti a vplyv rôznych pruchvých veličín. Ak pmcné kapitly sú uvedené pdprné elektrnické bvdy a napájacie zdrje Merací kanál Základná blkvá schéma je na br. 1 Je t jedn z mžných, čast sa vyskytujúcich znázrnení. SEN PREV Prcesr Výst. jedn. indikácia registrácia regulácia SNÍMAČ Obr. 1. Tu je senzr chápaný ak vstupná citlivá časť snímača (česky čidl), pskytuje už využiteľný, bvykle elektrický signál. P dplnení prevdníkm pskytuje už určitý nrmvaný signál, vhdný pre ďalšie spracvanie prcesrm. Snímač sa ptm chápe ak zlžitejší celk. Pznámka: Niektrí autri prblém uvádzajú pačne, t.j. senzr je zlžitejšia časť už i s pmcnými bvdmi. Niekde sa môžme stretnúť i s sttžnením pjmv senzr a snímač. V anglickej literatúre je bvykle pužívaný na všetk výraz "sensr". Pre jednznačnsť je bvykle vhdné viacslvné "vydiskutvanie" prblematiky Rzdelenie senzrv Môže byť pdľa rôznych kritérií. Pdľa infnsiča (základné citlivé médium): neelektrické (pneumatické, mechanické, ptické, magnetické...) elektrické (elektrnické, plvdičvé, mikrelektrnické ) Pdľa výstupu: aktívne - U, I, f.. pasívne - vyhdncujeme zmenu parametrv (R, L, C, index lmu, plarizáciu...) Pdľa meranej veličiny: mechanické - plha, táčky, sila... 1

2 tepelné - teplta elektrické - U, I, P, R.. magnetické B, H, Φ radiačné svetl (IR, UV), α, β, γ, kzmické... chemické - ph, analýza Generácie senzrv V súčasnsti delenie stráca na význame. Snaha je pužívať najvhdnejšie senzry, patria k nim najmä plvdičvé a ptické senzry. Pretrvávajúce frmálne delenie je : Prvá generácia. Využíva makrskpické princípy (mechanické, chemické,...). Systémy sú rzmernejšie, ťažšie. Metrlgické vlastnsti sa dajú len bmedzene vylepšiť. Časté v praxi. Druhá generácia. Využíva elektrnické javy (piez, ftelektrické, pvrchvé akustické vlny-pav) najmä pre plvdičvé senzry. Vyznačujú sa vyššu citlivsťu, rýchlsťu, malými rzmermi. V praxi pužívané, relatívne nvé. Tretia generácia. Veličina pôsbí na svetelný lúč - svetlvdné senzry. Majú malé rzmery, veľkú rýchlsť dzvy, dlné vči rušeniu. Pužívajú sa už v praxi a sú v intenzívnm labratórnm vývji 2. MAGNETICKÉ PRINCÍPY 2.1. MAGNETICKÉ OBVODY SENZOROV Tvria základné časti senzrv s magnetickým princípm, rzznávame u nich : pasívne časti - len vedú mag. tk (napr. pólvé nástavce) permanentné magnety - vytvárajú pmcnú energiu ("napájanie") zmena mag. parametrv d meranej veličiny - magnetstrikcia, magnetrezistr... Na zpakvanie najčastejšie pužívané veličiny a jedntky: indukcia B [T] (1 T = G [gauss]) intenzita H [A/m] (1 A/m = 4π Oe [ersted]) permeabilita μ [H/m] (μ = μ 0. μ r ) ( μ 0 = 4π [H/m] ) Pznámka: Citlivé senzry zmerajú indukcie d 7 nt 0,6 mt. Zemské magnetické ple má cca μt Materiály Vlastnsti materiálv sú dané štruktúru stavby atómu (pčet elektrónv, spin, jeh kmpenzácie...). V praxi sú materiály charakterizvané bvykle kritérim permeability μ r (relatívna permeabilita) a delia sa na: diamagnetické - μ r je mál menšie ak 1 (blízke 1), z magnetickéh pľa sú mierne vytláčané vn (Cu, Ag, Be, Zn, Hg, Ge, Pb, Bi, Se ) paramagnetické - μ r je mál väčšie ak 1 (blízke 1), d magnetickéh pľa sú mierne vťahvané (Na, K, Mg, Ca, Al, Sn, Mn, Pt, O 2...) 2

3 fermagnetické - μ r >> 1, materiály sú vťahvané d mag. pľa. Fe, C, Ni, (mžné sú i zliatiny z para prvkv Mn-Al-Cu, resp. Mn-Sn, Cu. Heusslerva zliatina - 15%Mn, 10%Al, 75%Cu má B max ak Ni) Najčastejšie sa vyskytujú dve skupiny bvdv s fermagnetickými materiálmi: bvdy s magneticky mäkkými materiálmi. Sú t mag. vdiče, pólvé nástavce, bvdy cievk, mag. tienenie bvdy s magneticky tvrdými materiálmi, pmcu nich sa vytvára mag. tk ak pmcná energia, aleb ak mernsná veličina Základné údaje materiáli pskytuje hysterézna krivka (slučka), br.2., kde: 1 - krivka prvtnej magnetizácie B - magnetická indukcia, jedntka T (tesla) B = μ. Η H - intenzita magnetickéh pľa, jedntka A/m B r - remanentná indukcia H c - kercitívna sila B max - maximálna dsiahnuteľná indukcia μ 0 - permeabilita vákua, knštanta (4π H/m), pričm μ = μ 0. μ r tg β= ΔB ΔH =μ permeabilita diferenciálna (v pracvnm bde) B [T]. B r 1. - H c H c β B max μ ο H [A/m] Obr. 2. Hysterézna krivka býva zadaná tabuľku, aleb graficky a získa sa meraním na htvých materiálch. Knkrétny tvar závisí d zlženia (prvkv) a tepelnéh spracvania, prípadne magnetickej rientácie. Pznámka: Krivka má dsť špecifický tvar a ťažk sa vyjadruje vzrcm - plynómm. Grafický tvar sa dá získať bez prblémv, pret pri výpčtch bvdv sú stále aktuálne grafick - matematické metódy. Magneticky mäkké materiály Všebecný znak je úzka hysterézna krivka nízka číselná hdnta H c (máva hdnty 2 až 10 A/m). Základné tvary kriviek sú na br.3. a.) iztrpný (transfrmátrvý plech) b.) aniztrpný rientácia s smerm B 3

4 c.) aniztrpný rientácia na smer B Pznámka: Aniztrpia vzniká i pri mechanickm namáhaní. Pri ťahu rastie rel. permeabilita µ r, teda i mag. vdivsť rientvané materiály. a.) b.) c.) Obr.3 Straty v materiáli vznikajú v striedavm magnetickm pli (cievky, transfrmátry), menia sa na tepl. Delíme ich na : hysterézne straty - vznikajú pri premagnetvaní, závisia d hdnty H c, dsahvanej hdnty B a d frekvencie f vírivé straty - Julve straty vírivými prúdmi, závisia d ρ (merný dpr) materiálu a d f 2 Na hysteréznej krivke je niekľk zaujímavých hdnôt, br.4. B r μ max ο Bmax - Hc + Hc μ i Obr.4. μ i - pčiatčná (abslútna) permeabilita, dtyčnica v bde 0 [A/m] μ max - maximálna permeabilita, dtyčnica v inflexnm bde krivky prvtnej magnetizácie H c - kercitívna sila B r - remanentná indukcia 4

5 B max - maximálna indukcia (mžná) Typy a tvary materiálv Pdľa zlženia máme dve základné skupiny : kvvé - vyššie B max (1-1,5 T), vhdné pre nízke f (d 10 khz) ferity - nižšie B max (0,3-0,4 T), vhdné pre vyššie f, menšie vírivé straty Kvvé materiály Základný materiál je Fe s prímesami, teda zliatiny. Tvary bývajú bvykle plechy s rôznu hrúbku. Rzznávame : strihané (transfrmátrvé plechy, dynamvé plechy...) vinuté - trid, C jadr, rientvané plechy, neznášajú ďalšie mech. namáhanie leptané - pre veľmi tenké plechy (cca 3 µm) Dôležité hdnty sú B max, B r, H c, µ (µ i µ max ) B max závisí d materiálu, napr: pre kremíkvú ceľ (Fe + Si) d 1,8 T pre zliatiny d 2 T - vinuté Pznámka: Maximálnu hdntu indukcie B max má zliatina Fe - C 2,43 T pri H = 100 A/m. Vzduchvá medzera - časť bvdu, kde mag. tk prechádza vzduchm. Rzznávame: dĺžku δ - dĺžka silčiary prechádzajúcej vzduchm plchu S v - plcha klmá na mag. silčiary V bvdch s mag. mäkkými materiálmi môže byť parazitná ( δ len nutna - technlgická, 0,05-0,1 mm), aleb žiadaná, kedy: linearizuje krivku stabilizuje parametre je vhdná pri jednsmernej predmagnetizácii (tlmivky) Ferity Sú t lisvané spekané materiály s malu elektricku vdivsťu ρ = Ω m ( ρ Cu = 1, Ω m ), z čh vyplývajú malé vírivé straty. Na druhej strane majú ale pdstatne menšiu indukciu B max, kl 0,3 až 0,4 T. Mechanicky sa pdbajú keramike, sú veľmi tvrdé a krehké. Ddatčné brábanie je mžné brúsením, aleb špeciálnymi technlógiami - ultrazvuk. Tvary môžu byť rôzne, v pdstate závisia len d technlógie lisvania. Rzšírené sú : tvar "dvjité E" hrnčekvé jadrá tyčinky, skrutky tridy Magnetstrikcia - zmena magnetick mechanických vlastnstí: zmena rzmerv v mag. pli, napr. cievky (UZ meniče, snímače plhy) zmena mag. parametrv pri mech namáhaní (mag. vdivsť) 5

6 Preč majú byť kvvé materiály pre striedavé bvdy č najtenšie. 2. Orientvané materiály neznášajú mech. namáhanie, resp.pracvanie. Preč? Magneticky tvrdé materiály, permanentné magnety H c týcht materiálv je značne vyššia, typická hdnta je [ka/m]. Materiál charakterizuje časť hysteréznej krivky, tzv. demagnetizačná charakteristika (br.5.), kde sú uvedené rôzne typy materiálv. Pdbne ak u mag. mäkkých materiálv vlastnsti závisia d typu materiálu : kvvé - vyská B, nízke H c Curieh bd vyský (AlNiC 800 C) ferity - nízka B, vyššia H c, demagnetizácii dlný tvar krivky vzácne zeminy - dsť vyská B a vyská H c vyský energetický súčin 1 T 0,4 T 1 T - 40kA/m - 200kA/m - 600kA/m kvvé (zliatiny) ferity Vzácne zeminy - SmC, Nd.. Obr.5. Medzi vzácne zeminy patria najmä nedymvé a samarium-kbaltvé materiály. Materiály typu Nd 2 Fe 14 B (B - Brn) sú vhdné pre pevné disky a reprduktry. Curieh bd asi 80 C. Materiál s značením N 48 má B r = 1,38 T a H c = ka/m. Dôsledk je, že aj malý element (plchy cca 1cm 2 ) udrží závažie takmer 10kg. Svju mechanicku príťažnu silu k železu môže dknca preseknúť kžu, väčší rzmer dknca zlmiť ksť. Perličky : 1. Plastický magnet - PANiCNQ (plyaniline +tetracyanquindimetan) hybný plymér, pužitie v pčítačch, zdravtníctve 2. Kravský magnet - kvvý AlNiC v plaste, v bachre chytá kúsky železa, ktré krava zžerie, celk sa balí, neškdí Riešenie bvdv s permanentnými magnetmi (PM) Jednduchý bvd s PM je na br.6. Pri zjedndušení je t princíp každéh bvdu s PM. Vzduchvá medzera - je päť časť bvdu (becne priestrvý útvar), v ktrm mag. tk prechádza vzduchm. Dĺžka δ býva väčšia, rádv až [mm]. Plcha vzd. medzery S v môže mať jednduchý tvar (štvrec, bdĺžnik), ale aj veľmi zlžitý (anulid). Taktiež jej hdnta 6

7 nemusí byť v celm úseku rvnaká, bvykle sa berie ptm stredná hdnta. Pri týcht systémch je t tzv. pracvná vzduchvá medzera, teda žiadaná. Sú tam umiestnené časti zariadenia, napr. Hallva snda, merná cievka. Okrem PM sa v bvde môžu vyskytvať aj silvé vinutia (cievky), ktré tent bvd vplyvňujú. S m 1 S l m J 2 δ N S v I Obr.6. Náhradná schéma jednduchéh magnetickéh bvdu s PM je na br.7. Φ m 1 R mi R z Φr Φ v P B R r R v Fm 2 γ PM a.) Obr.7. - H b.) F m - magnetmtrická sila R mi - vnútrný mag. dpr PM R z - mag. dpr pól. nástavcv R r - rzptylvý dpr R v - mag. dpr vzduchvej medzery (žiadanej) Φ m - mag. tk z PM Φ r - rzptylvý mag. tk Φ v - mag. tk v vzd. medzere Riešenie grafick - výpčtvé Riešenie bvdu je ptm grafick - výpčtvé, leb krivka sa nedá analyticky vyjadriť. Pretže pre "nrmálnu" vzduch. medzeru platí R z << R v, môžme pvedať, že zvyšná časť 7

8 magnetickéh bvdu je lineárna (vzd. medzera) a jej vyjadrením je priamka, nazývaná pracvná priamka (br.7b). Rvnica pracvnej priamky Môžme ju získať z základných rvníc magnetickéh pľa: H. d l = i. d S a Φ= B. d S S S Pre knkrétny bvd môžme tiet rvnice zjedndušiť : H m l m + H v δ+h z l z = ± N I (1) B m S m = B v S v σ r (2) (3) kde: B v =μ 0 H v σ r = R v + R r > 1 je keficient rzptylu s hdntami 1,2-3. R r B m, B v - indukcia v PM a v vzduchu H m, H v, H z - intenzita v PM, v vzduchu a v železe l m, l z - dĺžka PM a dĺžka silčiary v železe δ - veľksť (dĺžka) vzduchvej medzery N I - pčet závitv a prúd cez cievku v systéme (ak existuje) S m, S v - plcha PM a vzduchvej medzery Definujeme knštantu úbytku na mag. mäkkých častiach : σ p = H z l z + H v δ H v δ > 1 pre reálnu vzduch. medzeru zanedbáme hdnta = 1. Pasívny súčet úbytkv je teda: H z l z + H v δ = σ p H v δ a dsadíme h d (1) H m l m + H v δσ p = ± N I (1a) Z (2) a (3) získame: H v = B v μ = B m S m 0 μ 0 σ r S v dsadíme d (1a) a p dstránení zlmku získame : δ B m S m σ p = H m l m μ 0 σ r S v ± NIμ 0 σ r S v Výpčtami je mžné dsiahnuť rvnicu priamky v súradniciach B a H. Ak za základný smernicvý tvar berieme výraz : y = tg α.x + q 8

9 Tent je pre B a H súradnice: B m = tg γ.h m ± K Knečné vyjadrenie p úpravách je ptm : l B m = μ m S v σ r S 0 δ S m σ H m ± v 1 p S m δ Zaujímavé plhy priamky sú pre prípady : σ r σ p μ 0 NI (2-1) ak δ 0, ptm tg γ a uhl γ 90. Prípad charakterizuje uzavretý magnetický bvd - trid. (pamäťvé prvky) ak δ l m, ptm tg γ μ 0 a uhl γ je malý. Vzduchvá medzera je veľká, prípad reprezentuje tvrený mag. bvd (napr. PM je vybraný z bvdu) Pracvný bd a jeh umiestnenie Priesečník pracvnej priamky a demagnetizačnej charakteristiky sa nazýva pracvný bd PM. Reprezentuje určité vlastnsti a energiu, súradnice B a H predstavujú hdnty vvnútri PM. +B e.k. P pt B m energetické maximum -H Wm Hm BH max Obr.8. Pracvný bd môže byť umiestnený ľubvľne na krivke, niektré plhy sú však výhdnejšie, najmä z hľadiska energie PM. Energia PM sa dá vyjadriť ak súčin : W m = B m H m.vzťah vyjadruje tzv "energetická krivka" (e.k.) na br. 8. Výpčtm môžme dkázať súvislsť medzi bjemm pracvnej vzduchvej medzery a ptrebným bjemm PM : V m = σ rσ p B v 2 B m H m μ 0 V δ kde : V m, V δ - bjem PM a vzduchvej medzery Z vzťahu vyplýva, že ptrebný bjem PM je minimálny vtedy, ak je súčin B m H m, teda W m maximálne. Prac. bd sa ptimálne (najčastejšie) teda umiestňuje v tzv. energetickm maxime. 9

10 Demagnetizácia Ak máme v bvde s PM ešte iný zdrj mag. energie (iný magnet, aleb cievku s pretekajúcim prúdm), musíme uvažvať tzv. demagnetizačný efekt. Smer tht prídavnéh mag. tku môže byť súhlasný, kladný - výsledný tk stúpa, aleb pôsbí prti pôvdnému, je záprný - výsledný tk klesá, mžné až na 0. Pracvný bd sa pritm psúva. Psun môže byť teda spôsbený : cievku - psun prac. bdu hdntu K v smere +, aleb - ale tiež zmenu sklnu prac. priamky (rzbraním bvdu) Δ Β 1 2 ο +K -K záprná demagnetizácia a.) Obr.9. kladná demagnetizácia b.) Phyb prac. bdu P je vidieť na br.9. Pri záprnej demagnetizácii (-K na br 9a.) sa psúva najskôr prac. priamka a následne s ňu P ak priesečník p krivke smerm k nižším hdntám B. Psunie sa z bdu 1 d bdu 2. Keď zanikne prídavný mag. tk, priamka sa vráti d pôvdnej plhy. P sa však nemôže psunúť v "prtismere" p krivke späť. Psúva sa p tzv. vratnej hysteréznej krivke, ktrej smernica je približne rvnbežná s dtyčnicu v bde B r. Bd P sa ustáli ak priesečník tejt krivky s prac. priamku v bde 3. Prakticky je na niektrej vnútrnej hysteréznej krivke s menšími hdntami B a H. Dšl k trvalému pklesu B a H, teda k "dmagnetvaniu" PM. Pri ďalšej demagnetizácii -K je phyb prac. bdu z 3 d 2, pri zaniknutí -K sa vráti d 3. Prakticky ale pri každm ďalšm cykle dchádza k malému prídavnému pklesu, takže p veľkm pčte cyklv môže prísť k trvalému úplnému dmagnetvaniu PM (dmagnetvanie v striedavm pli). K úplnému dmagnetvaniu môže prísť i vtedy, ak -K je príliš veľké. Ptm treba PM znvu namagnetvať. Vči demagnetizácii sú dlnejšie PM s krivku ak ferity, teda veľký skln v bde B r. Pdbne "prvky vzácnych zemín". Pri kladnej demagnetizácii +K (prídavný tk je súhlasný), br.9.b. bvykle nie sú prblémy, leb prac. bd sa presúva medzi bdmi 1 a 2 a dchádza len k malej zmene B. 10

11 Zmagnetvanie (namagnetvanie) PM Rbí sa medzi pólvými nástavcami, aleb častejšie cievku, vinutu kl PM, leb bvykle sa magnetuje zlžený mag. bvd. Ptrebná je vyská intenzita prúdu, aby sa dsiahla hdnta intenzity 2 H min, č dsiahneme napr. vybitím kndenzátra d daných závitv. Magnetvacie vinutie má niekľk závitv hrubéh drôtu, aby mal malý dpr, čím dsiahneme na krátky kamih (stačia jedntky ms) vyské intenzity prúdu a teda i H. Magnetické bvdy bývajú tak zlžité, že magnetizačné vinutie sa nevyberá a zstáva súčasťu zariadenia. Priebeh psunv pracvnéh bdu je na br K H 2 H 1 H min H = 2H min M Obr.10. demagnetizácia (1-2-3) magnetvanie ( ) phyb bdu p zmagnetvaní (6-5-1) nedstatcne zmagnetvanie nedstatcne zmagnetvanie Pznámka: Ideálny psun z 3 d 4 je teretické predĺženie vratnej krivky. Pre väčšie dchýľky (hdntu H) sa priebeh zakrivuje a predstavuje krivky prislúchajúce intenzitám H 2, resp H 1. Pridaním "kladnej" intenzity sa prac. bd presunie z 3 na krivku prvtnej magnetizácie d 4, p nej d bdu 5. Tát H min je minimálne ptrebná na úplné namagnetvanie. Pre isttu, aby sme skutčne zstali na balvej (maximálnej) krivke, dprúča sa dsiahnuť intenziru 2 H min. P vypnutí prúdu prac. bd "skĺzne" d bdu Stabilizácia parametrv Permanentné magnety najmä pre meracie účely by mali mať stabilné parametre, najmä hdntu B. Materiály ale starnú, najviac na začiatku činnsti. Tent úsek je vhdné vynechať a magnet nasadiť d činnsti "až zstarne", teda ustáli si parametre. D prcesu výrby sa bvykle zaraďuje teda i starnutie. Môže byť : 11

12 prirdzené umelé Prirdzené starnutie je síce "kvalitné", ale na dnešné pmery je pmalé, pčíta sa na rky. Pret sa preferuje umelé starnutie. Tt môže byť uskutčnené: tepltu - materiál je pdrbený zvýšenej teplte definvanú dbu. Účink závisí d kmbinácie bch činiteľv, teplty musia byť pd Curieh bdm dmagnetvaním - materiál sa čiastčne dmagnetuje v striedavm magnetickm pli. Odprúčaná zmena parametrv je 10%. Pri slabšm dmagnetvaní je tendencia ešte s časm meniť parametre, pri silnejšm dmagnetvaní materiál má snahu ztaviť sa, teda vrátiť sa k pôvdným hdntám Magnetuje sa htvý zlžený mag. bvd, aleb sa zmagnetvaný perm. magnet vkladá d bvdu? Záleží t d typu materiálu? 2. Môžme dsiahnuť v niektrej časti bvdu, napr. vzduchvej medzere väčšiu B ak v perm. magnete? 12

1. ÚVOD Merací kanál Rozdelenie senzorov Generácie senzorov

1. ÚVOD Merací kanál Rozdelenie senzorov Generácie senzorov 1. ÚVOD pžiadavky na snímanie rôznych veličín vhdné senzry - rôzne druhy senzrv vstupné časti - vlastnsti, mžnsti, pruchvé veličiny 1.1. Merací kanál SEN PREV Prcesr Výst. jedn. indikácia registrácia regulácia

Διαβάστε περισσότερα

List of orders of magnitude for magnetic fields. Faktor Hodnota Item

List of orders of magnitude for magnetic fields. Faktor Hodnota Item Princípy 1. Odporové Princípy Richard Balogh 1 Odporové 2 Kapacitné 3 Magnetické Senzorové systémy v CIM, LS 2013 4 Optické 5 Akustické 6... 7 Hallov (d.ú. str. 103) 8 Siebeckov (d.ú. str. 106) 9 Peltierov

Διαβάστε περισσότερα

2.1. FEROMAGNETIZMUS. H / m je permeabilita vákua. Ak vnútro toroidu je vyplnené vzduchom,

2.1. FEROMAGNETIZMUS. H / m je permeabilita vákua. Ak vnútro toroidu je vyplnené vzduchom, ELEKTRICKÉ STROJE S PERANENTNÝI AGNETI 2. ELEKTRICKÉ STROJE S PERANENTNÝI AGNETI 2.1. FEROAGNETIZUS Cievka navinutá kl jadra tvaru prstenca vytvára trid. Prúd v závitch cievky vytvára v jadre intenzitu

Διαβάστε περισσότερα

14 Obvod striedavého prúdu

14 Obvod striedavého prúdu 4 Obvd striedavéh prúdu - nútené elektragnetické kitanie á veľký význa naä pri prense elektricke energie a v rzličných elektrnických zariadeniach. V týcht prípadch elektragnetické kitanie nazývae striedavý

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

5. AKUSTICKÉ SYSTÉMY - ULTRAZVUK

5. AKUSTICKÉ SYSTÉMY - ULTRAZVUK 5 AKUSTICKÉ SYSTÉMY - ULTRAZVUK Obecne akustické systémy Ultrazvuk (UZ) - vyššia f (40kHz 10MHz) Preč? UZ frekvencie sa ľahšie smerujú a detekujú menšia λ vyššia presnsť (100 khz λ = 3,43 mm) vysielače

Διαβάστε περισσότερα

Lineárne funkcie. Lineárna funkcia je každá funkcia určená predpisom f: y = a.x + b, kde a, b R a.a 0 D(f) = R. a > 0 a < 0

Lineárne funkcie. Lineárna funkcia je každá funkcia určená predpisom f: y = a.x + b, kde a, b R a.a 0 D(f) = R. a > 0 a < 0 Lineárne funkcie Lineárna funkcia je každá funkcia určená predpism f: a. b, kde a, b R a.a 0 D(f) R a > 0 a < 0 Vlastnsti lineárnej funkcie : D(f) R, H(f) R D(f) R, H(f) R - rastúca - klesajúca - nie je

Διαβάστε περισσότερα

Pohyb vozíka. A. Pohyb vďaka tiaži závažia. V tomto prípade sila, ktorá spôsobuje rovnomerne zrýchlený pohyb vozíka je rovná tiaži závažia: F = G zav.

Pohyb vozíka. A. Pohyb vďaka tiaži závažia. V tomto prípade sila, ktorá spôsobuje rovnomerne zrýchlený pohyb vozíka je rovná tiaži závažia: F = G zav. Phyb vzíka Rvnmerný phyb vzíka sa uskutčňuje pri knštantnej rýchlsti v, ktrá sa nemení s časm. Pri takmt phybe vzík za určitý čas t prejde dráhu s s = v t (). V prípade, že rýchlsť vzíka rastie rvnmerne

Διαβάστε περισσότερα

7. SNÍMANIE POLOHY. L x Optické princípy. mer.lúč ref. lúč laser. lúč

7. SNÍMANIE POLOHY. L x Optické princípy. mer.lúč ref. lúč laser. lúč 7 SNÍMANIE POLOHY Snímanie plhy - väčšie vzdialensti ptické - laservé (interferenčné) - impulzné (inkrementálne, abslútne) magnetické - magnetstrikčné - magnetické (impulzné) - LVDT snímače ultrazvukvé

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

ZONES.SK Zóny pre každého študenta

ZONES.SK Zóny pre každého študenta /5 MO 30: KRUŽNICA Kružnica: Kružnicu s stredm S a plmerm r > 0 nazývame mnžinu všetkých bdv X v rvine, pre ktré platí SX = r. bvd = O = πr Kruh: Mnžinu všetkých bdv X v rvine, pre ktré platí SX r nazývame

Διαβάστε περισσότερα

3. SENZORY S OPTICKÝM PRINCÍPOM

3. SENZORY S OPTICKÝM PRINCÍPOM 3. SENZORY S OPTICKÝM PRINCÍPOM Využívajú svetelný tk v rôznej pdbe na vytvrenie výstupnéh signálu. V tejt kapitle sú písané systémy, využívajúce najmä gemetrické princípy šírenia svetla. Nazývajú sa,

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

1 Kinematika hmotného bodu

1 Kinematika hmotného bodu Kinemik hmnéh bdu - kinemik berá určením plôh bd ich mien če (kinemik phb ele piuje, neberá príčinmi phbu) - pri ereickm šúdiu mechnickéh phbu (prce, pri krm mení plh jednéh ele hľdm n iné ele) ád pjem

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Materiály pro vakuové aparatury

Materiály pro vakuové aparatury Materiály pro vakuové aparatury nízká tenze par malá desorpce plynu tepelná odolnost (odplyňování) mechanické vlastnosti způsoby opracování a spojování elektrické a chemické vlastnosti Vakuová fyzika 2

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

αριθμός δοχείου #1# control (-)

αριθμός δοχείου #1# control (-) Μόνο απιονισμένο νερό #1# control (-) Μακροστοχεία: Ν, P, K, Ca, S, Εάν κάποια έλλειψη μετά 1 μήνα έχει σημαντικές επιπτώσεις προσθέτουμε σε δόσεις την έλλειψη έως ότου ανάπτυξη ΟΚ #2# control (+) Μακροστοχεία:

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός

Διαβάστε περισσότερα

13 Elektrický prúd v látkach

13 Elektrický prúd v látkach 13 Elektrický prúd v látkach - z hľadiska vedenia elektrickéh prúdu rzdeľujeme látky na vdiče (merný elektrický dpr je rádv 10-7 až 10-8 Ω.m), plvdiče (merný elektrický dpr je rádv v intervale 10 - až

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

Fyzika 4 roč. Gymnázium prvý polrok Vlnové vlastnosti svetla

Fyzika 4 roč. Gymnázium prvý polrok Vlnové vlastnosti svetla Fyzika 4 rč. Gymnázium prvý plrk Vlnvé vlastnsti svetla Svetl je elektrmagnetické žiarenie, ktré je vaka svjej vlnvej dĺžke viditeľné ľudským km. Všebecnejšie je svetl elektrmagnetické vlnenie z intervalu

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic. ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά 6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες

Διαβάστε περισσότερα

11 Štruktúra a vlastnosti kvapalín

11 Štruktúra a vlastnosti kvapalín 11 Štruktúra a vlastnsti kvapalín - štruktúra kvapalných látk je pdbná štruktúre arfných látk - každá častica kvapaliny kitá kl istej rvnvážnej plhy a p veľi krátk čase (rádv 1 ns) zauje nvú rvnvážnu plhu.

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της

Διαβάστε περισσότερα

..,..,.. ! " # $ % #! & %

..,..,.. !  # $ % #! & % ..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,

Διαβάστε περισσότερα

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΔΙΑΒΡΩΣΗ ΚΑΙ ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΥΛΙΚΩΝ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΧΑΛΥΒΩΝ ΣΤΑ ΑΥΤΟΚΙΝΗΤΑ.

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΔΙΑΒΡΩΣΗ ΚΑΙ ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΥΛΙΚΩΝ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΧΑΛΥΒΩΝ ΣΤΑ ΑΥΤΟΚΙΝΗΤΑ. ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΔΙΑΒΡΩΣΗ ΚΑΙ ΠΡΟΣΤΑΣΙΑ ΤΩΝ ΥΛΙΚΩΝ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΧΑΛΥΒΩΝ ΣΤΑ ΑΥΤΟΚΙΝΗΤΑ των ΦΑΡΛΕΚΑ ΓΕΩΡΓΙΟΥ

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Návrh 1-fázového transformátora

Návrh 1-fázového transformátora Návrh -fázového transformátora Návrh pripravil Doc. Ing. Bernard BEDNÁRIK, PhD. Zadanie : Navrhnite -fázový transformátor s prirodzeným vzduchovým chladením s nasledovnými parametrami : primárne napätie

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν

Διαβάστε περισσότερα

3. SENZORY S OPTICKÝM PRINCÍPOM

3. SENZORY S OPTICKÝM PRINCÍPOM 3 SENZORY S OPTICKÝM PRINCÍPOM Využívajú svetelný tk v rôznej pdbe na vytvrenie výstupnéh signálu Základné skupiny sú : ftelektrické - gemetrická ptika a vplyvňvanie svetelnéh tku meranu veličinu, menšia

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Trapézové profily Lindab Coverline

Trapézové profily Lindab Coverline Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

Meranie na jednofázovom transformátore

Meranie na jednofázovom transformátore Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα

Διαβάστε περισσότερα

ZADANIE 2 _ ÚLOHA 10

ZADANIE 2 _ ÚLOHA 10 ZADANIE _ ÚLOHA 0 _ Rčý phyb ele ZADANIE _ ÚLOHA 0 ÚLOHA 0.: Zvčík piemee 3m áčl vmee áčkmi = 90 /mi. Odľhčeím j jeh áčky vmee zýchľvli k že z dbu 0 dihli 0 /mi. N ých vých áčkch j uáli. Uče: zčičú kečú

Διαβάστε περισσότερα

16 Elektromagnetická indukcia

16 Elektromagnetická indukcia 251 16 Elektromagnetická indukcia Michal Faraday 1 v roku 1831 svojimi experimentmi objavil elektromagnetickú indukciu. Cieľom týchto experimentov bolo nájsť súvislosti medzi elektrickými a magnetickými

Διαβάστε περισσότερα

Σημειώσεις Εργαστηρίου ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΧΗΜΕΙΑΣ

Σημειώσεις Εργαστηρίου ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΧΗΜΕΙΑΣ ΤΜΗΜΑ ΓΕΩΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Σημειώσεις Εργαστηρίου ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΧΗΜΕΙΑΣ του ΙΟΡ ΑΝΙ Η ΑΝ ΡΕΑ Επίκουρου Καθηγητή Κοζάνη, 2007 Περιεχόμενα Πρόλογος.2 Εισαγωγή.3 Εργαστήριο 1ο - Αναλυτική Γεωχημεία.7

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΓΕΩΠΟΝΙΚΗΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΟΛΟΓΙΑΣ ΚΑΙ ΜΟΡΦΟΛΟΓΙΑΣ ΦΥΤΩΝ ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΥΠΑΡΞΗΣ ΣΥΣΤΑΤΙΚΩΝ ΔΟΜΗΣ ΟΡΘΟ-ΔΙ- ΦΑΙΝΟΛΗΣ ΣΤΑ ΚΥΤΤΑΡΙΚΑ ΤΟΙΧΩΜΑΤΑ ΚΑΙ ΤΗΣ ΣΥΜΜΕΤΟΧΗΣ

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

18 Kmitavý pohyb. 1 = Hz (jednotkou frekvencie je Herz)

18 Kmitavý pohyb. 1 = Hz (jednotkou frekvencie je Herz) 8 Kitavý hb - echanický hb sústav charakterizvaný veičinai, ktré sú eridickýi funkciai času - každé zariadenie, ktré ôže vľne bez vnkajšieh ôsbenia) kitať, nazýva sa sciátr - eridick akujúca sa časť kitavéh

Διαβάστε περισσότερα

8 Magnetické pole v látkovom prostredí

8 Magnetické pole v látkovom prostredí 8 Magnetické pole v látkovom prostredí V úvodných historických poznámkach o magnetizme sme sa zmienili o magnetických vlastnostiach niektorých minerálov. S magnetickými materiálmi sa však stretávame denne.

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών

Διαβάστε περισσότερα

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται

Διαβάστε περισσότερα

Μαγνητικά Υλικά Υπεραγωγοί

Μαγνητικά Υλικά Υπεραγωγοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΜΑΛΑΚΑ ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

Φιάλες αερίου χωρίς συγκόλληση κατασκευασµένες από κεκραµένο ή µη αλουµίνιο σε συµµόρφωση προς την οδηγία 84/526 ΕΟΚ. (ΦΕΚ 624/Β/24-11-87)

Φιάλες αερίου χωρίς συγκόλληση κατασκευασµένες από κεκραµένο ή µη αλουµίνιο σε συµµόρφωση προς την οδηγία 84/526 ΕΟΚ. (ΦΕΚ 624/Β/24-11-87) ΥΠΟΥΡΓΙΚΗ ΑΠΟΦΑΣΗ: Αριθ. Β 19339/1945/87 Φιάλες αερίου χωρίς συγκόλληση κατασκευασµένες από κεκραµένο ή µη αλουµίνιο σε συµµόρφωση προς την οδηγία 84/526 ΕΟΚ. (ΦΕΚ 624/Β/24-11-87) ΟΙ ΥΠΟΥΡΓΟΙ ΕΘΝΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Χημεία γενικής παιδείας

Χημεία γενικής παιδείας Χημεία γενικής παιδείας ΘΕΜΑ Α Στις προτάσεις από Α1 - Α4 να βρείτε την σωστή απάντηση. Α1. Σύμφωνα με τη θεωρία Arrhenius, το 1 είναι οξύ επειδή: α) αντιδρά με βάσεις, β) είναι ηλεκτρολύτης, γ) μεταβάλλει

Διαβάστε περισσότερα

Ηρλνζηνηρεία (Απαξαίηεηα θαη Σνμηθά) ntho@chem.uoa.gr

Ηρλνζηνηρεία (Απαξαίηεηα θαη Σνμηθά) ntho@chem.uoa.gr Ηρλνζηνηρεία (Απαξαίηεηα θαη Σνμηθά) ntho@chem.uoa.gr Οξηζκόο Χο ηρλνζηνηρείν ζεσξείηαη απζαίξεηα θάζε ζηνηρείν πνπ νη απαηηήζεηο ηνπ νξγαληζκνύ καο ζ απηό είλαη κηθξόηεξεο ησλ 25 mg αλά εκέξα Απαξαίηεηα

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013) Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 12: ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 12: ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 12: ΜΑΓΝΗΤΙΚΑ ΥΛΙΚΑ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα