υπό σταθερή θερµοκρασία υπό σταθερή πίεση υπό σταθερή πίεση και θερµοκρασία Αριθµός Avogadro: Α= x µόρια ανά γραµµοµόριο R A = V V n
|
|
- Εὐνίκη Λόντος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-1 τµοσφιικός ές: σχεδόν ιδνικό έιο Αέιο πο ποτελείτι πό όµοι µόι σχεδόν µηδενικού µεγέθος κι όγκο, µετξύ των οποίων δεν εξσκούντι δνάµεις κι τ οποί φίστντι ελστικές κούσεις. Η εσωτεική ενέγει το ιδνικού είο εξτάτι µόνον πό τη θεµοκσί το. (γι χµηλές πιέσεις-ψηλές θεµοκσίες Νόµος oyle: σµπιεστότητ είων Νόµος Charles: Νόµος vogaro: 1 πό στθεή θεµοκσί πό στθεή πίεση πό στθεή πίεση κι θεµοκσί Αιθµός vogaro: Α x µόι νά γµµοµόιο ΝΟΜΟΣ Ι ΑΝΙΚΩΝ ΑΕΡΙΩΝ - ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ όπο: /η µοική σγκέντωση το είο (ιθµός µοίων νά µονάδ όγκο k / x J/K η στθεά το oltza 8314 J/ole K ισχύει γι µόι µη µηδενικού µεγέθος κι µε ενδοµοικές δνάµεις µέτο ενδοµοικών δνάµεων ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ va er Waals k όγκος ενός ole γι,b0: P ΑΠΟΚΛΙΣΗ ΑΠΌ ΤΟ ΝΟΜΟ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ οξηόςτµοσφ. ές σε SP σµπειφέετι ως ιδνικό έιο σε ποσέγγιση <0.2%
2 ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-2 Γι έν έιο σσττικό q ενός είο µείγµτος : ολική πίεση είο µείγµτος (έ Ισχύει: q k Νόµος µεικών πιέσεων q k ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΞΗΡΟΥ ΑΕΡΑ q q q πκνότητ ξηού έ όπο: πίεση τµοσφ. έ 1.28 Kg/ 3 σε SP q k (Dalto: Ατµοσφ. Αές> µείγµ: ξηού έ δτµών µοικό βάος ξηού έ στθεά ξηού έ: b.kg -1.K -1, ή c 3 b.g -1.K J Kg -1 K -1 µοικό βάος ξηού έ: (π.χ. έ πίεση ξηού τµοσφ. έ πίεση δτµών µοική πκνότητ ξηού έ g ol -1 στθεά ξηού έ µοική σγκέντωση σσττικού q µεική πίεση σσττικού q µοική σγκέντωση έ (µείγµτος όλ τ έι εκτός των δτµών ( k ( (ογκοµετικός στθµικός µέσος µοικών βών Ο 2, Ν 2, r, C0 2, κ.λ.π.
3 ΚΑΤΑΣΤΑΤΙΚΗ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΕΞΙΣΩΣΗ-3 k στθεά δτµών: b.kg -1.K -1, ή 4614,0 c 3 b.g -1.K J Kg -1 K -1 ε ε όπο: µποούµενγάψοµε την κτσττική εξίσωση γι τος δτµούς: όπο: πκνότητ δτµών έως κι 0.05 Kg/ 3 (πολύ µικότεη πό τή το ξηού έ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ Υ ΡΑΤΜΩΝ µοικό βάος δτµών στθεά δτµών (σντήσει της στθεάς το ξηού έ
4 Ανλογί µίγµτος κτά µάζ: ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-4 εκφάζετι µε διάφοος τόπος Μοική σγκέντωση: πόλτη ποσότητ Σγκέντωση µοική Αείο σγκέντωση Ανλογί µίγµτος κτ όγκο: χ q q / q / q / ω q q / ( q q /( ( q q /( ( q q /( πολλπλσιάζοντς µε 10 6 µέη νά εκτοµµύι κτά όγκο arts er illio by volue χ q σε v πίεση ιθµός oles ω q σε σχετικές ποσότητες (ως πος τον ξηό έ ( q /. χ q µέη νά εκτοµµύι κτά µάζ arts er illio by ass Ανλογί µίγµτος µάζς δτµών: ε ω ε εχ Ανλογί µίγµτος όγκο δτµών Ισχύει: Ειδική γσί δτµών: q ω q ε a ε Σχέση ειδικής γσίς κι νλογίς µίγµτος µάζς γι δτµούς Ισχύει: q ω ( <<
5 ΥΓΡΟΣ ΑΕΡΑΣ Κτσττική Εξίσωση (Υγού Αέ: µεντικτάστση: ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-5 a a ( ε / ε / / ω 1/ε / ω / ε ω µποεί ν γφεί: v ω / ε όπο: ( 0.608ω ω στθεά γού έ ω εικονική / ε κι: v ( ω ω θεµοκσί είνι η θεµοκσί δείγµτος ξηού έ µε ίδι πκνότητ κι πίεση µε ένδείγµ γού έ θεµοκσίς Τ Γι ξηό κι γό έ ίδις θεµοκσίς κι πίεσης Υγός ές: Ξηός ές: (ίδις θεµοκσίς κι πίεσης ( 0.608ω γι γιξηό ξηόκι κιγό γόέ ίδις ίδιςθεµοκσίς κι κιπίεσης ΙΣΧΥΕΙ > virtual teerature v > <
6 ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-6 ( ω ( ω ( ω Ά: ( ω < ΕΠΙ ΡΑΣΗ ΤΗΣ ΥΓΡΑΣΙΑΣ ΤΟΥ ΑΕΡΑ ΣΤΗΝ ΠΥΚΝΟΤΗΤΑ ΤΟΥ (... πκτή, είνι όµως µικότεη πό την ντίστοιχη επίδση της πίεσης κι της θεµοκσίς δηλ. το µοικό βάος το γού έ είνι µικότεο πό εκείνο το ξηού έ (ο γός ές είνι πιο ελφύς ή λιγότεο πκνός πό τον ξηό, ewto, Otics, 1717 ιάφοες επιδάσεις, π.χ. (i τχύτητ µπάλς το baseball (µεγλύτεη σε ιότεο έ-µεγάλο ψόµετο (ii πόδοση εοσκφών κ.λ.π. (π.χ. τοκινήτων (κλύτεη σε πκνότεο έ liftig force, roeller thrust
7 Υ ΡΟΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-1 µετβολή της πίεσης µε το ύψος Υ ΡΟΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ: z z g a 9.81 /s σε µι δοσττική τµόσφι: Ισοοπί µετξύ: i δύνµης βοβθµίδς ii δύνµης βάος ο τµοσφιικός ές δεν έχει κτκόφη επιτάχνση σωστή πόθεση πάνω πό µεγάλες επίπεδες πειοχές δεν ισχύει επάνω πό µικές πειοχές (µεδιάµετο <2-3k ΥΠΟΛΟΓΙΣΜΟΣ ΠΙΕΣΗΣ ΣE ΕΝΑ ΣΥΓΚΕΚΡΙΜΕΝΟ ΥΨΟΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ,1 z 1 a z z z a,1 a,0 1 0 a,0 g πειοχές µε νάγλφο νέφη (π.χ. Cb,0 z 0 π.χ. επιφάνει θάλσσς ή έδφος Εάν γνωίζοµε:,0, z 1, z 0 κι το ποφίλ της πκνότητς ( ήτηςθεµοκσίς (Τ, τότε µποούµε ν πολογίσοµετηνπίεσησεκάθετµοσφ. στώµ
8 Υ ΡΟΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-2 ΥΠΟΛΟΓΙΣΜΟΣ ΥΨΟYΣ ΣΥΝΑΡΤΗΣΕΙ ΤΗΣ ΠΙΕΣΗΣ Γι τπική ξηή τµόσφι, στη στάθµη της θάλσσς s, a as, Η πίεση σε έν σγκεκιµένο επίπεδο (ύψος της τµόσφις µετάτι µενεοειδές(χωίς γό βόµετο Στη σνέχει, ηπίεσηχησιµοποιείτι γι την εκτίµηση το ύψος κάτω πό τπικές τµοσφιικές σνθήκες Κτόπιν, εφµόζοντι πάγοντες διόθωσης γι ν πολογιστεί η διοθωµένη τιµή το ύψος z g z επιφνεική πίεση κι θεµοκσί (στη στάθµη της θάλσσς 1 s, b as, 288K Γs 6.5K K Θεµοβθµίδ z τπικές τµοσφιικές σνθήκες ελεύθεης τοπόσφις g Γ z,s s g, OMΩΣ: OMΩΣ: γι γιπγµτική πγµτικήτµόσφι, τµόσφι, οι οιτιµές τιµέςεπιφ. πίεσηςεπιφεπιφ. θεµοκσίς-θεµοβθµίδς είνι είνιδιφοετικές διφοετικέςπό πό πίεσης- εκείνες εκείνεςτης τηςτπικής τπικήςτµόσφις ΙΟΡΘΩΣΕΙΣ asγsz l( l( Γ s, s as, z, s Γ s 1 Υπολογισµός ύψος µε χήση νεοειδούς βοµέτο γι τπική τµόσφι ΟΜΩΣ: χειάζετι διόθωση γι πγµτικές σνθήκες (π.χ. εφµογή σε εοπλάν µε χήσηεµπειικών τύπων Πεισσότεο κιβής πολογισµός ύψος πτήσης µε τη χήση raars, s ποσδιοίζετι µε νεοειδές βόµετο Γ / g s
9 Υ ΡΟΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ-3 Υπολογισµός πίεσης µε τη χήση ψοµετικής κλίµκς (κλίµκς ύψος Γι γό έ: 1 M v v v v β β v M k k µέση µάζ ενός µοίο το έ εικονική θεµοκσί γού έ z g είνι το ύψος πάνω πό µι στάθµηνφοάς στο οποίο η πίεση ελττώνετι στο 1/e της τιµής της στη στάθµη νφοάς γι ισόθεµη τµόσφι z H όπο: M g z z k H H v k v Ύψος Κλίµκς Mg λλάζει µε το ύψος (λόγω Τ Γι Ηz: τελική χική e 290 K, H K, H 6000 εκτίµηση πίεσης σε κάποιο ύψος εφόσον γνωίζοµε τηνπίεσησεένκτώτεούψος ( zzνϕ / H z z,, νϕ e H 0 e τµοσφ. στώµ z0, 0
Q T Q T. pdv. παραγόµενο έργο κατά την εκτόνωση αερίου: Μεταβολή της εσωτερικής ενέργειας αέρα χωρίς µεταβολή όγκου και παραγωγή έργου.
Ο 1 ος ΝΟΜΟΣ ΤΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ-1 σχετίζει τη µετβολή της θερµοκρσίς ενός ερίου µετηµετφορά ενέργεις µετξύ του ερίου κι του περιβάλλοντός του κι το πργόµενο/ποδιδόµενο έργο Q U W Q * *
Διαβάστε περισσότεραΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ÑÏÌÂÏÓ
ΘΕΜ 1ο ΘΕΜΤ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ- ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ - 000 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ που ντιστοιχεί στη σωστή πάντηση. 1. Ένς νεµιστήρς
Διαβάστε περισσότεραΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ Α. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ. ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΘΕΩΡΙΣ ΣΚΗΣΗ Ο πρκάτω πίνκς περιέχει τ πρόσηµ των λγεβρικών τιµών της τχύτητς κι της επιτάχνσης. Σµπληρώστε τον πρκάτω πίνκ. >, > >, <
Διαβάστε περισσότεραΕ Α Ε Β. Από τα σχήματα βλέπουμε ότι ισχύει :
ΡΧΗ ΗΣ ΣΕΛΙΔΣ ΤΞΗ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΚΥΡΙΚΗ 4/5/4 - ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΙ (9) ΘΕΜ. γ,.,. β, 4. β 5. ) Λ, β) Λ, γ) Σ, δ) Λ, ε) Σ ΘΕΜ. i) Σωστ πάντηση είνι η γ. Γι τις τχύτητες
Διαβάστε περισσότεραΡΕΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM
Q ΡΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM Ισοοπία σε αγωγό μόνον όταν στο εσωτεικό του αγωγού είναι =0 λεύθεο Ηλεκτόνιο Πείσεια ελευθέων ηλεκτονίων ξωτεικό ηλεκτικό πεδίο εσ εξ = εσ = 0 εξ σωτεικό ηλ. πεδίο Ποσθήκη εξωτεικού
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ Η μέτηση της ταχύτητας οής ενός εστού μέσα σε ένα σωλήνα γίνεται με τη σσκεή Prandtl (σωλήνας Pitot) (βλέπε Σχήμα). Η σσκεή ατή αποτελείται από δο πολύ λεπτούς σωλήνες,
Διαβάστε περισσότερα2 m g ηµφ = m Β. 2 h. t t. s Β = 1 2 (1) R (3) (4) 2 h cm. s 1. 2mg. A cm. A cm
ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τετάρτη 9 Απριλίου 05 ΘΕΜΑ ύο κύλινδροι Α κι, που έχουν ντίστοιχ µάζες m m κι m B m κι κτίνες κι B, ήνοντι τυτόχρον ελεύθεροι πό το ίδιο ύψος πλάιου επιπέδου χωρίς ρχική τχύτητ.
Διαβάστε περισσότεραΦΥΣ η Πρόοδος: 4-Νοεμβρίου-2005
ΦΥΣ. 3 η Πρόοδος: 4-Νοεμβρίο-5 Πριν ρχίσετε σμπληρώστε τ στοιχεί σς (ονομτεπώνμο κι ριμό ττότητς). Ονομτεπώνμο Αριμός ττότητς Σς δίνοντι 6 ισότιμ προβλήμτ ( βμοί το κέν) κι πρέπει ν πντήσετε σε οποιδήποτε
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: ΣΕΙΡ: (ΛΥΣΕΙΣ) ΘΕΜ Οδηγία: Να γάψετε στο τετάδιό σας τον αιθμό καθεμιάς από τις παακάτω εωτήσεις -4 και δίπλα το γάμμα που αντιστοιχεί στη σωστή απάντηση..
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΜΑΤΑ ΚΥΡΙΑΚΗ 19 ΝΟΕΜΒΡΙΟΥ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 4 ΘΕΜΑ A Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις
Διαβάστε περισσότεραΕπιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση
Υλικό Φσικής-Χηµείς Επνληπτικά Θέµτ. Επιτάχνση κι ισχύς σε κμπλόγρμμη κίνηση Έν σηµεικό σφιρίδιο Σ µάζς m=0,kg είνι δεµένο στο ά- κρο βρούς κι µη εκττού νήµτος µήκος =0,m, το άλλο άκρο το οποίο είνι στερεωµένο
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 1
Υλικό Φσικής-Χηµείς ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΙ ΣΩΣΤΟΥ ΛΘΟΥΣ ΜΕ ΙΤΙΟΛΟΓΗΣΗ ) Στην κάτω άκρη ενός ιδνικού τήριο είνι δεµένο έν σώµ πο έχει µάζ m m κι ισορροπεί. Στην κάτω άκρη ενός άλλο οµοίο τήριο είνι
Διαβάστε περισσότεραΘΕΜΑ 1 0 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 8//6 ΘΕΜΑ Οδηγί: Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθμό της ερώτησης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 13 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνί: Κυρική 8 Απριλίου 13 ιάρκει Εξέτσης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4
Διαβάστε περισσότεραΚίνηση σε Μαγνητικό πεδίο
Κίνηση σε γνητικό πεδίο 4.1. Ακτίν κι Περίοδος στο ΟΠ. Από έν σημείο Α μέσ σε ομογενές μγνητικό πεδίο έντσης Β=2Τ, εκτοξεύοντι δύο σωμτίδι Σ 1 κι Σ 2 ίδις μάζς m=10-10 kg κι ντίθετων φορτίων, με τχύτητες
Διαβάστε περισσότεραπου έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.
. Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών
Διαβάστε περισσότεραΤα προτεινόμενα θέματα είναι από τις γενικές ασκήσεις προβλήματα του Ι. Δ. Σταματόπουλου αποκλειστικά για το site (δεν κυκλοφορούν στο εμπόριο)
Τ προτεινόμεν θέμτ είνι πό τις γενικές σκσεις προβλμτ το Ι. Δ. Στμτόπολο ποκλειστικά γι το site (δεν κκλοφορούν στο εμπόριο) Θέμ 6 ο Ομογενς σφίρ μάζς m κι κτίνς R, ισορροπεί πάνω σε κεκλιμένο επίπεδο
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις -4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ σε κάθε ριθµό το γράµµ που ντιστοιχεί
Διαβάστε περισσότερα- Ομοιότητα με βάση τις εξισώσεις Νavier-Stokes - 2- διάστατη ασυμπίεστη Ροή
ΚΕΦΑΛΑΙΟ 8 ΡΟΗ ΠΡΑΓΜΑΤΙΚΟΥ ΡΕΥΣΤΟΥ-ΣΥΝΕΚΤΙΚΗ ΡΟΗ - Ιξώδες - Ομοιόηα με βάση ις εξισώσεις Νaier-Stkes - - διάσαη ασυμπίεση Ροή ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ 0 ΕΞΙΣΩΣΕΙΣ ΟΡΜΗΣ t 1 μ 1 g μ t - Οιακές Συνθήκες B σο -
Διαβάστε περισσότεραΟνοματεπώνυμο. Τμήμα
Ηλεκτρομγνητισμός (6-7-9) Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 A. Έν σωμάτιο με φορτίο -6. n τοποθετείτι στο κέντρο ενός μη γώγιμου σφιρικού φλοιού εσωτερικής κτίνς c κι εξωτερικής 5 c. Ο σφιρικός φλοιός περιέχει
Διαβάστε περισσότερα36 g. 0.5 atm. P (bar) S ds. = dst. o C) θ ( = dp= P P. P γ. ( g) T T. γ γ. δ δ. Sγ δ. β β β. δ β P T. S α β = =247.
Τµήµ Χηµείς Μάθηµ: Φσικοχηµεί Ι Εξετάσεις: Περίοος Ιονίο 009-0 (8.6.00) Θέµ. 36 g Η Ο θερµοκρσίς 90 C κι πίεσης atm (ρά κτάστση, ) φέρετι σε θερµοκρσί 90 C κι πίεση 0.5 atm (έρι κτάστση, β). Ν πολοισθεί
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: 15/0/015 ΘΕΜ 1 ο Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις 1-4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.
Διαβάστε περισσότεραΣυναρτήσει πάλι των x και ψ μπορούμε να υπολογίσουμε τον όγκο του μίγματος σε STP.
Παράδειγμα 4.7 Αέριο μίγμα περιέχει CO και SO. Το μίγμα αυτό ζυγίζει 7,6 g, ενώ ο όγκος του σε STP συνθήκες είναι 3,36 L. α. Πόσα ol κάθε αερίου περιέχει το μίγμα; β. Ποια είναι η μάζα του CO στο μίγμα;
Διαβάστε περισσότερα* ' 4. Σώµ εκτελεί γ..τ µε συχνότητ f. H συχνότητ µε την οποί µεγιστοποιείτι η δυνµική ενέργει τλάντωσης είνι. f =2f β. f =f/2 γ. f =f δ. f =4f Β. Στη
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Σγγρφή Επιμέλει: Πνγιώτης Φ. Μοίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 946778 www.pmoiras.weebly.om ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ
ΑΠΑΝΤΗΕΙ ΦΥΙΚΗ Ο.Π Β Λ Γ Λ 3/0/09 ΓΙΑΝΝΗ ΤΖΑΓΚΑΡΑΚΗ ΘΕΜΑ Α Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις Α-Α4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστ πάντηση. Α. ε ποιο πό
Διαβάστε περισσότεραV v= (1) n. i V. = n. (2) i (3) (4) (5) (7) (8) (9) = (6)
Μερικός γρµµοµορικός όγκος Ο όγκος είνι µι κύρι εκττική ιδιότητ θερµοδυνµικών συστηµάτων. Γρµµοµορικός όγκος δηλ. ο όγκος νά γρµµοµόριο είνι η ενττική ιδιότητ συστήµτος ενός συσττικού η οποί ορίζετι πό
Διαβάστε περισσότεραΕπίλυση αποδεικτικών σχέσεων της Θερµοδυναµικής
Σηµειώσεις Χηµιής Θερµοδυνµιής/Β. Χβρεδάη Επίλυση ποδειτιών σχέσεων της Θερµοδυνµιής Συνοπτιά νφέροντι διάφοροι τρόποι προσέγγισης της επίλυσης σχέσεων της Θερµοδυνµιής. Θ πρέπει ν τονισθεί ότι οι νφερόµενες
Διαβάστε περισσότεραΆτομα μεταβλητή Χ μεταβλητή Y... Ν XN YN
Ν6_(6)_Σττιστική στη Φυσική Αγωγή 08_Πλινδρόμηση κι συσχέτιση Γούργουλης Βσίλειος Κθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Σε ορισμένες περιπτώσεις πιτείτι η νίχνευση της σχέσης μετξύ δύο ποσοτικών μετβλητών
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ
ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 6 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθµό κθεµιάς πό τις πρκάτ ερτήσεις - 4 κι δίπλ το γράµµ πο ντιστοιχεί στη σστή πάντηση Στο κύκλµ
Διαβάστε περισσότερα* ' 4. Οι κτίνες Röntgen. εκπέµποντι πό ρδιενεργούς πυρήνες που ποδιεγείροντι β. είνι ορτές γ. πράγοντι πό ηλεκτρονικά κυκλώµτ δ. πράγοντι πό επιβράδυ
* '! " # $ # # " % $ " ' " % $ ' " ( # " ' ) % $ THΛ: 270727 222594 THΛ: 919113 949422 ' " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Κύκλωµ
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες ( ) Α. Δύο σώματα ίσης μάζας m κινούνται σε οριζόντιο επίπεδο όπως φαίνεται στο παρακάτω σχήμα.
Εισγωγή στις Φυσικές Επιστήμες (7-7-7) Μηχνική Ονομτεπώνυμο Τμήμ ΘΕΜΑ 1 Α. Δύο σώμτ ίσης μάζς m κινούντι σε οριζόντιο επίπεδο όπως φίνετι στο πρκάτω σχήμ. Α υ Β a O = Εάν γι t = το σώμ Α κινείτι με στθερή
Διαβάστε περισσότεραΕφαρµόζεταιοΚΑΝ.ΕΠΕ. σεκάθεπερίπτωσηεπέµβασης;
ΕφµόζετιοΚΑΝ.ΕΠΕ. σεκάθεπείπτωσηεπέµβσης; ΕΑΚ ΠΑΡΑΡΤΗΜΑ Ε κτγήθηκε ΦΕΚ 350/7-0 - 06 ΕΦΑΡΜΟΓΗ ΚΑΝΟΝΙΣΜΩΝ ΣΕ ΕΙ ΙΚΕΣ ΠΕΡΙΠΤΩΣΕΙΣ ΕΠΕΜΒΑΣΕΩΝ (Ανεξτήτως Υλικού Κτσκευής) ΚΑΤΑΡΓΗΣΗ ΠΑΡΑΡΤΗΜΑΤΟΣ Ε ΤΟΥ ΕΑΚ ΥΝΑΤΟΤΗΤΑ
Διαβάστε περισσότεραΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ
ΔΥΟ ΟΜΟΓΕΝΕΙΣ ΔΙΣΚΟΙ ΚΑΙ ΚΥΛΙΣΗ Δύο ομογενείς δίσκοι, ένς μεγάλος μάζς Μ=3kg κι κτίνς =40 κι ένς μικρός μάζς m=kg κι κτίνς =10, ενώνοντι έτσι ώστε ν συμπίπτουν τ κέντρ τους. Ο δίσκος κτίνς διθέτει υλάκι
Διαβάστε περισσότεραΣωτήρης Χρονόπουλος ΦΡΟΝΤΙΣΤΗΡΙΟ ΠΡΟΟΠΤΙΚΗ ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ
ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ: ΟΡΙΖΟΝΙΑ ΒΟΛΗ, ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΗΣΕΙΣ Σωτρης Χρονόπολος 1. Μι σφίρ ηρεμεί στην άκρη ενός τρπεζιού. Στη σφίρ δίνετι τχύτητ 0, όπως φίνετι στην εικόν. Ν γράψετε τις εξισώσεις πο
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΔΥΝΑΜΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ Σγγρφή Επιμέει: Πνγιώτης Φ. Μίρς ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pira.wly. ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Διαβάστε περισσότεραΕυθύγραμμες Κινήσεις (Συμπυκνωμένα)
Εθύγρμμες Κινήσεις (Σμπκνωμέν) Χρήση Λελεδάκης Κωστής ( koleygr@gmailcom ) Οι σημειώσεις πεθύνοντι σε κάποιον πο θέλει ν μάθει ή ν θμηθεί τ βσικά στοιχεί των εθύγρμμων κινήσεων (χωρίς πργώγος κι ολοκληρώμτ)
Διαβάστε περισσότερα1ο Επαναληπτικό Διαγώνισμα Φυσικής Α τάξης Γενικού Λυκείου
ο Επνληπτικό Διγώνισμ Φυσικής Α τάξης Γενικού Λυκείου Θέμ Α: (Γι τις ερωτήσεις Α. έως κι Α.4 ν γράψετε στο τετράδιό σς τον ριθμό της πρότσης κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πρότση.) Α. Στην ευθύγρμμη
Διαβάστε περισσότεραΜελέτη της Άνωσης. Α = ρ υγρού g V βυθ..
Μελέτη της Άνωσης F 1 h 1 h 2 Α) Η Άνωση οφείλεται στην βαύτητα. Αν ένα σώμα βίσκεται μέσα σε υγό με πυκνότητα υγού η επάνω επιφάνειά του με εμβαδό S δέχεται δύναμη F 1 = P 1 S και η ίσου εμβαδού κάτω
Διαβάστε περισσότεραΑσκήσεις Θερµοδυναµικής. Καταστατικές Εξισώσεις Πρώτος Θερµοδυναµικός Νόµος
Φυσικοχηµεί Ι / Β. Χβρεδάκη Ασκήσεις Θερµοδυνµικής Κτσττικές Εξισώσεις Πρώτος Θερµοδυνµικός Νόµος. Ν ποδειχθεί ότι σε ιδνικό έριο: / κι κ Τ /Ρ όπου ο συντελεστής διστολής κι κ ο ισόθερµος συντελεστής συµπιεστότητς..
Διαβάστε περισσότεραΣεµινάριο Αυτοµάτου Ελέγχου
Σεµινάριο Ατοµάτο Ελέγχο Μάθηµα 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων µε σνεχείς και διακριτούς αλγόριθµος Καλλιγερόπολος 7 Εκτίµηση Esimaion στοχαστικών µεγεθών και παραµέτρων Σνεχή και
Διαβάστε περισσότεραΑ) Να επιλέξετε την σωστή απάντηση. Αν η επίδραση του αέρα είναι αμελητέα τότε το βάρος Β του σώματος θα έχει μέτρο: F α) F β) 3F γ) 3
ΑΠΑΝΤΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ο ΚΕΦΑΛΑΙΟ ο ΘΕΜΑ 376/Β. Σε έν σώμ μάζς m που ρχικά ηρεμεί σε οριζόντιο επίπεδο σκούμε κτκόρυφη στθερή δύνμη μέτρου F, οπότε το σώμ κινείτι κτκόρυφ προς τ πάνω με
Διαβάστε περισσότεραBernoulli P ρ +gz Ω2 ϖ 2 2
Εθνικό και Καποιστιακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Δυναμική των Ρευστών, 6 Φεβουαίου 08 Απαντήστε σε 3 από τα 4 θέματα ιάκεια εξέτασης ώες Καλή επιτυχία = bonus εωτήματα) Θέμα ο :
Διαβάστε περισσότερα12 η Εβδομάδα Ισορροπία Στερεών Σωμάτων. Ισορροπία στερεών σωμάτων
1 η Εβδομάδ Ισορροπί Στερεών Σωμάτων Ισορροπί στερεών σωμάτων Γι ν ισορροπεί έν στερεό σώμ πρέπει κι η συνιστμένη όλων των δυνάμεων που σκούντι πάνω του ν είνι ίση με μηδέν κι η συνιστμένη όλων των ροπών
Διαβάστε περισσότεραΓΙΟ-ΓΙΟ ΚΑΙ ΚΟΨΙΜΟ ΝΗΜΑΤΟΣ
ΓΙΟ-ΓΙΟ ΚΙ ΚΟΨΙΜΟ ΝΗΜΤΟΣ Ο ομογενής κύλινδρος(γιο-γιό) του σχήμτος έχει μάζ Μ=5kg κι κτίν R=0,m. Γύρω πό τον κύλινδρο είνι τυλιγμένο βρές κι μη εκττό νήμ, το ελεύθερο άκρο του οποίου τρβάμε προς τ πάνω
Διαβάστε περισσότεραα κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε
Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε
Διαβάστε περισσότεραΠέµπτη, 25 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 006 Πέµπτη, 5 Μΐου 006 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 Στις ερωτήσεις 1-4 ν γράψετε στο τετράδιό σς τον ριθµό της ερώτησης κι δίπλ το γράµµ, που ντιστοιχεί στη σωστή πάντηση.
Διαβάστε περισσότεραΓενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης
Γενικές εξετάσεις 009 Φσική Γ κεί θετικής - τεχνγικής κτεύθνσης Θέμ Ν γράψετε στ τετράδιό σς τν ριθμό κθεμιάς πό τις πρκάτ ερτήσεις - 4 κι δίπ τ γράμμ π ντιστιχεί στη σστή πάντηση.. Σε μι φθίνσ τάντση
Διαβάστε περισσότεραΕπιτάχυνση και ισχύς σε καμπυλόγραμμη κίνηση
Επιτάχυνση κι ισχύς σε κμπυλόγρμμη κίνηση Έν σημεικό σφιρίδιο Σ μάζς m=0,kg είνι δεμένο m στο άκρο βρούς κι μη Σ εκττού νήμτος μήκους =0,m, το άλλο άκρο του οποίου είνι στερεωμένο σε οριζόντι οροφή. Το
Διαβάστε περισσότεραδίνει την πυκνότητα νετρονίων ανά μονάδα ενέργειας. Αναφέρεται συνήθως στη βιβλιογραφία απλά ως «πυκνότητα νετρονίων» ενώ η
ΠΑΡΑΡΤΗΜΑ Π2.2 Γι ν δούμε με ποιο τρόπο ο τύπος των τεσσάρων συντελεστών προκύπτει πό την (2.2.1) χρειάζετι πρώτ τ γενικεύσουμε τις έννοιες της πυκνότητς κι της ροής νετρονίων. ε κάθε θέση r της κρδιάς
Διαβάστε περισσότεραΡάβδος σε κατακόρυφη στροφική κίνηση που "ελευθερώνεται".
Ράβδος σε αταόρφη στροφιή ίνηση πο "ελεθερώνεται". Μια ομογενής λινδριή ράβδος μάζας Μ =,5g αι μήος = 1,m είναι αρθρωμένη στο ένα άρο της αι μπορεί να στρέφεται χωρίς τριβές σε αταόρφο επίπεδο περί οριζόντιο
Διαβάστε περισσότεραΧειμερινό εξάμηνο 2007 1
ΜΜΚ 3 Μεταφοά Θεμότητας Φυσική Συναγωγή ΜΜΚ 3 Μεταφοά Θεμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Πααγωγής ΜΜK 3 Μεταφοά Θεμότητας Φυσική Συναγωγή (r convction) Στα ποηγούμενα ύο κεφάλαια ασχοληθήκαμε
Διαβάστε περισσότεραΒ Λυκείου 29 Απριλίου 2001
Ένωση Ελλήνων Φσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Πνεπιστήμι Αθηνών Εργστήρι Φσικών Επιστημών, Τεχνλγίς, Περιβάλλντς Θεωρητικό Μέρς ΘΕΜΑ Λκεί 9 Απριλί Μι γώγιμη μετλλική σφίρ κτίνς περιβάλλετι πό πχύ
Διαβάστε περισσότεραΠεριεκτικότητα στα εκατό κατά βάρος (% W/W): εκφράζει τα γραµµάρια της διαλυµένης ουσίας που περιέχονται σε 100 g διαλύµατος.
1 ΚΕΦΑΛΑΙΟ 1 ο 1. ΙΑΛΥΜΑΤΑ (ΠΕΡΙΕΚΤΙΚΟΤΗΤΑ - ΙΑΛΥΤΟΤΗΤΑ) Όπως νφέρµε διάλυµ είνι έν οµογενές µίγµ που ποτελείτι πό δύο ή περισσότερες χηµικές ουσίες. Περιεκτικότητ διλύµτος είνι η ποσότητ της διλυµένης
Διαβάστε περισσότεραΕργαστήριο Φυσικοχημείας Ι ΧΗΜ-311
Τµήµα Χηµείας Πανεπιστήµιο Κρήτης Εργαστήριο Φσικοχημείας Ι ΧΗΜ-3 Γ εξάμηνο 0-3 Ιδανικά αέρια Κινητική Θεωρία των Αερίων Εργαστηριακή άσκηση Α6 Άσκηση Α6 : Κατανοµή Ταχτήτων κατα Mawell Αντικείµενο Μελέτη
Διαβάστε περισσότεραPhysics by Chris Simopoulos
ΒΟΛΗ ΣΕ ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΠΟ ΥΨΟΣ. Οι καμπλόγραμμες βολές θεωρούνται σύνθετες κινήσεις. Έτσι κάθε ανσματικό μέγεθος όπως ταχύτητα, επιτάχνση κλ.π θα αναλύεται σε δύο άξονες έναν οριζόντιο
Διαβάστε περισσότεραΜΑΘΗΜΑ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ
ΜΑΘΗΜΑ 6. ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ Θεωρί Μέθοδος Ασκήσεις ΘΕΩΡΙΑ. Ορισµός. Έστω συνάρτηση y f( πργωγίσιµη στο. Ρυθµός µετβολής του y ως προς στο σηµείο λέγετι η πράγωγος f ( κι Ρυθµός µετβολής του y ως προς λέγετι
Διαβάστε περισσότεραΚάθε ποσότητα ύλης που περιορίζεται από μια κλειστή
6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό μ σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια
Διαβάστε περισσότεραΜετεωρολογικά συστήµατα συντεταγµένων. Σφαιρικό Πολικό Σύστηµα Ανεξάρτητες µεταβλητές: Γεωγραφικό πλάτος, φ Γεωγραφικό µήκος, λ.
Μετερολογικά συστήµτ συντετγµένν Σφιρικό Πολικό Σύστηµ Ανεξάρτητες µετβλητές: Γεγρφικό πλάτος, φ Γεγρφικό µήκος, λ Η πόστση του σηµείου πό το κέντρο της γης, Ο χρόνος, t Προσντολισµένο Τοπικό Σύστηµ Πρλείπετι
Διαβάστε περισσότερα1) Υπόδειγµα Εντολέα - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου.
) Υπόδειγµ Εντολέ - Εντολοδόχου, η περίπτωση του Ηθικού Κινδύνου. Έστω ότι ο εντολοδόχος ελέγχει µί επιχείρηση της οποίς ιδιοκτήτες είνι διάφοροι µέτοχοι (ο εντολές). Στην γενική περίπτωση, ο εντολοδόχος
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΓ ΓΔ
ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Στο διπλνό ορθοώνιο τρίωνο, έχουμε φέρει πλά το ύψος που κτλήει στην υποτείνουσ. Είνι προφνές ότι, με υτό τον τρόπο, το μεάλο ορθοώνιο τρίωνο χωρίστηκε σε δύο μικρότερ ορθοώνι, τ κι. Σε
Διαβάστε περισσότεραδύναμη καθίσματος στον Χρήστο δύναμη Ελένης στον Χρήστο
ΟΜ φοιτητές, ο Χρήστος κι η λένη κάθοντι σε πρόμοιες κρέκλες γρφείου (τ πόδι της λένης είνι στον έρ). Ο Χρήστος πιέζει με τ πόδι του τ γόντ της λένης. πίλεξε το σωστό: ) ίνι μεγλύτερη η δύνμη που σκεί
Διαβάστε περισσότεραΣτραγγίσεις (Εργαστήριο)
Ελληνική Δημοκατία Τεχνολογικό Εκπαιδευτικό Ίδυμα Ηπείου Σταγγίσεις (Εγαστήιο) Ενότητα 1 : Οι φυσικές ιδιότητες του εδάφους I Δ. Μενέλαος Θεοχάης 1. ΟΙ ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ Άσκηση 1 Από ένα έδαφος
Διαβάστε περισσότεραΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ
ΚΕΦΑΛΑΙΟ 8 ΓΕΦΥΡΕΣ ΜΕΤΡΗΣΗΣ.1 ΕΙΣΑΓΩΓΗ Στη µέτρηση της ωµικής λλά κι της σύνθετης ντίστσης µε υψηλή κρίβει χρησιµοποιούντι οι γέφυρες µέτρησης. Γι τη µέτρηση της ωµικής ντίστσης η πηγή τροφοδοσίς της γέφυρς
Διαβάστε περισσότεραΘέρµανση Ψύξη ΚλιµατισµόςΙΙ
Θέρµνση Ψύξη ΚλιµτισµόςΙΙ Ψυχροµετρί Εργστήριο Αιολικής Ενέργεις Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κτσπρκάκης Ξηρόςκιυγρός τµοσφιρικόςέρς Ξηρόςκιυγρόςτµοσφιρικός έρς Ξηρός τµοσφιρικός έρς: ο πλλγµένος πό τους
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε
ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση
Διαβάστε περισσότεραΘέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµτ Μθηµτικών Θετικής Κτεύθυνσης Β Λυκείου 999 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµ ο Α. Έστω a, ) κι, ) δύο δινύσµτ του κρτεσινού επιπέδου Ο. ) Ν εκφράσετε χωρίς πόδειξη) το εσωτερικό γινόµενο των δινυσµάτων a κι συνρτήσει
Διαβάστε περισσότεραγραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
η εξετστική ερίοδος ό 8// έως 08/0/ γρτή εξέτση στο μάθημ ΦΥΣΙΚΗ ΚΤΥΘΥΝΣΗΣ Γ ΛΥΚΙΟΥ Τάξη: Γ Λυκείου Τμήμ: Βθμός: Ονομτεώνυμο: Κθηγητές: ΤΡΙΔΗΣ ΓΙΩΡΓΟΣ ΘΜ ο Στις ρκάτω ερωτήσεις ν γράψετε στο τετράδιό σς
Διαβάστε περισσότεραΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΚΥΚΛΟΣ RANKINE. Αποτελείται από
ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΚΥΚΛΟΣ RANKINE Αποτελείτι πό Κυστήρ: Μεττροπή νερού σε υπέρθερμο τμό Ατμοστρόιλο: Μεττρέπει την θερμική ενέργει του τμού σε περιστροφική κίνηση Συμπυκνωτής: Μεττρέπει το μίγμ τμού νερού
Διαβάστε περισσότεραΑ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση
Διαβάστε περισσότεραΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Π.Λ. Β ΟΜ ΦΥΙΚΗ ΙΙ ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστή απάντηση: β II. ΠΝΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο και στο παιδί είναι τα
Διαβάστε περισσότεραΠροτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανεαδικών εξετάσεων Φσική Θετικής και Τεχνοογικής Κατεύθνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανεαδικών εξετάσεων στη Φσική Θετικής και Τεχνοογικής Κατεύθνσης - ο (γ), (δ), (γ),
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Λύσεις
Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Λύσεις 1) (ii) 2) (ii) 3) (i) 4) (ii) 5) Σ, Λ, Λ, Λ, Λ Θέμα Α Θέμα Β 1) Η κινητική ενέργεια ανά μονάδα όγκου είναι: 1 2 ρυ Α 2 = Λ (1) Επίσης ισχύει : Α Α = 2Α
Διαβάστε περισσότεραVI. ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ
VI ΕΝΙΑΙΑ ΚΑΘΑΡΑ ΑΣΦΑΛΙΣΤΡΑ ΡΑΝΤΩΝ ΖΩΗΣ Α ΕΙ Η ΡΑΝΤΩΝ ΚΑΙ ΣΥΝΑΦΕΙΣ ΤΜ Οι ράντες ζωής ιφέρον πό τις "βέβιες" ράντες (πο εξετάζοντι στ οιονοµιά µθηµτιά ιότι οι τβολές µις ράντς ζωής εξρτώντι πό την επιβίωση
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ 9 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜ ο Ν ράψετε στο τετράδιό σς τον ριθµό κθεµιάς ό τις ρκάτ ερτήσεις -4 κι δί το ράµµ ο ντιστοιχεί στη σστή άντηση Σε µι θίνοσ τάντση της οοίς το άτος
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΓΩΝΙΣΜ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΠΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 04/0/04 ΘΕΜ Οδηγί: Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτσεις -4 κι δίπλ το γράμμ
Διαβάστε περισσότερα2.1 ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ
ΜΕΡΟΣ Α. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ 7. ΤΕΤΡΑΓΩΝΙΚΗ ΡΙΖΑ ΘΕΤΙΚΟΥ ΑΡΙΘΜΟΥ ΟΡΙΣΜΟΣ Ονομάζουμε τετργωνική ρίζ ενός θετικού ριθμού τον θετικό ριθμό (ΣΥΜΒΟΛΙΣΜΟΣ: ) που ότν υψωθεί στο τετράγωνο μς δίνει
Διαβάστε περισσότεραΜην χάσουμε τον σύνδεσμο ή τον κινηματικό περιορισμό!!!
Μην χάσομε τον σύνδεσμο ή τον κινηματικό περιορισμό!!! Σε πάρα πολλές περιπτώσεις κατά τη µελέτη το στερεού, το πρόβληµα επιλύεται µε εφαρµογή το ο νό- µο το Νεύτωνα, τόσο για την περιστροφική κίνηση κάποιο
Διαβάστε περισσότερα2. Τι ονομάζουμε τροχιά ενός κινητού; Πώς διακρίνονται οι κινήσεις με κριτήριο τη μορφή της τροχιάς του κινητού;
ΕΥΘΥΓΡΑΜΜΗ 7 ΕΝΟΤΗΤΑ. ΕΥ ΘΥΓΡ ΑΜΜΗ ΕΡΩΤΗΣΕΙΣ. Ν νφέρετε ποι πό τ σώμτ πο φίνοντι στην εικόν κινούντι Α. ως προς τη Γη. Β. ως προς το τοκίνητο. Θ πρέπει ν λάβομε πόψη μς ότι η κίνηση είνι έννοι σχετικ.
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ
Φυσική Κτεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ Θέµ ο κ ΙΑΓΩΝΙΣΜΑ Α. (Βάλτε σε κύκλο το γράµµ µε τη σωστή πάντηση) Αν υξήσουµε την πόστση µετξύ δύο ετερόσηµων σηµεικών ηλεκτρικών φορτίων,. η δυνµική
Διαβάστε περισσότεραΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ
Διαβάστε περισσότερα* 4. Οµογενές στερεό σώµ στρέφετι γύρω πό στθερό άξον, υπό την επίδρση στθερής ροπής τ. Συνεπώς όλ τ υλικά σηµεί που το ποτελούν. έχουν την ίδι επιτρό
*! " # $ # # " % $ " " % $ " ( # " ) % $ THΛ: 270727 222594 THΛ: 919113 949422 " % +, Α. Γι τις πρκάτω προτάσεις 1-4 ν γράψετε το γράµµ, β, γ ή δ, που ντιστοιχεί στην σωστή πάντηση 1. Αν στο διπλνό κύκλωµ
Διαβάστε περισσότεραΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΤΥΠΟΛΟΓΙΟ. Επιµέλεια. ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΤΥΠΟΛΟΓΙΟ Επιµέλεια. ΣΕΡΑΦΕΙΜ ΚΑΡΑΜΠΟΓΙΑΣ. ΑΘΗΝΑ 9 Τιγωνοµετικοί αιθµοί Γωνία π 6 π 4 π 3 π si ϕ 3 3 os ϕ ϕ 3 3 3. Τιγωνοµετικές ταυτότητες. os ± y os os y si si y. si ± y si os y
Διαβάστε περισσότεραΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ
ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 008 ( ΠΡΟΚΗΡΥΞΗ Π /008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος: ΠΕ 0 ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Γνωστικό ντικείμενο)
Διαβάστε περισσότερα0,0. Ε π α ν α λ η π τ ι κ ή Ε ξ έ τ α σ η σ τ η Φ Υ Σ Ι Κ Η Θ Ε Τ Ι Κ Ο Υ Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Ϊ Ο Σ ΘΕΜΑ Α
Ε π α ν α λ η π τ ι κ ή Ε ξ έ τ α σ η σ τ η Φ Υ Σ Ι Κ Η Θ Ε Τ Ι Κ Ο Υ Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Ϊ Ο Σ 0 6 ΘΕΜΑ Α Για τις ερωτήσεις Α έως Α5 να γράψετε στο τετράδιό σας τον αριθµό
Διαβάστε περισσότεραΣυλλογή Ασκήσεων Υδροστατικής
Συλλογή Ασκήσεων Υδοστατικής Άσκηση. ℵ Να βεθεί η τιμή της πίεσης που δείχνει το πιεσόμετο, σε mmhg. Δίνονται οι πυκνότητες υδαγύου Hg 600kg/m, νεού Ν 000 kg/m και αέα Α,9 kg/m. 0 cm cm + 0 Επίλυση Αχικά
Διαβάστε περισσότεραΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ,
Διαβάστε περισσότερα1. Παράρτηµα. Θερµοδυναµικής της ατµόσφαιρας
1. Παράρτηµα. Θερµοδυναµικής της ατµόσφαιρας Αδιαβατικές µεταβολές στην ατµόσφαιρα Ο ατµοσφαιρικός αέρας µπορεί να θεωρηθεί ως µίγµα δύο αερίων, του ξηρού αέρα ο οποίος αποτελεί ιδανικό αέριο, µε την γνωστή
Διαβάστε περισσότεραΚαταστατική εξίσωση ιδανικών αερίων
Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση
Διαβάστε περισσότεραΑ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο
Διαβάστε περισσότεραΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΝΑΚΛΑΣΗ & ΔΙΑΔΟΣΗ ΚΥΜΑΤΩΝ ΣΕ ΑΣΥΝΕΧΕΙΑ ΧΟΡΔΗΣ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 96778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΝΑΚΛΑΣΗ & ΔΙΑΔΟΣΗ ΚΥΜΑΤΩΝ ΣΕ ΑΣΥΝΕΧΕΙΑ ΧΟΡΔΗΣ Σγγαφή Επιμέλεια: Παναγιώτης Φ. Μοίας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 96778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ
Διαβάστε περισσότερα4. ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΚΟΣΤΟΣ ΧΥΤΑ
4. ΧΩΡΗΤΙΚΟΤΗΤΑ ΚΑΙ ΚΟΣΤΟΣ ΧΥΤΑ 4.1 Χωρητικότητ Ο σχεδισμός ενός ΧΥΤΑ πιτεί την επιλογ διφόρων γεωμετρικών (π.χ., ύψος, κλίση πρνών, σχμ βάσεως) κι λειτουργικών πρμέτρων (π.χ., ύψος στρώσεων, πάχος κλύψεων,
Διαβάστε περισσότεραΘΕΜΑ Α. 2 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π.
ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 15 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ονοματεπώνμο : Κατερίνη 1 Μαΐο 15 ΘΕΜΑ Α (Μονάδες 5x5=5) Α1. Ο
Διαβάστε περισσότεραΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα πο αντιστοιχεί στη σωστή απάντηση..
Διαβάστε περισσότεραΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστ απάντηση: β II. Π.Λ. Β ΟΜ ΦΥΙΚΗ ΙΙ ΠΝΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο και στο παιδί είναι τα βάρη
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΦΥΣΙΚΗ Γ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Α. ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΣΥΜΒΟΛΟ ΜΟΝΑ ΕΣ Χρόνος t s Απόστση x ή s ή d, Τχύτητ υ ή c /s Επιτάχυνση /s Περίοδος T s Συχνότητ f Hz Μήκος κύµτος
Διαβάστε περισσότεραΘερμοδυναμική του ατμοσφαιρικού αέρα
6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ A Α. α Α. β Α3. γ Α4. δ Α5. α. Λάθος ΘΕΜΑ Β ΦΥΣΙΚΗ Ηµεοµηνία: Μ. Τετάτη Απιλίου 07 β. Σωστό γ. Λάθος δ. Λάθος
Διαβάστε περισσότερα