ELEKTRIČNI AKTUATORI Ak. god. 2011/2012.
|
|
- Νικηφόρος Αλεξάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ELEKTRIČNI AKTUATORI Ak. god. 2011/2012. Modul: Automatika Predavanja: Prof. dr. sc. Ivan Gašparac Auditorne vježbe: Laboratorij: Goran Rovišan, dipl.ing. 2 sata tjedno 1 sat tjedno ZAVOD ZA ELEKTROSTROJARSTVO I AUTOMATIZACIJU Zagreb,
2 ASINKRONI MOTOR Asinkroni motori za EMP se prema konstrukcijama rotora dijele na: kavezne asinkroni motore, kolutne asinkroni motore i motore s masivnim rotorom. Izbor za konkretni EMP ovisi o: mogućnostima izvora (mreže), zahtjevima pogona (način pokretanja, regulacija brzine vrtnje,...) mjestu ugradnje*, nabavnoj cijeni, mogućnostima i troškovima održavanja. * Za pogone u eksplozijom ugroženim prostorima treba birati motore koji u normalnim okolnostima ne stvaraju iskru i ne zagrijavaju se preko dozvoljene granice! 2
3 Statička stanja pogona s trofaznim asinkronim motorom Zbivanja u motoru se analiziraju: nadomjesnom shemom, analitičkim proračunima ili ugrubo kružnim dijagramom. Od posebnog je interesa mehanička (vanjska) karakteristika motora n = f(m), koja treba biti prilagođena zahtjevima pogonjenog stroja-tehnologije procesa. 3
4 Tipični oblik momentne karakteristike asinkronog motora i centrifugalnog ventilatora u I. kvadrantu M M max centrifugalni ventilator M n M k 0 s max Ključne točke na momentnoj karakteristici asinkronog motora: s n - nazivno klizanje u granicama 0,5 8 % s max klizanje za maks. moment u granicama od 5-25% s n n s n M max maksimalni ili prekretni moment obično (1,8 2,8) M n M k moment pokretanja obično (0,6-1,5) M n 4
5 Klossova formula za asinkroni motor Vanjska karakteristika motora n = f(m) se može prikazati analitički KlossovOM formulom, pojednostavljenom i točnijom. Pojednostavljena je: M M max s s max 2 s s max Pojednostavljena se koristi za grube proračune kada nema više podataka o motoru. 5
6 Pokretanje pogona s asinkronim motorima Posebno razmatramo probleme pokretanja pogona s kaveznim i pogona s kliznokolutnim motorima. Kolutni motori To su motori s namotom na rotoru i kliznim kolutima Pokreću se uvijek preko pokretača-otpornika u rotorskom krugu kojim se podešava struja zaleta i moment zaleta tako da se štiti mreža i motor i da se zadovolji tehnologija procesa. Kavezni motori Pokreću se: Direktno pokretanje na mrežu, ako to dozvoljava mreža (struje pokretanja i dozvoljeni padovi napona u mreži) i stanje mehanizama pogona. Pokretanje zvijezda- trokut preklopkom kod motora niskog napona. Pokretanje elektroničkim soft start uređajima. Kod primjene frekvencijskog pretvarača za regulaciju brzine vrtnje istovremeno je riješen i problem struja pokretanja. Veliki asinkroni motori (motori snage iznad 2 MW ) pokreću se slično kao i veliki sinkroni motori (pomoću autotransformatora, soft start uređaja, prigušnice, dva namota,...) 6
7 Moment i struja u zaletu asinkronog motora Problem velikih struja tjekom pokretanja-omjer I/I n I I n 8 2 I I n M M n ,2 0,8 0,4 0,6 0,6 0,4 0,8 0, n / n s s 7
8 Kočenje elektromotornoog pogona s asinkronim motorima Koristi se više mogućnosti električkog kočenja pogona: Nadsinkrono ili generatorsko kočenje potencijalnog tereta, Protustrujno kočenje, Kočenje višebrzinskim motorom (motor s više odvojenih namota), Kočenje nesimetričnim spojevima statorskog namota, Dinamičko kočenje istosmjernom strujom, Dinamičko kočenje priključkom kondenzatora. 8
9 Elektromotorni pogon - sustav za pretvorbe električne u mehaničku energiju IZVOR ELEKTRIČNE ENERGIJE Električna energija (fiksni oblik) Zadana veličina (brzina, položaj) REGULATOR PRETVARAČ ELEKTRIČNE ENERGIJE Električna energija (promjenjiv oblik) Elektromehanički pretvarač (motor) Mehanička energija RADNI STROJ (TEHNOLOŠKI PROCES) Senzori i pretvarači 9
10 Elektromotorni pogon promjenljive (regulirane) brzine vrtnje (engl. variable speed drive) Temeljna funkcija elektromotornog pogona regulirane brzine vrtnje je upravljanje tokom energije između mreže (izvora energije) i tehnološkog procesa. Energija se dovodi procesu posredstvom osovine (vratila) elektromotora. Stanje osovine je određeno dvijema fizikalnim veličinama (koordinatama gibanja): momentom i brzinom vrtnje osovine. Da bi se upravljalo tokom energije neophodno je upravljati ovim fizikalnim veličinama. U pogonu se svaka od njih može upravljati stoga imamo regulaciju brzine vrtnje i regulaciju momenta vrtnje. Jednu i/ili drugu regulaciju se ostvaruje djelovanjem na mehaničku karakteristiku motora. Često se jednu od koordinata drži na traženoj razini pri nezavisnoj promjeni druge. Kada pogon radi u režimu reguliranog momenta brzina vrtnje je određena teretom. Kada pogon radi u režimu regulirane brzine moment vrtnje je određen teretom. 10
11 Regulirani ili neregulirani elektromotorni pogon-izbor? Zašto odabrati regulirani elektromotorni pogon ili zamijeniti postojeći neregulirani reguliranim? 1. Zbog zahtjeva tehnološkog procesa (automatizacija,..) 2. Zbog smanjenja potrošnje (ušteda) električne energije 3. Zbog zaštite mreže, motora i radnih mehanizama 11
12 Regulacija EMP-a zbog ušteda energije Najveće uštede električne energije mogu se postići reguliranim pogonom centrifugalnih pumpi, ventilatora i kompresora koji su podopterećeni u normalnom pogonskom stanju i koji su godišnje relativno dugo vremena u pogonu. U tehnički razvijenom svijetu prevladava tendencija primjene novih reguliranih pogona i zamjena postojećih nereguliranih reguliranim zbog štednje energije. 12
13 Brzina vrtnje asinkronog motora Brzina vrtnje asinkronog motora je: n 60 fs (1 s ) p gdje je p broj pari polova, s klizanje, f s frekvencija napona napajanja statora Možemo je mijenjati (regulirati): a) promjenom klizanja s, b) promjenom broja pari polova p i c) promjenom frekvencije f. Klizanje možemo mijenjati dodavanjem otpora u rotorski krug(kolutni motori),statorski krug ili promjenom napona napajanja. Broj pari polova možemo mijenjati prespajanjem namota(dahlanderovi spojevi) ili ugradnjom više odvojenih namota u stator. Promjenu frekvencije možemo ostvariti napajanjem motora iz izvora promjenljive frekvencije (elektronički frekvencijski pretvarač). 13
14 Regulacija brzine vrtnje asinkronog motora promjenom napona i frekvencije Promjenom frekvencije pri nepromijenjenom naponu mijenja se magnetski tok Φ i indukcija u motoru: U s E s = 4,44 N f s Φ (Smanjenje frekvencije povećava mag.tok, a povećanje ga smanjuje) kao i moment motora: M = k Φ I r cos φ r Da se održi približno isti tok (zasićenje) i razvijeni moment, napon U s i frekvencija f s moraju se mijenjati istovremeno po zakonu upravljanja: E f s s U f s s konst. Tehnički naziv za ovakvu regulaciju je skalarna regulacija brzine vrtnje. 14
15 Skalarna regulacija Istovremena promjena napona i frekvencije U/f, tehnički naziv skalarna regulacija. Ograničenja Skalarna regulacija U/f ima ograničeno područje primjene zbog toga što je promjena napona motora ograničena, od iznosa nula do nazivnog napona. Povećanje napona iznad nazivnog nije dozvoljeno zbog naponskih naprezanja. Povećanje frekvencije iznad nazivne ograničeno je mehaničkim razlozima i promjenama mehaničke karakteristike motora zbog smanjenja toka u području iznad nazivne frekvencije. Upravljačke karakteristike pri skalarnoj regulaciji su dane na slijedećem dijagramu. 15
16 Skalarna regulacija -upravljačke karakteristike Napon konstantan tok slabljenje toka u motoru 0 f 0 f max Do nazivne brzine područje konstantnog toka Područje slabljenja magnetskog toka iznad nazivne frekvencije 16
17 Skalarna regulacija Pri istovremenoj promjeni napona i frekvencije(konstantni mag. tok) idealizirane statičke momentne karakteristike motora izgledaju prema slici. f 1 je bazna (osnovna) frekvencija motora Skalarno upravljanje se općenito primjenjuje gdje se ne zahtijeva velika preciznost i dinamička svojstva pogona (tipično za centrifugalne pumpe i ventilatore) Nije potrebna povratna veza brzine pa je pogon relativno jednostavan. M f 3 < f 2 f 2 < f 1 f 1 Promjena momentnih karakteristika pri skalarnoj regulaciji, φ=konst. 0 n n s3 n s2 n s1 17
18 Skalarna regulacija Pri nazivnom naponu i povećanju frekvencije smanjuje se magnetski tok (engl. field weakening) i opada moment motora f 1 je bazna (osnovna) frekvencija motora M f 2 < f 1 f 1 f 3 > f 1 f 4 > f 3 f 5 > f 4 0 n s2 n s1 n s3 n s4 n s5 n 18
19 Vektorska regulacija Pored jednostavnije i manje precizne skalarne regulacije koja se zasniva na zakonu uravljanja U/f = konst. razvijena je i mnogo se koristi vektorska regulacija izmjeničnih elektromotornih pogona. Temelj vektorske regulacije je matematički model motora koji obuhvaća statička i dinamička stanja električkih, magnetskih i mehaničkih pojava u motoru. Regulacija struje motora po iznosu i oblika u skladu s trenutnim stanjem elektromagnetskih prilika u motoru. Vektorskom regulacijom se povećava preciznost i dinamička svojstva reguliranog pogona. Razvijeno je više metoda vektorske regulacije izmjeničnih motora. Poznati proizvođači pretvarača imaju vlastita rješenja, obično patentirana 19
ELEKTROMOTORNI POGONI S IZMJENIČNIM MOTORIMA
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ELEKTROMOTORNI POGONI ELEKTROMOTORNI POGONI S IZMJENIČNIM MOTORIMA Modul: Elektroenergetika Predavanja: Prof. dr. sc. Drago Ban Prof.dr.sc. Ivan Gašparac ZAVOD ZA
Primjene motora novih tehnologija
Program stručnog usavršavanja ovlaštenih inženjera elektrotehnike ELEKTROTEHNIKA - XVII tečaj Nove tehnologije električnih postrojenja Primjene motora novih tehnologija mr sc Milivoj Puzak dipl. ing. viši
ASINKRONI STROJEVI I POGONI
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ELEKTROMEHANIČKE I ELEKTRIČNE PRETVORBE ENERGIJE ASINKRONI STROJEVI I POGONI Izv.prof.dr.sc. Damir Žarko ZAVOD ZA ELEKTROSTROJARSTVO I AUTOMATIZACIJU Ak. god. 2014/2015
ASINKRONI STROJEVI I POGONI
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ELEKTROMEHANIČKE I ELEKTRIČNE PRETVORBE ENERGIJE ASINKRONI STROJEVI I POGONI Doc.dr.sc. Damir Žarko ZAVOD ZA ELEKTROSTROJARSTVO I AUTOMATIZACIJU Ak. god. 2009/2010
Osnove elektromotornih pogona Laboratorijske vježbe
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA ELEKTROSTROJARSTVO I AUTOMATIZACIJU Osnove elektromotornih pogona Laboratorijske vježbe Vježba 2 POGON TROFAZNOG ASINKRONOG MOTORA NAPAJANOG
GUBICI ENERGIJE U DINAMIČKIM STANJIMA ASINKRONOG STROJA
GUBICI ENERGIJE U DINAMIČKIM STANJIMA ASINKRONOG STROJA Dinamička tanja: ZALET REVERZIRANJE PROTUSTRUJNO KOČENJE Pretpotavka: Trenutno u završene električne prijelazne pojave; Jednadžba gibanja: d ω M
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
ELEKTROMOTORNI POGONI Laboratorijske vježbe
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA ELEKTROSTROJARSTVO I AUTOMATIZACIJU ELEKTROMOTORNI POGONI Laboratorijske vježbe Vježba 1 ZALET I REVERZIRANJE TROFAZNOG ASINKRONOG MOTORA
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
ELEKTROMOTORNI POGONI Laboratorijske vježbe
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA ELEKTROSTROJARSTVO I AUTOMATIZACIJU ELEKTROMOTORNI POGONI Laboratorijske vježbe Vježba 1 ZALET I REVERZIRANJE TROFAZNOG ASINKRONOG MOTORA
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji
Ovisnost ustaljenih stanja uzlaznog pretvarača 16V/0,16A o sklopnoj frekvenciji Električna shema temeljnog spoja Električna shema fizički realiziranog uzlaznog pretvarača +E L E p V 2 P 2 3 4 6 2 1 1 10
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Prof.dr.sc. Jasmin Velagić. Kolegij: Aktuatori
Lekcija 2 Električki strojevi Prof.dr.sc. Jasmin Velagić Elektrotehnički fakultet Sarajevo Kolegij: Aktuatori 2.1. Električki strojevi Koriste se kao izvršni članovi za pokretanje radnih mehanizama. Prema
4. Regulacija AM u KSP V. Ambrožič: Izabrana predavanja iz UEMP, TF Rijeka 4. VEKTORSKA REGULACIJA ASINKRONOG MOTORA
4. VEKTORSKA REGULACIJA ASINKRONOG MOTORA 4.1 Regulacija istosmjernog stroja s neovisnom uzbudom ε mikroračunalo i/ili upravljačka elektronika energetski sklop motor ω α ω regulator brzine α* i * α regulator
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
FAKULTET PROMETNIH ZNANOSTI
SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
IZRADA MAKETE ZA REGULCIJU BRZINE VRTNJE ISTOSMJERNOG MOTORA
Završni rad br. 357/EL/2015 IZRADA MAKETE ZA REGULCIJU BRZINE VRTNJE ISTOSMJERNOG MOTORA Mihael Buhin, 5031 Varaždin, rujan 2015. godine Odjel za Elektrotehniku Završni rad br. 357/EL/2015 IZRADA MAKETE
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
ASINKRONI RAD SINKRONOG GENERATORA
ASINKRONI RAD SINKRONOG GENERATORA 1 Asinkroni rad sinkronih generatora Nepravilan rad u kojemu brzina vrtnje nije sinkrona. Dozvoljava se kratkotrajno ili se trenutno isključuje. U asinkroni rad spada:
ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM
ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
13.1 Načelni model električnog stroja
13 ELEKTRIČNI STROJEVI Model električnog stroja Sinkroni strojevi Asinkroni strojevi Strojevi istosmjerne struje Posebne vrste motora 13.1 Načelni model električnog stroja Električni strojevi pretvaraju
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Uvod. Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator.
Asinhrone mašine Uvod Asinhrona mašina se u primjeni najčešće koristi kao motor, i to trofazni, iako može da radi i kao generator. Prednosti asinhronih mašina, u odnosu na ostale vrste električnih mašina,
Trofazni sustav. Uvodni pojmovi. Uvodni pojmovi. Uvodni pojmovi
tranica: X - 1 tranica: X - 2 rofazni sustav inijski i fazni naponi i struje poj zvijezda poj trokut imetrično i nesimetrično opterećenje naga trofaznog sustava Uvodni pojmovi rofazni sustav napajanja
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
Snage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
KOČENJE ASINHRONOG MOTORA
KOČENJE ASINHRONOG MOTORA Razmatramo tri načina kočenja: 1. Rekuperativno;. Protivtrujno na dva načina; 3. Dinamičko ili kočenje jednomernom trujom. 1. Rekuperativno kočenje Pokazano je da ainhroni motor
INDUCIRANJE TROFAZNOG NAPONA
SINKRONI STROJEVI generatori od najmanjih do najvećih snaga motori za snage reda MW i više (dobar η, vrtnja definirana f mreže i brojem pari polova) generatori i motori - jednake izvedbe - razlika u smjeru
UČINSKI PRETVARAČI ZA EMP s ASINKRONIM STROJEM
UČINSKI PRETVARAČI ZA EMP s ASINKRONIM STROJEM SADRŽAJ Skalarni matematički model, nadomjesna shema, vektorski dijagram Bilanca snage za motorski i generatorski način rada Upravljanje brzinom vrtnje pomoću
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
ELEKTRONIKA ZABILJEŠKE S PREDAVANJA. literaturi, ovo su samo bitne natuknice
BRODSKA ELEKTROTEHNIKA I ELEKTRONIKA ZABILJEŠKE S PREDAVANJA Napomena: kompletno gradivo je u literaturi, ovo su samo bitne natuknice TROFAZNI SUSTAV Potreba za izmjeničnim strujama proistječe iz distribucije
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Ogled zaustavljanja i zaletanja
Ogled zaustavljanja i zaletanja Ogled zaustavljanja Koristi se za određivanje momenta inercije ili za određivanje gubitaka pri zaustavljanju Postupak podrazumeva da zaletimo mašinu, pa je isključimo sa
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Elektronički Elementi i Sklopovi
Sadržaj predavanja: 1. Strujna zrcala pomoću BJT tranzistora 2. Strujni izvori sa BJT tranzistorima 3. Tranzistor kao sklopka 4. Stabilizacija radne točke 5. Praktični sklopovi s tranzistorima Strujno
ELEKTROMOTORNI POGONI
ELEKTROMOTORNI POGONI Izdavač Elektrotehnički fakultet u Sarajevu Recenzenti Prof. dr. Drago Ban Prof. dr. Nijaz Hadžimejlić Tehnički urednik Šemsudin Mašić Odlukom Senata Univerziteta u Sarajevu br.: 01-38-1694-12/11
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
TREĆA LABORATORIJSKA VEŽBA
TREĆA LABORATORIJSKA VEŽBA RADNI REŽIMI POGONA SA ASINHRONIM MOTOROM 1. UVOD Na laboratorijskom modelu grupe koju čini jednosmerni motor sa nezavisnom pobudom i trofazni asinhroni motor sa kaveznim rotorom,
Peta vežba Vektorsko upravljanje asinhronim motorom
Peta vežba Vektorsko upravljanje asinhronim motorom Uvod Cilj vežbe je da se prouče statičke i dinamičke karakteristike pogona sa vektorskim upravljanjem. Kroz ovu vežbu, studenti će imati priliku da prouče
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Primena asinhronih motora u električnoj vuči. Pantić Željko, laboratorija za mikroprocesorsko upravljanje elektromotornim pogonima
Primena asinhronih motora u električnoj vuči Pantić Željko, laboratorija za mikroprocesorsko upravljanje elektromotornim pogonima Sadržaj Uvod Istorijski pregled razvoja elektrovučnih sistema Istorijski
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
IZRADA NEIZRAVNOG FREKVENCIJSKOG PRETVARAČA POMOĆU ARDUINA
SVEUČILIŠTE SJEVER SVEUČILIŠNI CENTAR VARAŽDIN ZAVRŠNI RAD br. 356/EL/2015 IZRADA NEIZRAVNOG FREKVENCIJSKOG PRETVARAČA POMOĆU ARDUINA ŠANTALAB IVAN Varaždin, rujan 2015. SVEUČILIŠTE SJEVER SVEUČILIŠNI
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
ELEKTRIČNE MAŠINE Sinhrone mašine
ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Fazne i linijske veličine Trokut i zvijezda spoj Snaga trofaznog sustava
7 TROFAZNI SUSTA Fazne i linijske veličine Trokut i zvijezda soj Snaga troaznog sustava Fourierova analiza 7.1. Troazni sustav Elektrorivredne tvrtke koriste troazne krugove za generiranje, rijenos i razdiobu
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)
Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
ELEKTRIČNE MAŠINE Asinhrone mašine
ELEKTRIČNE MAŠINE Asinhrone mašine Uvod Asinhrona mašina je tipičnan predstavnik električne mašine male i srednje snage koja se obično pravi u velikim serijama. Prednosti asinhrone mašine u odnosu na ostale
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
BRODSKI ELEKTRIČNI UREĐAJI. Prof. dr Vladan Radulović
FAKULTET ZA POMORSTVO OSNOVNE STUDIJE BRODOMAŠINSTVA BRODSKI ELEKTRIČNI UREĐAJI Prof. dr Vladan Radulović ELEKTRIČNA ENERGIJA Električni sistem na brodu obuhvata: Proizvodnja Distribucija Potrošnja Sistemi
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Moderni Mehatronički Sustav
Mehatronika Sadržaj predavanja: 1. Prednosti elektromehaničkog pogona 2. Vrste Povratne Sprege i Primjene 3. DC Servo motori 4. DC Permanent Magnet (PM) Brushless Servo Motori 5. Step Motori Moderni Mehatronički
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Unipolarni tranzistori - MOSFET
nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]