[VNESITE IME PODJETJA] ETRS89/TM KOORDINATNI SISTEM. x [Izberite datum]
|
|
- Άφροδίτη Γεωργιάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 [VNESITE IME PODJETJA] ETRS89/TM KOORDINATNI SISTEM x [Izberite datum] [Tukaj vnesite povzetek dokumenta. To je običajno kratek povzetek vsebine dokumenta. Tukaj vnesite povzetek dokumenta. To je običajno kratek povzetek vsebine dokumenta.]
2 1) KAJ JE DRŽAVNI KOORDINATNI SISTEM? Državni koordinatni sistem je dogovorjena skupna osnova za določitev koordinat horizontalnega položaja in nadmorskih višin. V njem so zapisani vsi uradni in tehnični prostorski podatki o objektih in stanju v prostoru. Podatki v uporabniških geografskih informacijskih sistemih, evidencah, katastrih in drugih zbirkah podatkov so zato na ozemlju države med seboj primerljivi. Sem spadajo tudi podatki o nepremičninah, gospodarski infrastrukturi in topografiji. Pri zajemanju podatkov ga potrebujejo geodeti, gradbeniki, prometniki, prostorski načrtovalci, navigatorji in drugi, vse pogosteje pa tudi fizične osebe. Za prikazovanje ozemlja se uporablja na državnih topografskih kartah, ki so osnova za druge vrste kart, načrtov in upodobitev vseh vrst meril. Prav tako so v državni koordinatni sistem umeščena vsa snemanja površja iz zraka in vesolja ter podatki drugih tehnik daljinskega zaznavanja. 1.1) ETRS prelomni trenutki za Slovenijo Evropski terestrični referenčni sistem prve GPS izmere geodetskih točk za realizacijo ETRS89 v Sloveniji zasedanje EUREF v Tromsøju; ETRS sprejet kot osnova za vseevropsko določanje položaja postavitev prve postaje državnega omrežja permanentnih postaj GPS, ki je povezana v evropsko omrežje permanentnih postaj EPN zasedanje EUREF v Toledu: formalno potrjeni rezultati računalniške obdelave prvih slovenskih GPS izmer in sprejeti kot del realizacije evropskega sistema ETRS Vlada RS sprejme Strategijo osnovnega geodetskega sistema vzpostavitev gravimetrične mreže, dokončna izgradnja in otvoritev omrežja SIGNAL, zasnova novega višinskega sistema operativno delovanje omrežja SIGNAL in podpora uporabnikom. Objava transformacijskih parametrov in navodil za meritve v novem sistemu. Določitev državne kartografske projekcije s 1. januarjem se uveljavi uradna uporaba novega državnega koordinatnega sistema za nove meritve v zemljiškem katastru. Postopno uvajanje novega sistema v zbirke podatkov Geodetske Uprave RS. Podpora uporabnikom in upravljalcem prostorskih podatkov.
3 2) ZAKAJ NOVI KOORDINATNI SISTEM? 2.1) Vključevanje v mednarodne integracije (vključevanje v skupino, združevanje) Slovenija je del EU, kar posledično prinese upoštevanje evropskih usmeritev glede povezovanja in izmenjavanja prostorskih podatkov v skupnem koordinatnem sistemu. EUREF evropska podkomisija za koordinatni referenčni sistem je na zasedanju leta 2000 javno priporočila, da vse države članice EU v čim krajšem času privzamejo evropski terestrični referenčni sistem. Državno omrežje permanentnih GPS postaj SIGNAL (Slovenija Geodezija Navigacija Lokacija), ki je strokovna osnova novega omrežja v Sloveniji. Slovenija je tudi članica zveze NATO, ki določa vojaške standarde na področju določanja položaja in topografskega kartiranja. Z enotnim koordinatnim sistemom omogočamo skupne prostorske osnove za podporo nalog zveze NATO. 2.2) Tehnološki napredek določanja položaja Po izumu triangulacije za izmero velikih razdalj in področij v 17. stoletju, je uvedba satelitskih navigacijskih sistemov za določanje položaja prva primerljiva zgodovinsko pomembna nova tehnologija v geodeziji, geoinformatiki in navigaciji. Stari uradni koordinatni sistem v Sloveniji (Gau β Krüger), vzpostavljen s triangulacijo, je zaradi nakopičenih merskih pogreškov v preteklosti in tektonskega spreminjanja državnega reliefa deformiran in nehomogene kakovosti. Za prehod iz GK v ETRS koordinatni sistem so potrebne zapletene transformacije koordinat, ki se povrh tega zaradi nehomogene natančnosti starega sistema spreminjajo lokalno in regionalno. Sistem GPS v Sloveniji tako že nekaj let, ob uporabi državnega omrežja SIGNAL, omogoča določanje položaja s centimetrsko natančnostjo v evropskem koordinatnem sistemu ETRS ) Potrebe uporabnikov Satelitske in mobilne telekomunikacijske tehnologije so omogočile nove storitve na področju določanja položaja, GIS (geografskih informacijskih sistemov) in navigacije.
4 Uporabniki so pridobili možnosti določanja položaja z lastnimi prejemniki GPS. Položaj, lokacijske storitve in prostorski dodatek so postali del geoinformacijskega trga. 3) IZ ČESA JE DRŽAVNI KOORDINATNI SISTEM? 3.1) Geografske koordinate Zemlja je približno okrogel planet, ki pa ga za natančne meritve in izdelavo kart geometrično opišemo z rahlo sploščenim elipsoidom. Na elipsoidu določata položaj točke geografski koordinati; širina φ in dolžina λ. Stari KS je temeljil na Besslovem elipsoidu iz leta 1841, katerega središče ni v središču Zemlje, saj je orientiran tako, da obliko Zemlje predstavlja samo na območju naše države. Sedanji KS pa temelji na elipsoidu, ki se prilega celotni Evropi GRS 80. Zemlji se optimalno prilega na področju evrazijske tektonske plošče in zanemarljivo odstopa od svetovnega geocentričnega elipsoida, na katerega se navezujejo tudi meritve z GPS. S tem so se spremenile vrednosti vseh koordinat objektov v državi. 3.2) Ravninske koordinate Iz praktičnih razlogov položaje točk z elipsoida vedno projeciramo na ravnino, za kar potrebujemo kartografsko projekcijo, ki pretvori geografske koordinate ( φ, λ ) v ravninske (y,x). V Sloveniji smo nedavno uporabljali GK konformno (kotopravilno) projekcijo, elipsoida na plašč valja, ki oklepa zemljo po meridianu 15. Koordinatni osi v ravnini državne kartografske projekcije po novem označujemo z mednarodnima oznakama N sever, E vzhod, projekcijo smo pa le preimenovali iz GK v TM (Transverzalno Mercatorjevo) projekcijo elipsoida sistema ETRS89. 4) GRAVIMETRIČNA MREŽA Gravimetrija pomeni merjenje težnosti. Izhaja iz latinske besede»gravis«teža, in grške besede»metrew«meriti. Gravimetrija predstavlja skupino metod uporabne geofizike, ki se ukvarja z merjenjem težnega pospeška in s proučevanjem težnostnega polja. Rezultati gravimetrične izmere imajo velik pomen za geodezijo, saj se vse geodetske meritve opravljajo v težnostnem polju. Na primer nehorizontirani instrument pomeni neupoštevanje vpliva
5 težnosti na opravljene meritve. Brez poznavanja celostne teorije težnostnega polja Zemlje je tudi naše geodetsko znanje nepopolno. V Sloveniji se je leta 2006 izvedla izmera nove osnovne gravimetrične mreže. Mreža je sestavljena iz 29 relativnih in 6 absolutnih točk. V izmero so bile vključene tudi 4 hrvaške točke in ena avstrijska, s čimer smo dosegli večjo homogenost slovenske mreže in navezavo na avstrijsko in hrvaško gravimetrično mrežo. 5) ZA KOGA JE POMEMBNA SPREMEMBA SISTEMA? Za GURS, ker je inštitucija, ki je v Sloveniji zadolžena za vzpostavljanje in zagotavljanje kakovostnega koordinatnega sistema, za Ministrstvo za okolje in prostor, Ministrstvo za promet, Ministrstvo za kmetijstvo, gozdarstvo in prehrano, Ministrstvo za obrambo, za lokalne skupnosti, geodetska podjetja, za nepremičninska, infrastrukturna in komunalna podjetja, podjetja s področja GIS, za ponudnike lokacijskih in navigacijskih storitev, za amaterske uporabnike. 6) KAKŠNE SO KORISTI NOVEGA SISTEMA? Mednarodna izmenjava podatkov bo enostavnejša. Meritve položaja GPS bodo brez dodatnih pretvorb neposredno izražene v novem KS. Vzdrževanje baz podatkov v novem sistemu in z novimi meritvami GPS bo postopno izboljšalo položajno natančnost in kakovost podatkov. Novi KS ne bo deformiran in bo enake natančnosti po celi državi. Omrežje SIGNAL omogoča meritve reda natančnosti od nekaj metrov do nekaj cm v realnem času, tudi med gibanjem. Stroški vzdrževanja KS bodo manjši, saj se bo bistveno zmanjšalo število geodetskih točk za realizacijo koordinatnega sistema.
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Koordinatni sistemi v geodeziji
Koordinatni sistemi v geodeziji 14-1 Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 2 Vrste koordinatnih sistemov Vzpostavitev koordinatnega sistema je potrebna zaradi pridobitve primernega
Stari in novi državni horizontalni koordinatni sistem ter stara in nova državna kartografska projekcija
Stari in novi državni horizontalni koordinatni sistem ter stara in nova državna kartografska projekcija STARI I OVI DRŽAVI HORIZOTALI KOORDIATI SISTEM Geodetska uprava Republike Slovenije v skladu s sprejeto
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Določitev koordinat v koordinatnem sistemu D- 96 na osnovi terestričnih meritev GNSS
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Jamova 2 1000 Ljubljana, Slovenija telefon (01) 47 68 500 faks (01) 42 50 681 fgg@fgg.uni-lj.si 26202215 Kandidat: Mihael Drevenšek Določitev
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Koordinatni sistemi in transformacije koordinatnih sistemov v geodeziji
Koordinatni sistemi in transformacije koordinatnih sistemov v geodeziji Bojan Stopar Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Obvezno izobraževanje geodetov Vsebina predstavitve Pregled
slika: 2D pravokotni k.s. v ravnini
Koordinatni sistemi Dejstvo je, da živimo v tridimenzionalnem Evklidskem prostoru. To je aksiom, ki ga ni potrebno dokazovati. Da bi podali geometrijski položaj točke v prostoru je primerno sredstvo za
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
WHO HAS DONE ZIS? EH... THE SWISS. KDO JE TO NARRREDIL? EEE ŠVICARJI. Joc Triglav
KDO JE TO NARRREDIL? EEE ŠVICARJI. WHO HAS DONE ZIS? EH... THE SWISS. Joc Triglav 1 UVOD Nikar se ne čudite, da je zdaj še Geodetski vestnik začel delati reklamo za švicarske bombone Ricola. Naslov članka
Božo Koler UL, Fakulteta za gradbeništvo in geodezijo, Ljubljana
Božo Koler UL, Fakulteta za gradbeništvo in geodezijo, Ljubljana UVAJANJE SODOBNEGA VIŠINSKEGA SISTEMA V SLOVENIJI Strokovno izobraževanje geodetov - 2011 Vsebina 1. Uvod 2. Sodobni višinski sistemi 3.
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
GEODEZIJA. nastavnik: Dr Pavel Benka
GEODEZIJA literatura: nastavnik: Dr Pavel Benka Kontić S.: Geodezija, Nauka, Beograd, 1995. Mihajlović K. - Lazić B.: Geodezija, Šumarski fakultet - Geokarta, Beograd, 1992. http://polj.uns.ac.rs/~geodezija/
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
1. Splošno o koordinatnih sistemih
PROJEKTNA NALOGA Avtor: XXX,XXX Šolsko leto: 2009/2010 Kazalo 1. Splošno o koordinatnih sistemih...2 2. Koordinatni sistemi...3 2.1 Kartezični koordinatni sistem ali koordinatni sistem v ravnini...3 2.2.
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
STANDARD1 EN EN EN
PRILOGA RADIJSKE 9,000-20,05 khz naprave kratkega dosega: induktivne aplikacije 315 600 khz naprave kratkega dosega: aktivni medicinski vsadki ultra nizkih moči 4516 khz naprave kratkega dosega: železniške
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo. Kandidatka: KAJA HRVACKI SANACIJA LOKALNE GEODETSKE MREŽE V PODKRAJU PRI VELENJU
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo ODDELEK ZA GEODEZIJO VISOKOŠOLSKI STROKOVNI ŠTUDIJ GEODEZIJE SMER GEODEZIJA V INŽENIRSTVU Kandidatka: KAJA HRVACKI SANACIJA LOKALNE GEODETSKE
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )
VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]
GEODEZIJA. Doc. dr Vladimir Bulatović
GEODEZIJA Doc. dr Vladimir Bulatović literatura: Kontić S.: Geodezija, Nauka, Beograd, 1995. Mihajlović K. - Lazić B.: Geodezija, Šumarski fakultet - Geokarta, Beograd, 1992. http://www.geoservis.ftn.uns.ac.rs/
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Orientacija in topografija
Orientacija in topografija - Metodologija geografskega raziskovanja - dr. Gregor Kovačič, doc. Topografija Predstavitev zemeljskega površja na podlagi topografskega snemanja. Topografski podatki Podatki
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)
7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Gradniki TK sistemov
Gradniki TK sistemov renos signalov v višji rekvenčni legi Vsebina Modulacija in demodulacija Vrste analognih modulacij AM M FM rimerjava spektrov analognih moduliranih signalov Mešalniki Kdaj uporabimo
Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013
Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
ČHE AVČE. Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO
ČHE AVČE Konzorcij RUDIS MITSUBISHI ELECTRIC SUMITOMO MONTAŽA IN DOBAVA AGREGATA ČRPALKA / TURBINA MOTOR / GENERATOR S POMOŽNO OPREMO Anton Hribar d.i.s OSNOVNI TEHNIČNI PODATKI ČRPALNE HIDROELEKTRARNE
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
ADS sistemi digitalnega snemanja ADS-DVR-4100D4
ADS-DVR-4100D4 Glavne značilnosti: kompresija, idealna za samostojni sistem digitalnega snemanja štirje video vhodi, snemanje 100 slik/sek v D1 ločljivosti pentaplex funkcija (hkratno delovanje petih procesov):
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
S53WW. Meritve anten. RIS 2005 Novo Mesto
S53WW Meritve anten RIS 2005 Novo Mesto 15.01.2005 Parametri, s katerimi opišemo anteno: Smernost (D, directivity) Dobitek (G, gain) izkoristek (η=g/d, efficiency) Smerni (sevalni) diagram (radiation pattern)
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Kartografske projekcije
Kartografske projekcije Današnje predavanje Kako ćemo definirati položaj nekog objekta u prostoru? Koji je oblik Zemlje? Kako ćemo taj položaj definirati i prikazati u 2 dimenzije? Osnovni koncepti geodezije
FIZIKALNA GEODEZIJA. Miran Kuhar. - študijski pripomoček- Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za matematično in fizikalno geodezijo ter navigacijo Miran Kuhar FIZIKALNA GEODEZIJA - študijski pripomoček- verzija: oktober 013 Predgovor
NAVODILA ZA UPORABO SPLETNE APLIKACIJE ZA TRANSFORMACIJE KOORDINATNIH SISTEMOV. SiTraNet v2.10.
NAVODILA ZA UPORABO SPLETNE APLIKACIJE ZA TRANSFORMACIJE KOORDINATNIH SISTEMOV SiTraNet v2.10 http://sitranet.si Kazalo vsebine 1 Opis programa... 2 1.1 Transformacije v trirazsežnem prostoru... 2 1.2
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Preklopna vezja 1. poglavje: Številski sistemi in kode
Preklopna vezja 1. poglavje: Številski sistemi in kode Številski sistemi Najpreprostejše štetje zareze (od 6000 pr.n.št.) Evropa Vzhodna Azija Južna Amerika Številski sistemi Egipčanski sistem (od 3000
Fazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE
TOPLOTNO ENERGETSKI SISTEMI TES d.o.o. GREGORČIČEVA 3 2000 MARIBOR IN PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE Saša Rodošek December 2011, Hotel BETNAVA, Maribor TES d.o.o. Energetika Maribor
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Libracija Lune. Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik
Libracija Lune Alexander Jerman, Domen Mlakar, Milan Grkovski, Gabriela Hladnik 8. september 006 Gibanje Lune 1. Libracija Pojem libracija prihaja iz latinskega glagola libro -are "uravnotežiti, nihati"(tudi
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi