ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ"

Transcript

1 ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ Η χρονική απόκριση μπορεί να ληφθεί από αναλυτικά μέσα όπως η μέθοδος μετασχηματισμού Laplace, εναλλακτικά δε μπορεί να χρησιμοποιηθεί εξομοίωση από Η/Υ. Η προσέγγιση που προσπαθούμε να αναπτύξουμε, γίνεται για να κατανοήσουμε τη σχέση μεταξύ της Σ.Μ. και της χρονικής απόκρισης χρησιμοποιώντας μία απλή ομάδα αναλυτικών σχέσεων. Η εξομοίωση μέσω Η/Υ μπορεί να μας δώσει την απόκριση ενός δεδομένου συστήματος μόνο, δεν μπορεί όμως να μας πεί πως να τροποποιήσουμε το σύστημα ώστε να πετύχουμε μία συγκεκριμένη απόκριση. Γι αυτό το λόγο η εξομοίοωση μεμονωμένα δεν αποτελεί εργαλείο σχεδίασης και η γνώση της σχέσης μεταξύ των παραμέτρων μίας συνάρτησης μεταφοράς και των χαρακτηριστικών της απόκρικσής της είναι απαραίτητη. Μέχρι προσφάτως χρησιμοποιούνταν ευρέως αναλογικοί Υπολογιστές για να επιλύσουν διαφορικές εξισώσεις και δυναμικά συστήματα εξομοίωσης. Τώρα πλέον έχουν αντικατασταθεί από τους ψηφιακούς Υπολογιστές οι οποίοι μας παρέχουν γρήγορα, ευέλικτα και ακριβή εργαλεία εξομοίωσης. 1. Δοκιμαστικά σήματα Συστήματος ( System test sigals). Η απόκριση ενός δυναμικού συστήματος εξαρτάται όχι μόνο από την Σ.Μ. αλλά και από το σήμα εισόδου και τις αρχικές συνθήκες.η ακριβής είσοδος του Συστήματος δεν είναι γνωστή εκ των προτέρων, παρ όλα αυτά αν η απόδοση του συστήματος με συγκεκριμένα καλώς επιλεγμένα δοκιμαστικά σύματα είναι ευνοική τότε μπορεί να επιτευχθεί όταν υπόκεοται σε ακριβείς εισόδους λειτουργίας. α. Μονάδες Μετρήσεως. Η συνάρτηση μεταφοράς αντιπροσωπεύει την δυναμική ευαισθησία ενός συστήματος, οπότε ε χει μονάδες του συστήματος εξόδου που διανέμονται από το σύστημα εισόδου. Οι μονάδες που σχετίζονται με τα σήματα εισόδου εξόδου αντιπροσωπεύουν μετατόπιση, τάση, πίεση, θερμοκρασία και άλλες ποσότητες. Για να απλοποιήσουμε την κατάσταση, τα σήματα συχνά κανονικοποιούνται και τα χρησιμοποιούμε σαν να ήταν χωρίς διάσταση. Συνήθως η μονάδα του χρόνου εκφράζεται σε sec ενώ η μονάδα του συντελεστή Laplace S πρέπει να καθορίζεται κάθε φορά. β. Διαβαθμίσεις χρόνου. Τα πρακτικά συστήματα έχουν ένα ευρύ φάσμα κλίμακας χρόνου, πράγμα που σημαίνει ότι οι χρόνοι απόκρισης εκφράζονται σε μία κλίμακα από microsec έως hour. Αυτό μπορεί να δημιουργήσει προβλήματα ανακρίβειας στην εξομοίωση, οπότε η εξομοίωση μπορεί

2 να επιβραδυνθεί με έναν παράγοντα α εάν κάθε συντελεστής του s μέσα στην Σ.Μ. πολλαπλασιασθεί με το α. Η απόκριση μπορεί να επιταχυνθεί εάν το α είναι μικρότερο της μονάδος. γ. Βασικά σήματα εισόδου. Το πιό διαδεδομένο σήμα για τις δοκιμές των δυναμικών συστημάτων είναι η βηματική είσοδος. Μία βηματική είσοδος επιτυγχάνεται με ξαφνική αλλαγή από μία σταθερή τιμή σε μία άλλη. Εάν το εύρος του βήματος κανονικοποιηθεί στη μονάδα τότε έχουμε μοναδιαία βηματική είσοδο. Εάν η είσοδος μεταβάλεται σταδιακά τότε ένα χρήσιμο δοκιμαστικό σήμα είναι η αναρριχητική είσοδος ( ramp iput ).. Σταθερή Κατάσταση και Απόκριση Ταλάντωσης Η συνολική απόκριση ενός δυναμικού συστήματος θα αποτελείται από δύο ξεχωριστά τμήματα. Το πρώτο είναι το τμήμα της ταλάντωσης το οποίο, όπως δηλώνει και το όνομά του, πεθαίνει όσο ο χρόνος περνά και το δεύετρο είναι αυτό της σταθερής κατάστασης το οποίο παραμένει όταν μακριά από το μηδέν το τμήμα της ταλάντωσης έχει τελείωσει (Σχ. 1.). Συνολική Απόκριση = Απόκριση Σταθερής Κατάστασης + Απόκριση Ταλάντωσης Και τα δύο τμήματα απόκρισης, σταθερής κατάστασης και ταλάντωσης, εξαρτώνται σύμφωνα με τα σήματα εισόδου τα οποία εφαρμόζωνται στο σύστημα. Όπως και να έχει η δόμη ή το σχήμα της ταλάντωσης εξαρτάται μόνο από την εξίσωση του συστήματος και είναι ανεξάρτητη από το σήμα εισόδου. 3. Ταξινόμηση Συστήματος Οι Συναρτήσεις Μεταφοράς μπορούν να ταξινομηθούν με διάφορους τρόπους.έχουμε ήδη δει ότι ο βαθμός ενός συστήματος είναι η υψηλότερη δύναμη του s στη συνάρτηση μεταφοράς.ο βαθμός του συστήματος είναι πολύ σημαντικός στον καθορισμό του τύπου απόκρισης που τελικώς θα πάρουμε.η μελέτη σταθερών και στιγμιαίων αποκρίσεων διαφόρων συστημάτων θα μας οδηγήσει σε χρήσιμους διαχωρισμούς. α. Όταν η είσοδος ενός συστήματος κρατείται σταθερή σε κάποια τιμή, η έξοδος που θα προκύψει θα έχει και αυτή κάποια σταθερή τιμή.η σχέση μεταξύ αυτής της σταθερής κατάστασης εισόδου-εξόδουονομάζεται στατική ευαισθησία συστήματος ή κέρδος σταθερής κατάστασης. Σε αυτή την περίπτωση όπου η είσοδος-έξοδος είναι σταθερές σε συγκεκριμένες τιμές μεταβλητών, οι παράγωγοι των σημάτων εισόδου-εξόδου θα είναι μηδέν. Σε μία Σ.Μ. ο συντελεστής Laplace αντιπροσωπεύει τη διάκριση, οπότε το σατθερό κέρδος τουν συστήματος μπορεί να προκύψει αφήνοντας το συντελεστή Laplace να τείνει προς το μηδέν, ενώ οι σταθερές εισόδου-εξόδου

3 d/dt=0 ισούται με s=0, οπότε Κέρδος σταθερής κατάστασης =G(s) s->0 =G(0). Η σταθερή απόκριση ενός συστήματος σε μία σταθερή είσοδο μπορεί να παραχθεί πολλαπλασιάζοντας την είσοδο με το σταθερό κέρδος, π.χ. y = G(0) x Πρέπει να θυμόμαστε πάντα ότι σωστή τιμή θα πάρουμε μόνο στην περίπτωση που η είσοδος είναι σταθερή ή αμετάβλητη. β. Στιγμιαία Απόκριση Συστήματος. Η στιγμιαία απόκριση ενός συστήματος περιγράφει πως η έξοδος αλλάζει στιγμιαία όταν η είσοδος αλλάξει ξαφνικά. Για παράδειγμα, κατά τη διάρκεια της ανόδου μίας βηματικής εισόδου, ο ρυθμός της αλλαγής είναι πολύ μεγάλος, ενώ για ιδεατό βήμα προσεγγίζει το άπειρο.μερικές Σ.Μ. θα δείξουν μία στιγμιαία απόκριση όταν εφαρμοστεί ένα βήμα. Λόγω του ότι ο ρυθμός των αλλαγών των μεταβλητών κατά τη διάρκεια τόσο γρήγορων μεταβολών αγγίζει το άπειρο, η σχέση μεταξύ εισόδου-εξόδου προκύπτει από τη Σ.Μ. αν θέσουμε το συντελεστή s να τείνει στο άπειρο. Στιγμιαίο Κέρδος = G(s) s-> = G( ). Η στιγμιαία απόκριση στην άνοδο του παλμού μίας βηματικής εισόδου προκύπτει αν πολλαπλασιάσουμε τη μεταβολή της εισόδου με το στιγμιαίο κέρδος. Σημειώστε ότι το στιγμιαίο κέρδος ενός συστήματος αντιπροσωπεύει τη σχέση ανάμεσα στη μεταβολή της εισόδου και τη μεταβολή της εξόδου. γ. Διαγράμματα Bode Σ.Μ. Συχνά οι Σ.Μ. εκφράζονται σε μία τυποποιημένη μορφή ώστε τα βασικά χαρακτηριστικά να είναι ξεκάθαρα. Οι Σ.Μ. μπορούν να εκφραστούν σε μία τυποποιημένη μορφή που ονομάζεται διάγραμμα Bode, από τον H.W. Bode ο οποίος συνείσφερε πολλά στη θεωρία της απόκρισης συχνότητας. Μία Σ.Μ. σε μορφή Bode εκφράζεται ως ακολούθως : G(s) = K B G (s) S όπου η συνάρτηση G (s) έχει σταθερό μοναδιαίο κέρδος G (0) = 1 Ο όρος S στον παρονομαστή εκπροσωπεί το πλήθος των ελευθέρων ολοκληρωτών (itegrators) στο σύστημα. Ο αριθμός ονομάζεται Αριθμητικός τύπος (Type umber) του συστήματος. Η σταθερά, K B, ονομάζεται κέρδος Bode και για ένα σύστημα τύπου 0 (δηλαδή καθόλου ελεύθεροι ολοκληρωτές ) είναι η ίδια όπως και στο σταθερό κέρδος. Τα

4 συστήματα τύπου 1 και άνω έχουν κέρδος σταθερής κατάστασης άπειρο εφόσον Lim s 0 1/s = Το άπειρο, σταθερής κατάστασης, κέρδος μπορεί να γίνει αντιληπτό αν φανταστούμε έναν ελεύθερο ολοκληρωτή με μία σταθερή είσοδο. Η έξοδος θα αναρριχηθεί αόριστα και ουσιαστικά δεν θα φθάσει ποτέ σε μία σταθερή κατάσταση. 4. Η Χαρακτιριστική Εξίσωση και η Απόκριση Μετάδοσης (Trasiet Respose) Ας θεωρήσουμε μία γενική Σ.Μ. Y / X (s) = G(s) = N(s) / D(s) όπου D(s) είναι ο παρονομαστής της Σ.Μ. και N(s) ο αριθμητής. Πολλαπλασιάζοντας ( χιαστά ) έχουμε : Y(s) * D(s) = X(s) * N(s) (3.7) Εάν η είσοδος του συστήματος είναι 0 τότε η απόκριση που προκύπτει πρέπει να περιέχει ένα μόνο στοιχείο μετάδοσης (εφόσον η απόκριση σταθερής κατάστασης θα ήταν μηδέν). Η μορφή της απόκρισης μετάδοσης οποιουδήποτε συστήματος πρέπει να υπολογισθεί αν θέσουμε X(s) = 0 στη σχέση (3.7), οπότε : Y(s) * D(s) = 0 (3.8) Αποκλείοντας την περίπτωση Y(s) = 0, βρίσκουμε ότι η απόκριση μετάδοσης για ένα γενικό σύστημα καθορίζεται από την ισότητα : D(s) = 0 (3.9) Η παραπάνω σημαντική εξίσωση ονομάζεται Χαρακτηριστική Εξίσωση και η επίλυσή της καθορίζει την μορφή της απόκρισης μετάδοσης για οποιαδήποτε είσοδο. Σημειώσατε ότι μόνο ο παρονομαστής της Σ.Μ. εμφανίζεται στη Χ.Ε.. Επιλύοντας την Χ.Ε. βρίσκουμε τις τιμές του S για τις οποίες μηδενίζεται η D(s). Αυτές οι ρίζες της Χ.Ε. σχετίζονται άμεσα με την τελική απόκριση μετάδοσης. Για να δούμε την συσχέτιση των ριζών της Χ.Ε. με την απόκριση μετάδοσης ας θεωρήσουμε την εξίσωση (3.8) σε μία γενική μορφή όπου η D(s) είναι ένα πολυώνυμο - βαθμού και η Y(s) η μετατροπή κατά Laplace της μετάδοσης ( L { Y (t) } = Y (s) ) : Y(s) (α 0 +a 1 s + +a s )=0 ή α 0 Y(s)+ a 1 s Y(s)+ + a s Y(s) =0 Θεωρώντας ότι ο πολλαπλασιασμός με s στο πεδί του s, ισοδυναμεί με τη

5 διάκρισηστο πεδίο του χρόνου, βλέπουμε ότι η απόκριση μετάδοσης είναι της ακόλουθης μορφής: α 0 Y(t)+ a 1 d y /dt (t) + + a d y /dt (t) = 0 (3.10) Η μετάδοση, y, πρέπει να είναι τέτοια ώστε συνδυαζόμενη με τις παραγώγους στην σχέση (3.10), οι όροι αθροιζόμενοι να ισούνται με το μηδέν (0). Η εκθετική συνάρτηση, e xt, είναι υποψήφια για την επίλυση της σχέσης (3.10) εφόσον η διαφοροποίηση μίας εκθετικής συνάρτησης οδηγεί πάλι σε μία άλλη εκθετική συνάρτηση, οπότε μία πιθανή συνάρτηση για την απόκριση μετάδοσης είναι η εξής: y (t) = C * e xt (3.11) όπου C : είναι μία αυθαίρετη σταθερά. d y / dt (t) = a*c*e at = a* y(t) d y / dt (t) = a *C*e at = a * y(t) και κλπ. Οπότε τελικά η σχέση (3.10) παίρνει την εξής μορφή : a 0 * C * e at + a 1 * a * C * e at +.+ a * a * C * e at = 0 και όταν τελικώς διαιρεθεί με τον όρο C * e at προκύπτει : a 0 + a 1 * a +.+ a * a = 0 ή D(a) = 0 (3.1) Η εξίσωση (3.1) είναι η Χ.Ε. όπου το S αντικαταστάθηκε από το a. Όποτε η τιμή του a στην προτεινόμενη απόκριση μετάδοσης (σχέση 3.11) θα είναι μία ρίζα της Χ.Ε. Ο συντελεστής C μπορεί να έχει οποιαδήποτε τιμή η οποία ουσιαστικά καθορίζεται από το σύστημα εισόδου, τις αρχικές συνθήκες και τον αριθμητή της Σ.Μ. α. Σχέση Μεταξύ Χ.Ε. και Μοντέλων Μεταβλητών Καταστάσεων. Οι εξισώσεις : dx / dt (t) = A X(t) + B*u(t) και y(t) = C*X(t) + D*u(t) δίνουν την γενική μορφή μεταβλητής κατάστασης για ένα δυναμικό σύστημα. Η Σ.Μ. αυτού του συστήματος δίνεται από την εξής σχέση: Y/u (s) = C*[s*I-A] -1 *B + D. την ορίζουσα: Ο ανάστροφος ενός πίνακα προκύπτει αν διαιρέσουμε τον adj πίνακα με

6 [s*i A] -1 = adj (s*i A) / s*i A. Οπότε ο παρονομαστής της Σ.Μ. καθορίζεται από την ορίζουσα του πίνακα [s*i-a]. Η Χ.Ε. του συστήματος προκύπτει αν εξισώσουμε την ορίζουσα με μηδέν (0): s*i A = 0 (3.14) Σ ένα τέτοιο μοντέλο, τα χαρακτηριστικά μετάδοσης του συστήματος καθορίζονται από τον πίνακα Α. Οι ρίζες της Χ.Ε. αυτής της μορφής τιμές χαρακτηριστικής συνάρτησης του πίνακα Α. β. Στιγμιαία Απόκριση Συστήματος. Η στιγμιαία απόκριση ενός συστήματος έχει θεωρητικό μόνο ενδιαφέρον, αφού ο Μ/Σ Laplace ενός μοναδιαίου παλμού είναι ένα (1): L { δ (t) } = 1. Ο Μ/Σ Laplace της στιγμιαίας απόκρισης θα είναι : Y(s) = G(s) * 1. Δηλαδή η στιγμιαία απόκριση ενός συστήματος είναι απλά ο αντίστροφος Μ/Σ Laplace της Σ.Μ. του: Στιγμιαία Απόκριση = L -1 {G(s)} = g(t) (3.15) Οπότε η στιγμιαία απόκριση και η Σ.Μ. είναι το ίδιο αν τις δούμε από το πεδίο του χρόνουκαι το πεδίο του -s αντίστοιχα. Για παράδειγγμα ο Μ/Σ Laplace της εκθετικής συνάρτησης είναι: L { e -at }= 1 / s+a. Τροποποιώντας την Σ.Μ. ενός συστήματος πρώτου βαθμού βλέπουμε ότι: 1/τ 1 / τ+s = L { 1/τ *e -t / τ }. Οπότε η στιγμιαία απόκριση είναι : g(t) = 1/ τ * e -t / τ την Χ.Ε. Το παραπάνω αποτέλεσμα συμφωνεί με την μετάδοση που προκύπτει από 6. Το Πεδίο S Μία Χαρακτηριστική Εξίσωση - βαθμού έχει - ρίζες που η κάθε μία αντιστοιχεί σ ένα όρο της μεταβατικής απόκρισης. Το άθροισμα αυτών των όρων είναι η συνολική μετάβαση.

7 Προκειμένου ν αναπτύξουμε τη σχέση ανάμεσα στις ρίζες της Χ.Ε. και στη μετάβαση πρέπει να παραστήσουμε γραφικά τις ρίζες, οι οποίες μπορεί να είναι είτε πραγματικές ή μιγαδικές. Μία τέτοια παράσταση ονομάζεται διάγραμμα στο πεδίο S. Οι άξονες του πεδίου -S είναι τα πραγματικά και φανταστικά μέρη δηλαδή : S = σ + j*ω (3.16) 7. Σχέσεις μεταξύ θέσης πόλων και μετάδοσης. Μέχρι εδώ είδαμε ότι κάθε πόλος δίνει έναν όρο στην ολική απόκριση μετάδοσης. Οι πόλοι μπορεί να είναι ευκρινείς ή απλοί, εναλλακτικά μπορεί να είναι επαναλαμβανόμενοι ή πολλαπλοί.μια πιο σύνθετη μορφή είναι επίσης και οι μιγαδικοί πόλοι. α. Ευκρινείς Πραγματικοί Πόλοι. Κάθε ευκρινής πόλος αντιστοιχεί σε ένα εκθετικό όρο της απόκρισης μετάδοσης, όπου ο καθένας σχετίζεται με μία αυθαίρετη σταθερά., Πεδίο Πόλων Όρος μετάδοσης s=σ y (t) = C e σt Για να εξασθενήσει η απόκριση συναρτήσει του χρόνου, πρέπει το σ να είανι αρνητικό, οπότε ο πόλος θα βρίσκεται στον αρνητικό πραγματικό άξονα.όσο πιο αριστερά βρίσκονται οι πόλοι τόσο μεγαλύτερη εξασθένηση έχουμε, ενώ οι πόλοι που είναι στον πραγματικό θετικό άξονα αντιστοιχούν σε εκθετικούς όρους που αυξάνονται με το χρόνο.συστήματα στα οποία ο όρος μετάδοσης αυξάνεται αόριστα με το χρόνο, ονομάζονται ασταθή συστήματα.αντιθέτως συστήματα στα οποία οι όροι μετάδοσης εξασθενολυν συναρτήσει του χρόνου ονομάζονται σταθερά συστήματα.ένας απλός πραγματικός πόλος αφορά συστήμτα πρώτου βαθμού. β. Ευκρινείς Μιγαδικοί Πόλοι Οι ρίζες χαρακτηριστικών εξισώσεων δευτέρου και άνω βαθμού μπορεί να έιναι μιγαδικές.για παραγματικά συστήματα οι μιγαδικοί πόλοι δίνονται από τις ακόλουθες συζυγείς εξισώσεις s 1 = σ + j ω, s = σ - j ω Οι όροι μετάδοσης που προκύπτουν από τους παραπάνω πόλους θα είναι y (t) = C 1 e (σ+jω)t + C e (σ-jω)t

8 Προκειμένου το y να έχει πραγματική τιμή, οι σταθερές C 1 και C πρέπει επίσης να είναι συζυγείς μιγαδικοί, δηλ. C 1, C = α ±jb = R e ±jθ Οπότε y (t) = R e jθ e (σ+jω)t + R e -jθ e (σ-jω)t R e σ t e j(ωt+θ) + e -j(ωt+θ) y (t) = R e σ t cos (ωt+θ) (3.17) Οπότε ο όρος μετάδοσης είναι μία ημιτονοειδής συνάρτηση της συχνότητας ω (rad per sec) η οποία πολλαπλασιάζεται με μία εκθετική συνάρτηση φθίνουσα (ή αθξανόμενη) με ρυθμό που καθορίζεται από το σ.οι αυθαίρετες σταθερές C 1, C έχουν αντικατασταθεί από δύο άλλες,r, οι οποίες σχετίζονατι με το εύρος του ημιτόνου καθώσ και γωνία θ, που σχετίζεται με τη φάση.εφόσον η τιμή του R είναι αυθαίρετη, η εξίσωση 3.17 μπορεί να γραφεί: Πεδίο Πόλων s = σ ± j ω Όρος μετάδοσης y (t) = R e σ t cos (ωt+θ) Για να είναι ένα σύστημα σταθερό πρέπει οι μιγαδικοί πόλοι να βρίσκονατι στο αριστερό μισό τμήμα του πεδίου s. γ. Επαναλαμβανόμενοι Πόλοι Όταν έχουμε επαναλαμβανόμενες ρίζες στη χαρακτηριστική εξίσωση τότε οι όροι μετάδοσης είναι της μορφής y (t) = (C 1 + C t + C 3 t + + C m t m ) e αt (3.18) όπου ο όρος m είναι ο βαθμός των επαναλαμβανόμενων ριζών. Οι τιμές των αυθαίρετων σταθερών C 1 και C εξαρτώνται από τα μηδενικά, την είσοδο και τις αρχικές συνθήκες, ενώ η τιμή του α εξαρτάται μόνο απο τη θέση του επαναλαμβανόμενου πόλου.όταν ο πόλος έχει ένα αρνητικό πραγματικό τμήμα, ο όρος θα εξασθενήσει προς το μηδέν. δ. Γενική Ευστάθεια στο Πεδίο s. Οποιοσδήποτε πόλος ευκρινής ή επαναλαμβανόμενος, πραγματικός ή μιγαδικός, που έχει ένα θετικό πραγματικό μέρος οδηγεί σε ένα όρο μετάδοσης που αυξάνεται με το χρόνο.οπότε για ένα σύστημα το οποίο βρίσκεται σε σταθερή κατάσταση μετά από οποιαδήποτε είσοδο ή διαταραχή, θε πρέπει όλοι οι όροι της απόκρισης μετάδοσης να τείνουν στο μηδέν.έτσι, για να είναι σταθερό ένα σύστημα πρέπει όλοι οι πόλοι του συστήματος να βρίσκονται στο αρνητικό (αριστερό) μισό του πεδίου s.η θέση των μηδενικών δεν επηρεάζει την ευστάθεια του συστήματος.

9 Συστήματα τα οποία δεν έχουν πόλους στο δεξί μισό τμήμα του πεδίου, έχουν όμως έναν ή περισσότερους πόλους πάνω στον άξονα των φανταστικών ονομάζονται οριακά ευσταθή. Ένας ελεύθερος ολοκληρωτής (με πόλο στην αρχή των συντεταγμένων) είναι ένα παράδειγμα συστήματος κρισίμου ευστάθειας με μηδενική συχνότητα. 8 Σύστημα Δευτέρου Βαθμού. Θα ήταν πολύ χρήσιμο να εισάγουμε μία τυποποιημένη συνάρτηση μεταφοράς δευτέρου βαθμού με όλες τις σχετικές της παραμέτρους. Ας θεωρήσουμε την ακόλουθη συνάρτηση Y k ( s) = X k + Cs+ ms όπου k είναι συντελεστής ψυχρότητας, C ο συντελεστής απόσβεσης του πλάτους ταλάντωσης και m η μάζα. Διαιρώντας με το k προκύπτει η Σ.Μ. σε μορφή Bode, η οποία είναι: Y X ( s) = 1+ ( C 1 k) s + ( m k) s (3.0) Οι σχετικές παράμετροι οι οποίες χρησιμοποιούνται είναι: (α). (β). Η κυκλική ιδιοσυχνότητα (φυσική συχνότητα), ω, η οποία σχετίζεται με την ταχύτητα ταλάντωσης της μετάδοσης. Ο συντελεστής απόσβεσης, ζ, ο οποίος δεν έχει διαστάσεις και αντιπροσωπεύει το ποσοστό απόσβεσης του συστήματος. Με τη χρήση των παραπάνω παραμέτρων, η βασική μορφή μίας Σ.Μ. δευτέρου βαθμού είναι Y X 1 ( s) = 1+ ζ s ω + ( s ω ) (3.1) Συγκρίνοντας τις εξισώσεις 3.0 και 3.1 προκύπτουν οι εξής ισότητες συντελεστών: m/k = 1/ω από την οποία προκύπτει ότι ω = k / m (3.) C/k = ζ/ω από την οποία προκύπτει ότι ζ = C ω C = (3.3) k km Σχέση μεταξύ ζ και ω και θέσης πόλων Οι πόλοι του βασικού συστήματος δευτέρου βαθμού όπως προκύπτουν από την εξίσωση 3.1 είναι οι ακόλουθοι:

10 s = η οποία αν απλοποιηθεί γίνεται ζ ω ± (ζ ω ) 4 ω s = -ζ ω ± ω ω ζ 1 (3.4) Έχουμε τέσσερις περιπτώσεις να μελετήσουμε: Συστήματα χωρίς απόσβεση, (ζ=0). Αν το σύστημα δεν έχει καθόλου απόσβεση τότε οι πόλοι βρίσκονται στον άξονα των φανταστικών και έχουν τιμή s = ± j ω Η μετάδοση είναι ένα συνεχές ημίτονο της ιδιοσυχνότητας ω η οποία δεν αυξομειώνεται με το χρόνο. Η μηδενική απόσβεση δηλαδή παράγει μία απλή αρμονική κίνηση. Σ αυτή την περίπτωση η κυκλική ιδιοσυχνότητα είναι η συχνότητα στην οποία το σύστημα εκτελεί ταλάντωση. Συστήματα με απόσβεση, (0<ζ<1). Εξετάζοντας την εξ.(3.4) βλέπουμε ότι όταν η απόσβεση έχει τιμές μικρότερες της μονάδος τότε όλοι οι πόλοι είναι μιγαδικοί. Τα πραγματικά και φανταστικά μέρη των πόλων δίνονται από τις ακόλουθες ισότητες αντίστοιχα, σ = -ζ ω (3.5) jω = j ω 1 ζ (3.6) Η συχνότητα στην οποία έχουμε ταλάντωση προκύπτει από τη σχέση, ω d = ω 1 ζ (3.7) και ονομάζεται φυσική συχνότητα με απόσβεση και είναι πάντοτε μικρότερη της ιδιοσυχνότητας ω. Κρίσιμα συστήματα απόσβεσης, ζ=1. Όταν ο συντελεστής απόσβεσης ισούται με τη μονάδα, το φανταστικό μέρος μηδενίζεται οπότε έχουμε ένα διλπό πόλο στο s = - ω Σ αυτή την περίπτωση δεν έχουμνε καθόλου ταλάντωση και η απόσβεση ονομάζεται κρίσιμη απόσβεση. Συστήματα πλήρους απόσβεσης, ζ>1. Εάν η τιμή της απόσβεσης ξεπεράσει την κρίσιμη τιμή, τότε οι πόλοι είναι πραγματικοί και η μετάδοση αποτελείται από δύο πραγματικές εκθετικές συναρτήσεις, ως ακολούθως y(t) = C 1 e a1t + C e at όπου α 1 = -ζ ω + ω ζ 1 α = -ζ ω - ω ζ 1 9. Λεπτομερής παρουσίαση της παράστασης του πεδίου ορισμού του χρόνου.

11 α. Κριτήρια Βηματικής Απόκρισης Τα σχήματα 3.11 (α) και (β) απεικονίζουν τη γενική βηματική απόκριση δύο συστημάτων, ενός με ταλάντωση και ενός άλλου με μονοτονική απόκριση χωρίς καθόλου ταλάντωση.για τα συστήματα ταλάντωσης, το ποσοστό ταλάντωσης μπορεί να καθοριστεί από την επι τοις εκατό υπερύψωση (peak overshoot) η οποία δίνεται από τον τύπο % υπερύψωση = 100 m 1 /m 0 (3.30) Ο ρυθμός εξασθένησης καθορίζεται από δύο επιτυχείς υπερυψώσεις, οπότε ρυθμός εξασθένησης = m 3 /m 1 (3.31) Ο χρόνος αποκατάστασης, t s, εκφράζει το χρόνο που χρειάζεται για την εξασθένηση της μετάδοσης μέσα σε κάποια προκαθορισμένη ζώνη, η οποία συνήθως κυμαίνεται από ±% και ±5%. Για τα συστήματα ταλάντωσης η ταχύτητα της ταλάντωσης εκφράζεται σε όρους όπως ο χρόνος έως την πρώτη κορύφωση ή περίοδος ταλάντωσης. Ο χρόνος απόκρισης καθορίζεται από το χρόνο ανύψωσης, t r, o οποίος για μία απόκριση ταλάντωσης είναι ο χρόνος που χρειάζεται για να φτάσει από την αρχική στην τελική τιμή.συνήθως ο χρόνος ανύψωσης για συστήματα χωρίς ταλάντωση καθορίζεται σαν ο χρόνος ανύψωσης από το 10% στο 90% της τελικής τιμής. β. Συστήματα Πρώτου Βαθμού. Ένα σύστημα Α βαθμού έχει μία μονοτονική βηματική απόκιση, η μετάδοση της οποίας εκφράζεται από μία απλή εκθετική συνάρτηση, y (t) = Ce -t/τ Μετά από μία σταθερά χρόνου (π.χ. t=τ) η μετάδοση εξασθενεί οπότε έχουμε y /C (τ) = e -1 =0.37 Αυτό σημαίνει ότι η απόκριση βρίσκεται εντός των ορίων (1-0.37) ή στο 63% της σταθερής τιμής.το ποσοστό 63% του χρόνου ανύψωσης αντιστοιχεί σε μία σταθερά χρόνου για ένα σύστημα Α βαθμού. Ο χρόνος αποκατάστασης 5%, t s μπορεί εύκολα να υπολογιστεί από τη σχέση 0.05= e -t s /τ, οπότε t s = -τ l(0.05) 3τ Δηλαδή ο χρόνος αποκατάστασης ενός συστήματος Α βαθμού είναι περίπου τρεις σταθερές χρόνου. γ. Συστήματα Δευτέρου Βαθμού, Λογαριθμική μείωση και Ρυθμός Απόσβεσης.

12 Η βηματική απόκριση ενός συστήματος εξασθένησης β βαθμού, φτάνει στην πρώτη κορυφή (peak) μέσα στη μισή περίοδο ταλάντωσης. Η μετάδοση ταλαντούται στην εξασθενημένη φυσική συχνότητα και είναι ίση με το φανταστικό τμήμα των πόλων. Οπότε ο χρόνος για την πρώτη κορύφωση είναι 1 π π t p = = (3.3) ω d ω d Ο χρόνος ανύψωσης είναι το μισό αυτής της τιμής και μικραίνει όταν η φυσική συχνότητα εξασθένησης αυξάνεται. Η απόκριση μετάδοσης εκφράζεται από τη σχέση (3.17), ενώ τα πραγματικά και φανατστικά μέρη των πόλων δίνονται από τις Εξ. (3.5) και (3.6) αντίστοιχα. y (t) = R e -ζω t cos (ω d t+θ) (3.33) Το Σχέδιο 3.1 δείχει τη γενική μορφή αυτής της συνάρτησης. Οι θετικές και αρνητικές αιχμές της ταλάντωσης πραγματοποιούνται σε χρόνους οι οποίοι διαχωρίζονται από τη μισή ημιτονοειδή περίοδο, π/ω d. Τα πλάτη αυτών των αιχμών έχουν ορισθεί ως m 1, m, κλπ. Η κάθε αιχμή λαμβάνει χώρα κατά τη χρονική στιγμή που το συνημίτονο παίρνει τη μέγιστη τιμή στο ±1. Το απόλυτο μέγεθος κάθε κορυφής, m k, δίνεται από τη σχέση m k = Re -ζω t k και ο ρυθμός μεταξύ δύο κορυφών διαχωρισμένος σε μισές περιόδους ταλάντωσης θα είναι m m k + k = Re ζω ( t + π ω ) Re k ζω t k d e = ζω t k e e ζω π ω ζω t k d = e ζω π / ω δ όπου αν χρησιμοποιήσουμε τη σχέση (3.7) γίνεται m k + m k = e πζ / 1 ζ (3.34) Το αποτέλεσμα της πααρπάνω σχέσης είναι απλά μία συνάρτηση ρυθμού εξασθένησης, οπότε και εξάγεται το συμπέρασμα ότι μόνο αυτό καθορίζει το σχήμα της μετάδοσης. Για ένα σύστημα β βαθμού, η αναλογία εξασθένησης δίνεται από την αναλογία δύο επιτυχών υπερυψώσεων που χωρίζονατι από ένα ολοκληρωμένο κύκλο, δηλ. Ποσοστό εξασθένησης = m k + πζ / 1 ζ = e (3.35) mk Ο εκθέτης αυτής της συνάρτησης (χωρίς το αρνητικό πρόσημο), ονομάζεται λογαριθμική μείωση και εκφράζεται Λογαριθμική μείωση = l mκ πζ = (3.36) m κ + 1 ζ

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη : Μετασχηματισμός Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μετασχηματισμός Laplace. Μαθηματικός ορισμός μετασχηματισμού Laplace 2. Η περιοχή σύγκλισης του μετασχηματισμού

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

Ευστάθεια συστημάτων

Ευστάθεια συστημάτων 1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

Ευστάθεια, Τύποι συστημάτων και Σφάλματα

Ευστάθεια, Τύποι συστημάτων και Σφάλματα 1. Ευστάθεια συστημάτων Ευστάθεια, Τύποι συστημάτων και Σφάλματα Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 10 η διάλεξη Ασκήσεις Ψηφιακός Έλεγχος 1 Άσκηση1 Ασκήσεις Επιθυμούμε να ελέγξουμε την γωνία ανύψωσης μιας κεραίας για να παρακολουθείται η θέση ενός δορυφόρου. Το σύστημα της κεραίας και

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 5 η : ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015) Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t) Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ

ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ Εισαγωγή - Έννοιες Ένα ασταθές αντικείμενο προκαλεί γενικά ανεπιθύμητες παρενέργειες ή και καταστροφές Γενικά ένα ευσταθές σύστημα έχει μία οριοθετημένη τιμή στην απόκρισή

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία

Διαβάστε περισσότερα

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes ΣΑΕ Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Οκτώβριος-Ιανουάριος 207 Τελευταία ενημέρωση: 3 Οκτωβρίου 207 Συστήματα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης 6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος

Διαβάστε περισσότερα

Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο

Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. 1 το οποίο περιγράφεται από το δυναµικό µοντέλο ΨΣΕ 3 η Εργαστηριακή Άσκηση Γραµµικοποιήση µε ανατροφοδότηση εξόδου και έλεγχος Κινούµενου Ανεστραµµένου Εκκρεµούς Θεωρείστε το σύστηµα του ανεστραµµένου εκκρεµούς-οχήµατος του Σχ. το οποίο περιγράφεται

Διαβάστε περισσότερα

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων Κεφάλαιο 4 Μετασχηματισμός aplace 4. Μετασχηματισμός aplace της εκθετικής συνάρτησης e Είναι Άρα a a a u( a ( a ( a ( aj F( e e d e d [ e ] [ e ] ( a e (c ji, με a (4.9 a a a [ e u( ] a, με a (4.3 Η σχέση

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Επικοινωνίες στη Ναυτιλία

Επικοινωνίες στη Ναυτιλία Επικοινωνίες στη Ναυτιλία Εισαγωγή Α. Παπαδάκης, Αναπλ. Καθ. ΑΣΠΑΙΤΕ Δρ. ΗΜΜΥ Μηχ. ΕΜΠ Βασικά Αντικείμενα Μαθήματος Σήματα Κατηγοριοποίηση, ψηφιοποίηση, δειγματοληψία, κβαντισμός Βασικά σήματα ήχος, εικόνα,

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά

Διαβάστε περισσότερα

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση

Εξαναγκασμένη Ταλάντωση. Αρμονική Φόρτιση Εξαναγκασμένη Ταλάντωση Αρμονική Φόρτιση Αρμονική Ταλάντωση Εξαναγκασμένη Ταλάντωση: Αρμονική Φόρτιση: Δ8- Η αρμονική διέγερση αποτελεί θεμελιώδη μορφή διέγερσης στη Δυναμική των Κατασκευών λόγω της μαθηματικής

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ E() ε() Διορθωτής D() ε c () Σύστημα G() S() Η() Ανάδραση H() E() ε() Διορθωτής D() ε c () Σύστημα G() S() Υπολογιστής Η() Ανάδραση H() Αναλογικό και ψηφιακό ΣΑΕ Πλεονεκτήματα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier 1. Ανάπτυγμα σήματος σε Σειρά Fourier

Διαβάστε περισσότερα

Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως

Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως Βηµατική απόκριση ενός γενικού συστήµατος δευτέρας τάξεως Έστω σύστηµα µε συνάρτηση µεταφοράς = (1) όπου ω 0 >0. (Το ω 0 συχνά λέγεται κυκλική (φυσική) ιδιοσυχνότητα του συστήµατος) Ισχύει = = + +. 1)

Διαβάστε περισσότερα

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές) Μεταβατική Ανάλυση - Φάσορες Πρόσθετες διαφάνειες διαλέξεων Αλέξανδρος Πίνο Δεκέμβριος 2017 Γενικό μοντέλο Απόκριση κυκλώματος πρώτης τάξης, δηλαδή με ένα μόνο στοιχείο C ή L 3 Μεταβατική απόκριση Ξαφνική

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

Ανάλυση υναµικής ιεργασιών

Ανάλυση υναµικής ιεργασιών Ανάλυση υναµικής ιεργασιών Αντιπροσώπευση µε το Μοντέλο Κατάστασης- Χώρου (State-Space Space Models) υναµική Γραµµικών Συστηµάτων 1ης και 2ης Τάξης Συστήµατα SISO και MIMO Ο Μετασχηµατισµός Laplace για

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Χαρακτηριστικά των Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου. ΕΡΩΤΗΜΑ Δίνεται το σύστημα δεξαμενών του διπλανού σχήματος, όπου: q,q : h,h : Α : R : οι παροχές υγρού στις δύο δεξαμενές, τα ύψη του υγρού στις δύο δεξαμενές, η διατομή των δεξαμενών και η αντίσταση ροής

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Σήματα Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Για την ανάλυση των ηλεκτρικών κυκλωμάτων μαζί με την μαθηματική περιγραφή των

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σύστημα και Μαθηματικά μοντέλα συστημάτων

Σύστημα και Μαθηματικά μοντέλα συστημάτων Σύστημα και Μαθηματικά μοντέλα συστημάτων Όταν μελετούμε έναν συγκεκριμένο μηχανισμό η μια φυσική διεργασία επικεντρώνουμε το ενδιαφέρον μας στα φυσικά μεγέθη του μηχανισμού τα οποία μας ενδιαφέρει να

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος

Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 10: Γραμμικά Φίλτρα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Γραμμικά Φίλτρα 1. Ιδανικά Γραμμικά Φίλτρα Ιδανικό Κατωδιαβατό Φίλτρο Ιδανικό Ανωδιαβατό Φίλτρο Ιδανικό Ζωνοδιαβατό

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

Κεφάλαιο 0 Μιγαδικοί Αριθμοί

Κεφάλαιο 0 Μιγαδικοί Αριθμοί Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ

ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΜΕΛΕΤΗ ΣΥΣΤΗΜΑΤΟΣ ΜΑΖΑΣ-ΕΛΑΤΗΡΙΟΥ-ΑΠΟΣΒΕΣΤΗΡΑ Μ. Σφακιωτάκης mfak@taff.teicrete.gr Χειµερινό Οκτώβριος εξάµηνο 2010-11 2017 Σύστηµα Μάζας-Ελατηρίου-Αποσβεστήρα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων Πίνακας Ιδιοτήτων

Διαβάστε περισσότερα

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z

7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z 7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο 4.4. ΣΥΣΤΗΜΑΤΑ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ 4.4.1. Αναλογικό διάγραμμα δεύτερης τάξης Ένα φυσικό σύστημα δεύτερης τάξης έχει διαφορική εξίσωση: y + α 1 y + a 0 y = b u(t) ή d2 y dy(t) + a dt 2+α1 dt 0 y(t) = b u(t)

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6.1

ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6.1 ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6. Σώμα μάζας gr έχει προσδεθεί στην άκρη ενός ελατηρίου και ταλαντώνεται επάνω σε οριζόντιο δάπεδο χωρίς τριβή. Εάν η σταθερά του ελατηρίου είναι 5N / και το πλάτος

Διαβάστε περισσότερα

συστημάτων αυτόματης ρύθμισης... 34

συστημάτων αυτόματης ρύθμισης... 34 Περιεχόμενα 5 Πειραματικοί Μέθοδοι Προσδιορισμού Μεγεθών Γραμμικών Συστημάτων Ρύθμισης 5. Γενικά..................................... 5.2 Αναλυτικές μέθοδοι για τον προσδιορισμό της συνάρτησης μετάβασης

Διαβάστε περισσότερα

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Φάσμα συχνοτήτων. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 7 η : ΕΛΕΓΚΤΕΣ PID Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ

3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. 3. ΑΠΟΚΡΙΣΗ ΚΑΤΑ ΣΥΧΝΟΤΗΤΑ 3. Εισαγγή Στην μελέτη τν συστημάτν, μία από τις μεθόδους που χρησιμοποιούνται είναι η απόκριση κατά συχνότητα ή η συχνοτική απόκριση. Η μέθοδος αυτή μελετά την συμπεριφορά

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.

Διαβάστε περισσότερα

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις

Θέματα Εξετάσεων Ιουνίου 2003 στο μάθημα Σήματα και Συστήματα και Λύσεις Θέματα Εξετάσεν Ιουνίου 00 στο μάθημα Σήματα και Συστήματα και Λύσεις ΘΕΜΑ. μονάδες Έστ το αιτιατό σύστημα d y t y t x t d t όπου x t η είσοδος και y t η έξοδος του συστήματος. α Να υπολογιστεί η συνάρτηση

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 7: Μετασχηματισμός Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier 1. Ορισμός του Μετασχηματισμού Fourier 2. Φυσική Σημασία του Μετασχηματισμού

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3) Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

Controllers - Eλεγκτές

Controllers - Eλεγκτές Controller - Eλεγκτές Στις επόμενες ενότητες θα εξετασθούν οι βιομηχανικοί ελεγκτές ή ελεγκτές τριών όρων PID, (με τους διάφορους συνδυασμούς τους όπως: P, PI ή PID). Η προτίμηση των ελεγκτών PID οφείλεται

Διαβάστε περισσότερα

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης Σύστημα ονομάζουμε ένα σύνολο στοιχείων κατάλληλα συνδεδεμένων μεταξύ τους για να επιτελέσουν κάποιο έργο Είσοδο ονομάζουμε τη διέγερση, εντολή ή αιτία η οποία

Διαβάστε περισσότερα

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z 7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Ένα σημείο λέγεται ανώμαλο σημείο της συνάρτησης f( ) αν η f( ) δεν είναι αναλυτική στο και σε κάθε γειτονιά του υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73

ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες

Διαβάστε περισσότερα

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ

ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ 7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Χρονική απόκριση συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτν Αυτοµάτου Ελέγχου: Αρµονική Απόκριση & ιαγράµµατα Bode 6 Ncolas Tsaatsouls Εισαγγή ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Ελεγκτές - Controller Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος /22 περιεχόμενα ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 3 ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5 ΚΕΦΑΛΑΙΟ 6 ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 8 ΚΕΦΑΛΑΙΟ 9 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς Δυναμική Μηχανών I 7 2 Συνάρτηση και Μητρώο Μεταφοράς 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Αναπαραστάσεις

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας

Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας ΚΕΣ Αυτόµατος Έλεγχος Εισαγωγή στην Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Χρονική Απόκριση και Απόκριση Συχνότητας 6 Ncola Tapaoul Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 4 Παρασκευόπουλος

Διαβάστε περισσότερα