ZOBNIŠKA GONILA. enostavna sestava gonila, velika obratovalna varnost, enostavno vzdrževanje, majhna velikost gonila, dober izkoristek.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ZOBNIŠKA GONILA. enostavna sestava gonila, velika obratovalna varnost, enostavno vzdrževanje, majhna velikost gonila, dober izkoristek."

Transcript

1 ZOBNIŠKA GONILA valjaste zobniške dvojice z ravnimi in poševnimi zobmi stožčaste zobniške dvojice polžaste zobniške dvojice PREDNOSTI enostavna sestava gonila, velika obratovalna varnost, enostavno vzdrževanje, majhna velikost gonila, dober izkoristek. SLABOSTI tog prenos sile, spreminjanje vrtilnih hitrosti (nenatančnost ozobja, spreminjanje vzmetne konstante), glasnost (razen vijačna gonila), potreba po prigraditvi elastične sklopke ali dodatne jermenske stopnje.

2 Primernost glede na pogonski stroj

3 Primernost glede na delovni stroj

4 kinematična kroga kinematična valja kinematična os r 2 r 1 a r 2 kinematična os a r 1 kinematična valja kinematična kroga a) zunanja valjasta zobniška dvojica b) notranja valjasta zobniška dvojica kinematični valj kinematični krog r 1 kinematična ravnina kinematična os kinematična premica c) gonilo z zobnico kinematični krog 1 v = v w1 w2 ω 1,n 1 r w1 v = r ω = d π n w1 w1 1 w1 1 v = r ω = d π w2 w2 2 w2 n 2 a ω 2,n 2 ω1 n1 dw2 i = = = = ω n d 2 2 w1 r r w2 w1 kinematični krog 2 r w2 Kotaljenje kinematičnih krogov brez drsenja a = r + r w 1 w 2 r w1 r w2 a = 1 + i a i = 1+ i

5 levi bok leva linija boka desna linija boka desni bok kinematični valj levo desno Oznake valjastih zobnikov z ravnimi zobmi π d1= z1 p π d2 = z2 p p d d 1 2 z1 ω1 n1 dw2 rw 2 = z i = = = = = ω n d r = m π m = p π d w1 w1 p = z = m z π z z 2 1 Dimenzije zob zobnikov so ponavadi izražene v deležih modula ozobja: Parameter Enačba Običajne vrednosti višina glave zoba ha = h m ha = m koeficient višine glave zoba h h = 1 (splošna strojegradnja) višina korena zoba h = h + c h f = 1,2 m (priporočilo ISO 1,25 m) f a temenski razstop c = ( 01, K03, ) m c = 0,2 m (priporočilo ISO 0,25 m) p π ločna debelina zoba na razdelbnem krogu brez bočne zračnosti s = = m 2 2 p π ločna širina medzobja na razdelbnem krogu brez bočne zračnosti e = = m 2 2

6 p Prioritetni razredi I II III I II III I II III 1 3,5 3, , ,25 4,5 16 1, ,5 5,5 20 1,75 6 6, , , , , Tabela standarnih modulov v [mm] = m π m = p π d p = z = m z π 1 2 r1 = rw1in r2 = rw2 a r r m z z d = + = a d = ničelna medosna razdalja kinematična krožnica w1 skupna tangenta v točki X kinematična krožnica w 2 a) ubirna kota α 1, α 2 b) ubirni kot α Definicija ubirnih kotov

7 Osnovni zakon ozobja OX OX = r 1 y1 = r 2 y2 r w1 v v 1 = r y1 ω 1 2 = r y2 ω 2 O 1 T 1 X = v 1 O 2 T 2 X = v 2 r w2 vn1 OT 1 1 = v1 ry1 v ry ω 1 vn1 = OT 1 1= r r y1 y1 vn2 OT 2 2 = v2 ry 2 v ry ω 2 vn2 = OT 2 2= r r y y2 OT = ω OT OT = ω OT O 1 T 1 C = O 2 T 2 C v n1 = v n2 ω1 OT 2 2 ω1 OT 1 1 = ω2 OT 2 2 = = i ω OT OT 2 2 OT 1 1 OC 2 rw 2 = = = i OC r 1 w1 Skupna normala skozi trenutno dotikalno točko dveh zobnih bokov mora vedno potekati skozi kinematično točko C

8 w1, w2 - kinematična kroga xx 1 1= CX yy 1 1= CY zz = CZ 1 1 konstruiran protibok ubirnica normala na profil v x 1 znani profil Konstrukcija protiboka in ubirnice

9 začetek ubiranja konec ubiranja Aktivna dolžina ubirnice, ubirni lok in aktivna višina profila boka zoba pogon kinematična krožnica 1 kinematična krožnica 2 odgon Hitrosti v različnih ubirnih točkah evolventnega ozobja

10 Hitrost drsenja v g1 vzdolž ubirnice Poti drsenja evolventnih zobnih bokov

11 konec ubiranja gnani trenje gibanje d a1 d w2 d a2 začetek ubiranja d w1 pogonski prvotna oblika zobnih bokov razpoke področje največje obrabe ubirnica d w2 izboklina otopitev vrha zoba razpoke izdolbljenje d w1 Smeri gibanja ubirnih točk po zobnih bokih in smeri sil trenja ter vpliv drsenja na obrabo zobnih bokov

12 Sile na gnani zobnik v ubirni točki Y O 1 α y ω 1 zobnik 1 F b = T1 OT 1 1 T 1 Y F b α y F b r w1 F r F b T r 1 cosα = 1 w y F t C F b T1 T2 = = = r cosα OT r w1 y 2 2 w2 T2 cosα y zobnik 2 r w2 T 2 T2 T 1 rw 2 = = i r w1 T = F r in T = F r 1 t w1 2 t w2 ω 2 α y F t T1 T2 = = = Fbcosα r r w1 w2 y O 2 F b Ft = cosα y F = F sin α = F tan α r b y t y

13 valilni krog tangenta ubirnica normala osnovni krog r b = Ortocikloida valilni krog tangenta ubirnica normala osnovni krog Epicikloida valilni krog tangenta ubirnica osnovni krog Hipocikloida normala

14 hipocikloida 2 delilni krog 1 temenski krog 1 valilni krog 1 pot glave zoba ubirnica epicikloida 2 temenski krog 2 epicikloida 1 hipocikloida 1 relativna pot glave zoba delilni krog 2 valilni krog 2 Konstrukcija cikloidnega ozobja Ubiranje cikloidnih bokov Ubiranje evolventnih bokov

15 kinematični krog 1 valilni krog 1 kinematična črta 2 valilni krog 2 Ubiranje cikloidnega zobnika z zobnico kinematični krog 1 epicikloida dobljena s kotaljenjem kinematičnega kroga 1 po kinematičnem krogu 2 kinematični krog 2 ekvidistanta cikloide Ubiranje cikloidnega zobnika z valjčki (palično ozobje) Ubiranje cikloidnih rotorjev črpalke

16 tangenta ubirnica premica normala osnovni krog Konstrukcija evolvente ekvidistantne evolvente tangenta evolventa tvorilka AC = CD = ρ ρ - radij ukrivljenosti evolvente v točki D osnovni krog Konstrukcija enotske evolvente

17 krog evolventa osnovni krog Osnovne veličine evolventnega profila

18 p =delitev na delilnem krogu p e =delitev vzdolž ubirnice p b =delitev na osnovnem krogu osnovni krog Nastanek evolventnega ozobja osnovni krog osnovni krog osnovni krog osnovni krog Nastanek evolventne zobniške dvojice

19 evolventa osnovni evolventa evolventa tvorilka krog Nastanek evolventnega profila zobnega boka a) osnovna konstrukcija evolvente b) odkotalitev srednje linije elementa orodja z navpičnim profilom po osnovnem krogu c) odkotalitev srednje linije elementa orodja s poševnim profilom po razdelnem krogu

20 osnovni krog 1 evolventa 2 osnovni krog 1 evolventa 2 evolventa 1 kinematična kroga=delilna kroga evolventa 1 kinematična kroga osnovni krog 1 OC= r 1 1 OC= r 2 2 OO = a = r + r 1 2 d 1 2 OC= r r 1 w1 1 OC= r r 2 w2 2 OO = a a 1 2 sprememba medosja d Neobčutljivost evolventnega ozobja na majhne spremembe medosnega razmika

21 nasprotni profil srednja linija osnovnega profila začetek radija ukrivljenosti temenske zračnosti ρ = cm + ρ sinα ρ f f cm = 1 sinα f Standardni osnovni profil

22 profil ubirajoče zobnice (nasprotni profil) temenska linija profila srednja linija profila uporabna višina zobnega boka kot zobnih bokov vznožna linija profila začetek uporabne višine zobnega boka zaokrožitev vznožnega dela zoba osnovne zobnice Standardni osnovni profil zob zobnice Posebni profili zob zobnice a) profil po ISO 53/1974 s korekturo profila zob (vrha in korena zob) b) profil zoba orodja s protuberanco (dodatek za brušenje)

23 osnovni profil zob Različni profili zob orodij za izdelavo zobnikov po DIN 3972 I - za končno izdelavo zob s kotalnim ali oblikovnim rezkanjem in skoblanjem; (A - predobdelava ozobja je izvedena z orodjem z osnovnim profilom III ali IV) II - za končno izdelavo zob s postopki odvalno kotalnega pehanja; 1/ 3 = 1 n n h fziii = 1, 25 mn in III - za predobdelavo zob z dodatkom za brušenje; h 0III,25 m + 0, 25 m ; IV - za predobdelavo zob z dodatkom za pehanje h,25 m + 0, m ; Indeksi: 0 za orodje z za izdelan zob a h a0 II fzii a0 I = h = 1, 167 m fzi 1/ 3 a0iii = 1 n 6 n h fziv = 1, 25 mn in h = h = 1, 25 m n n 1/ 3 III =,25 n q n 0 m sin α 1/ 3 IV =,6 n q n 0 m sin α 0 0

24 AE = q α = ubirna pot l dolžina ubiranja Ubirne razmere dolžina ubiranja l osnovni krog 1 kinematični krog w 1 srednja linija osnovnega profila kinematični krog w 2 ubirnica g α = aktivna dolžina ubirnice p e = delitev vzdolž ubirnice osnovni krog 2 Določitev profilne stopnje prekritja

25 izdelek - zobnik kinematični krog kinematična premica srednja linija zobnice (orodja) orodje v obliki zobnice podaljšana evolventa Prikaz načina izdelave evbolventnih zobnih bokov z orodjem v obliki zobnice korenski krog temenski krog kinematični krog srednja linija osnovnega profila kinematična premica Spodrezanje zobnega korena pri izdelavi

26 kinematični krog (delilni) kinematična premica ubirnica orodje v obliki zobnice Določitev mejnega števila zob profil standardnega ozobja kinematični krog kinematična premica premaknjena srednja linija profila premaknjen profil za preprečitev spodreza ubirnica Profilni premik za preprečitev spodrezanja zobnega korena

27 korenski krog osnovni krog kinematični krog kinematična premica premaknjena srednja linija profila Vpliv profilnega premika Zobniki s pozitivnim (V-plus) in negativnim (V-minus) profilnim premikom

28 ničelni zobnik V+ zobnik V- zobnik Vpliv profilnega premika na obliko evolventnega zoba

29 Vpliv premika profila osnovne zobnice na zobnik z 12 zobmi

30 meja zašiljenosti teoretična meja spodreza praktična meja spodreza Območje izvedljivih profilnih premikov

31 Zobniška dvojica (z 1 = 12 in z 2 = 25) z različnimi profilnimi premiki a) ničelna zobniška dvojica: x 1 = x 2 = 0; α w = α = 20 ; ε α = 1,28 b) V-ničelna zobniška dvojica: x 1 = x 2 = 0,5; α w = α = 20 ; ε α = 1,43 c) V zobniška dvojica: x 1 = x 2 = 0,5; α w = 25,15 ; α = 20 ; ε α = 1,19

32 kinematični krog1 ubirnica kinematični krog2 V-NIČELNI zobniški par V zobniški par

33 Medosni razmik V zobniškega para brez bočne zračnosti Z 2 =27 Z 2 =27 Z 1 =9 Z 1 =9 Z 2 =54 Z 2 =54 Z 1 =18 Z 1 =18 Vpliv profilnega premika na lastnosti zobniške dvojice

34 teoretični profil boka zoba korigiran zobni bok Korekcija profila a) temenskega in b) temenskega in korenskega dela Korekcija bočne linije zoba

35 pogon ω 1 ubirnica ω 2 odgon Sile na zobniškem paru z ravnim evolventnim ozobjem zobnik 1 pogonski zobnik 2 gnani Vpliv sile trenja med zobnimi boki

36 vijačnice razdelni valj Prikaz nastanka zobnika s poševnim evolventnim ozobjem linije dotika bočnic ubirna ploskev linija dotika zobnih bokov Ubiranje zobnikov s poševnim ozobjem

37 desna vijačnica zobnik 1 zobnik 2 p leva vijačnica Nagibni koti bočnic poševnih zob

38 Odvisnost posameznih veličin poševnega ozobja v normalnem in čelnem prereu

39 b b b-širina zobnika Ubirna pot in dolžine ubiranja zobnikov s poševnim ozobjem kinematični valj bočnica ubirni lok bočne linije g β Ubirni lok bočne linije

40 položaj zobnika 1 6 Vpliv bočne stopnje prekrivanja na obratovanje zobniške dvojice z ε α = 1,6

41 Veličine valjastih zobnikov s poševnim ozobjem z in brez profilnega premika ničelni zobnik V+ zobnik V- zobnik Debelina zob v čelnem preseku ničelnega, V+ in V- zobnika

42 Sile na zobnike s poševnim ozobjem

43 evolventa imenskega osnovnega kroga temenski krog imenski osnovni krog Odstopanje profila zoba imenska mera Presek A-A dejanska mera Odstopanje mere preko zob Načini merjenja mere preko zob

44 Merjenje debeline zob z merilnimi valjčki ali kroglicami Merjenje debeline zob z merilnimi prizmami

45 tolerančno polje ca najmanši odstopek debeline A wd največji odstopek debeline A wg A a t tolerančno polje da najmanši odstopek debeline A wd največji odstopek debeline A wg B tolerančno polje medosne razdalje Položaj tolerančnih polj valjaste zobniške dvojice

46 a - avtomobilska industrija b - industrija delovnih strojev c - zobniki brez posebnih zahtev glede bočnega razstopa c a b Priporočila za izbiro bočnega razstopa

47 Trajna trdnost zobnega korena σ Flim in zobnega boka σ Hlim Trajna trdost za Št. Skupina materialov Označba po SIST EN Označba po DIN Označba po ISO Toplotna obdelava Trdota zobnih bokov napetost v zobnem korenu σ F lim [N/mm 2 ] bočni tlak σ H lim [N/mm 2 ] Siva litina Nodularna litina Črna temprana litina Jeklena litina Navadna jekla Jekla za poboljšanje Jekla za poboljšanje - površinsko ali indukcijsko kaljena Jekla za poboljšanje in cementiranje - nitrirana Jekla za cementiranje EN-GJL-200 EN-GJL-250 EN-GJL-350 EN-GJS EN-GJS EN-GJS EN-GJMB EN-GJMB GE260 GE300 E295 E335 E360 C45 C60 34Cr4 41Cr4 34CrMo4 42CrMo4 34CrNiMo6 C45 41Cr4 42CrMo4 16MnCr5 42CrMo4 42CrMo4 16MnCr5 31CrMo9 34Cr4 C15 16MnCr5 20MnCr5 15CrNi6 18CrNi8 18CrNiMo7-8 GG-20 GG-25 GG-35 GGG-40 GGG-60 GGG-80 GTS GTS GS-52 GS-60 St50-2 St 60-2 St 70-2 C45 C60 34Cr4 41Cr4 34CrMo4 42CrMo4 34CrNiMo6 C45 41Cr 4 42CrMo4 16MnCr5 42CrMo4 42CrMo4 16MnCr5 31CrMoV9 34Cr4 C15 16MnCr5 20MnCr5 15CrNi6 18CrNi8 17CrNiMo B35-10 P Fe490-2 Fe590-2 Fe690-2 C45 C60 34Cr4 41Cr4 34CrMo4 42CrMo4 36CrNiMo6 C45 41Cr4 42CrMo4 16MnCr5 42CrMo4 42CrMo4 16MnCr5-34Cr4 C15 16MnCr5 20MnCr CrNiMo7 Normalizirano Poboljšano Poboljšano Poboljšano Poboljšano Poboljšano Poboljšano Površinsko kaljeno po obodu, vključno koren zoba Nitrirano v kopeli Nitrirano v kopeli Nitrirano v plinu Nitrirano v plinu Nitrirano v plinu Karbonitrirano Cementirano in kaljeno 180 HB 220 HB 230 HB 180 HB 250 HB 320 HB 150 HB 220 HB 160 HB 180 HB 160 HB 190 HB 210 HB 190 HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV HV

ZOBNIŠKA GONILA splošno

ZOBNIŠKA GONILA splošno ZOBNIŠKA GONILA splošno so sestavljena iz enega ali več zobniških parov, ki so v ubiranju. Zobnik je valjasto ali stožčasto telo, ki ima po obodu zobe. Zobniška gonila so primerna za prenos tako majhnih

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

l 5 Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija profila

l 5 Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija profila referenčna linija profila l=l=l=l=l 1 2 3 4 5... referenčna dolžina l 1 l 2 l 3 l 4 l 5 l n dolžina vrednotenja Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija

Διαβάστε περισσότερα

Jože FLAŠKER in Zoran REN POLŽNA GONILA. Monografija

Jože FLAŠKER in Zoran REN POLŽNA GONILA. Monografija Jože FLAŠKER in Zoran REN POLŽNA GONILA Monografija Maribor 005 Jože Flašker in Zoran Ren: Polžna gonila 005 Fakulteta za strojništvo. Naslov publikacije: Polžna gonila Vrsta publikacije: Avtorja: Monografija

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4 3 ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 000-0 V.4 4 Περιεχόμενα 5 Ειαγωγή...9 Ανοχή χαλύβων...9 3 Φόριη... 4 Υπολογιμός ε δυναμική θραύη... 4. Ονομαικές άεις (ημιεύρος δυναμικής

Διαβάστε περισσότερα

ZOBATA LETEV. Vprijemni kot 20. p = delitev z = število zob a = osna razdalja m = modul D = delilni krog MATERIAL JEKLO C 40

ZOBATA LETEV. Vprijemni kot 20. p = delitev z = število zob a = osna razdalja m = modul D = delilni krog MATERIAL JEKLO C 40 KAZALO VSEBINE ZOBATE LETVE... 2 ČELNI ZOBNIKI... 3 TRAPEZNA VRETENA... 8 TRAPEZNE MATICE... 9 UTORNE GREDI... 10 UTORNE PUŠE... 10 ELASTIČNE SKLOPKE... 11 KOTNI ZGLOBI... 12 PRIKLJUČNE VILICE... 12 ENOJNI

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004 Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

ΤΟΡΝΕΥΣΗ (TURNING) Σχηµατική παράσταση της κατεργασίας και τυποποιηµένη µορφή του ΚΕ τόρνευσης παρουσιάζονται στα Σχ. 1 και 2, αντίστοιχα.

ΤΟΡΝΕΥΣΗ (TURNING) Σχηµατική παράσταση της κατεργασίας και τυποποιηµένη µορφή του ΚΕ τόρνευσης παρουσιάζονται στα Σχ. 1 και 2, αντίστοιχα. ΤΟΡΝΕΥΣΗ (TURNING) ΟΡΙΣΜΟΣ Είναι κατεργασία κοπής µε κύρια κίνηση την περιστροφική κίνηση της ατράκτου, όπου προσδένεται κατάλληλα το ΤΕ, και δευτερεύουσα τη µεταφορική κίνηση της πρόωσης (κίνηση του ΚΕ),

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

ВИШЕСТЕПЕНИ РЕДУКТОР

ВИШЕСТЕПЕНИ РЕДУКТОР Средња машинска школа РАДОЈЕ ДАКИЋ ВИШЕСТЕПЕНИ РЕДУКТОР Милош Мајсторовић Београд 200 год. 2 2 3 0 02 4 4 9 0 9 Poz. Kol. JM. Dimenzije, broj crteza: Standard: 24 Vijak M Poklopac vratila I Sklop vratila

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

GEOMETRIJA V RAVNINI DRUGI LETNIK

GEOMETRIJA V RAVNINI DRUGI LETNIK GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,

Διαβάστε περισσότερα

TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31

TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31 TOPLOTN ČRPLK ZRK-VOD - BUDERUS LOGTHERM WPL 7/0//4/8/5/ Tip Moč (kw) nar. št. EUR (brez DDV) WPL 7 7 8 7 700 95 5.6,00 WPL 0 0 7 78 600 89 8.9,00 WPL 7 78 600 90 9.78,00 WPL 4 4 7 78 600 9 0.88,00 WPL

Διαβάστε περισσότερα

MOTORJI Z NOTRANJIM ZGOREVANJEM

MOTORJI Z NOTRANJIM ZGOREVANJEM MOTORJI Z NOTRANJIM ZGOREVANJEM Dvotaktni Štititaktni Motorji z notranjim zgorevanjem Motorji z zunanjim zgorevanjem izohora: Otto motor izohora in izoterma: Stirling motor izobara: Diesel motor izohora

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

E.E. Παρ. Ι(ΙΙ) Αρ. 3253, Ν. 30(ΙΙ)/98

E.E. Παρ. Ι(ΙΙ) Αρ. 3253, Ν. 30(ΙΙ)/98 E.E. Παρ. Ι(ΙΙ) Αρ. 3253,10.7.98 1608 Ν. 30(ΙΙ)/98 περί Ειδικεύσεως Συμπληρωματικής Πιστώσεως (Ταμεί Αναπτύξεως) Νόμς (Αρ. 2) τυ 1998 εκδίδεται με δημσίευση στην Επίσημη Εφημερίδα της Κυπριακής Δημκρατίας

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

VARJENJE. 1.1 Definicija varjenja

VARJENJE. 1.1 Definicija varjenja VARJENJE 1. SPLOŠNO O VARJENJU 1.1 Definicija varjenja Varjenje je spajanje kovinskih (včasih tudi nekovinskih) strojnih ali konstrukcijskih delov v nerazdružljivo celo to. Nastali spoj naj obdrži čim

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Radiatorji, pribor, dodatna oprema ter rezervni deli

Radiatorji, pribor, dodatna oprema ter rezervni deli CENIK 2017 Radiatorji, pribor, dodatna oprema ter rezervni deli Cenik velja od 1.3.2017 do preklica ali do objave novega. Pridržujemo si pravico do sprememb tehničnih in ostalih podatkov brez predhodne

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA STROJNIŠTVO

UNIVERZA V MARIBORU FAKULTETA ZA STROJNIŠTVO UNIVERZA V MARIBORU FAKULTETA ZA STROJNIŠTVO SEMINARSKA NALOGA MENTOR: prof. dr. Franci Čus, dr. Uroš Župerl PRIPRAVIL: Maribor,junij 009 . Kazalo:. Kazalo:.... Uvod... 3 3. Preračun operacije frezanja

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Koordinatni sistemi v geodeziji

Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 14-1 Koordinatni sistemi v geodeziji Koordinatni sistemi v geodeziji 2 Vrste koordinatnih sistemov Vzpostavitev koordinatnega sistema je potrebna zaradi pridobitve primernega

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

11. ZUPČASTI PRENOSNICI

11. ZUPČASTI PRENOSNICI . ZUČASTI RENOSNICI.. CILINDRIČNI ZUČANICI SA RAVIM ZUBIMA (CZZ) Zadatak... (Skica CZZ) otrebno je skicirati cilindrični cilindrični zupčanik sa pravim zupcima, obeležiti njegove dimenzije i navesti podatke

Διαβάστε περισσότερα

Osnovna elementa po tolerančnem sistemu ISO a) premer luknje D (notranja mera), b) premer čepa d (zunanja mera)

Osnovna elementa po tolerančnem sistemu ISO a) premer luknje D (notranja mera), b) premer čepa d (zunanja mera) TOLERANCE IN UJEMI tolerance dolžin in kotov, geometrične tolerance. Osnovna elementa po tolerančnem sistemu ISO a) premer luknje D (notranja mera), b) premer čepa d (zunanja mera) Veličine za opis toleranc

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004

MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 MEHANIKA: sinopsis predavanj v šolskem letu 2003/2004 NTF, Visokošolski strokovni program KINEMATIKA 18. 2. 2004 Osnovne kinematične količine.: položaj r, hitrost, brzina, pospešek. Definicija vektorja

Διαβάστε περισσότερα

3.letnik - geometrijska telesa

3.letnik - geometrijska telesa .letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =

Διαβάστε περισσότερα

KOLO S POMOŽNIM MOTORJEM

KOLO S POMOŽNIM MOTORJEM Šolski center Celje Poklicna in tehniška strojna šola KOLO S POMOŽNIM MOTORJEM Avtorji: Boštjan HORJAK, S-4.b Mitja CEROVŠEK, S-4.b Jenej DROFENIK, S-4.b Mentor: dr. Ivan GUBENŠEK, univ. dipl. inž. str.

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Govorilne in konzultacijske ure 2014/2015

Govorilne in konzultacijske ure 2014/2015 FIZIKA Govorilne in konzultacijske ure 2014/2015 Tedenske govorilne in konzultacijske ure: Klemen Zidanšek: sreda od 8.00 do 8.45 ure petek od 9.40 do 10.25 ure ali po dogovoru v kabinetu D17 Telefon:

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x)

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - Λύσεις 2ης Σειράς Ασκήσεων Ασκηση 1. Για κάθε a,b και x 2, η f είναι παραγωγίσιµη.

Διαβάστε περισσότερα

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.

3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z. 3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti

Διαβάστε περισσότερα

CNC REZKANJE: DOOSAN NXII

CNC REZKANJE: DOOSAN NXII CNC REZKANJE: CNC triosni vertikalni visokohitrostni in visokoprecizni vertikalni orodjarski obdelovalni center DOOSAN NXII, delovno območje X1050, Y650 Z550, tri osi, delovna miza X1200,Y650, Renishaw

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,

D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2009/2010

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2009/2010 TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 009/010 BF : Viskokošolski strokovni študij 5 10 09 KINEMATIKA IN DINAMIKA TOČKE Kinematika Osnovne kinematične količine: položaj P, vektor hitrosti

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Emilija Krempuš. Osnovne planimetrijske konstrukcije. Priročnik

Emilija Krempuš. Osnovne planimetrijske konstrukcije. Priročnik Emilija Krempuš Osnovne planimetrijske konstrukcije Priročnik 2 OSNOVNE PLANIMETRIJSKE KONSTRUKCIJE Osnovne planimetrijske konstrukcije Priročnik Priročnik Osnovne planimetrijske konstrukcije je nastal

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Volmetrični stroji Trbinski stroji Značilnosti Trikotniki hitrosti Elerjeva trbinska enačba Notranji izkoristek Energijska karakteristika Energetske naprave

Διαβάστε περισσότερα

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015

TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015 TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 014/015 BF : Viskokošolski strokovni študij 6. 10. 14 KINEMATIKA IN DINAMIKA TOČKE Kinematika Položaj točke P, opazovalec O, kartezični koordinatni

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.

Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R. II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

Zgodba vaše hiše

Zgodba vaše hiše 1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost)

8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost) 8. VAJA IZ MEHANIKE TRDNIH TELES (linearizirana elastičnost) NALOGA 1: Eden izmed preizkusov za določanje mehanskih lastnosti materialov je strižni preizkus, s katerim določimo strižni modul G. Vzorec

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo

ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Hidrostatika Dinamika tekočin Termodinamika Podobnostni zakoni Volumetrični stroji Turbinski stroji Energetske naprave Podobnostni zakoni Kriteriji podobnosti

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα