Osnovne teoreme diferencijalnog računa
|
|
- Οκυροη Χριστόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako da je f ξ) 0. Teorema Lagranžova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b] i f je diferencijabilna na a, b). Tada postoji ξ a, b) tako da je fb) fa) f ξ)b a). Teorema Lopitalovo pravilo) Neka su funkcije f i g definisane i diferencijabilne u nekoj okolini tačke a osim, možda, u samoj tački a), gde je a R. Neka je f) g) 0 ili ± a a i neka je g ) 0 u nekoj okolini tačke a. Tada je f) a g) f ) a g ), ako postoji konačna ili beskonačna granična vrednost sa desne strane. Teorema Tejlorova formula) Neka funkcija f ima konačne izvode do reda n u tački a. Tada važi Tejlorova formula f) fa)+ f a)! a)+ f a)! a) + + f n) a) a) n +R n ), a. n! R n ) je ostatak u Tejlorovoj formuli i R n ) o a) n ) Peanov oblik ostatka). Ako funkcija ima konačne izvode do reda n + u nekoj okolini tačke a ostatak se može prikazati u Lagranžovom obliku R n ) f n+) ξ) n + )! a)n+, ξ a, ) ili ξ, a). Napomena U daljem tekstu podrazumevaćemo da je log log e.
2 Rolova teorema. Dokazati da za funkciju f) + ) ) + 3) 4) na svakom od intervala 3, ),, ),, 4) postoje lokalni ekstremi. Rešenje: Funkcija f zadovoljava uslove Rolove teoreme na svakom od segmenata [ 3, ], [, ], [, 4] neprekidna je na segmentu, diferencijabilna u unutrašnjim tačkama i u krajevima segmenta uzima istu vrednost - nulu). To znači, na osnovu tvrd enja Rolove teoreme, postoje tačke ξ 3, ), ξ, ), ξ 3, 4) u kojima važi f ξ i ) 0, i,, 3. To su tražene tačke ekstremuma. Lagranžova teorema. Dokazati da je funkcija f konstantna na datom intervalu i odrediti vrednost te konstante ako je a) f) arcsin ) + arctan, za 0, ]; b) f) arctan + arctan, za R; + c) f) arccos arctan, za 0; + d) f) log + ) + + log +, za R. Rešenje: a) Pokazaćemo da je izvod funkcije f jednak nuli za 0, ], čime se, na osnovu posledice Lagranžove teoreme, potvrd uje da je ona jednaka konstanti. Imamo f ) + ) + + ) ) ) Odred ujemo konstantu C f). Za 0, ] imamo b) Odred ujemo izvod funkcije f C f) arcsin 0 + arctan π. 0.
3 f ) ) + ) + + ) ) ) Na osnovu posledice Lagranžove teoreme funkcija f je konstantna. Vrednost konstante C f) dobijamo ako za uzmemo neku konkretnu vrednost, recimo 0 i odredimo C f0) arctan 0 arctan 0 0. c) Izvod funkcije f je za 0 jednak f ) ) + + ) ) + ) + + ) + ) ) 4 + ) + + ) 4 + ) Funkcija f je konstantna, a vrednost konstante dobijamo za, na primer, 0. Imamo C f0) arccos arctan 0 0. d) Imamo f ) ) + + ) + + ) + ) + + ) 3 ) ) + + ) + ) ) Funkcija f je konstantna, f) C,. Dokazati da je funkcija ) + ) ) + + C f0) log log 0. f) arctan + arctan + + arctan + + konstantna na intervaa u kojima je definisana. Odrediti konstante C, C i C 3 tako da važi
4 4 C, < 0, f) C, 0 < <, C 3, <. Rešenje: Funkcija f je definisana za, 0) 0, ), + ). Pokazaćemo da je njen izvod jednak nuli u oblasti definisanosti, čime se, na osnovu posledice Lagranžove teoreme, potvrd uje da je ona jednaka konstanti na svakom od intervala. Imamo f ) + + ) + ) ) ) + + ) ) ) + + ) ) Odred ujemo konstantu C : C f ) arctan ) + arctan 0 + arctan ) π π 4 3π 4. Konstanta C je jednaka: C arctan + arctan arctan ) 0 + π 4 + π 5π 4. Odred ujemo konstantu C 3 : C 3 arctan + arctan arctan ) π 4 π + π 4 π Primenom Lagranžove teorema na [, + ], > 0, dokazati log + ) > +. Rešenje: Na osnovu tvrd enja Lagranžove teoreme imamo fb) fa) f ξ)b a), ξ a, b). Lagranžovu teoremu ćemo primeniti na segmentu [, +] za funkciju f) log : Važi i log + ) log, ξ, + ). ξ log + ) log log + 0 < < ξ < + > ξ > + > log + ) > +. log + ) > log + ) log > +
5 5 4. Primenom Lagranžove teoreme za n N, n, dokazati < loglogn + )) loglog n) < n + ) logn + ) n log n. Rešenje: Lagranžovu teoremu ćemo primeniti na segmentu [n, n + ] za funkciju f) loglog ): Važi loglog + )) loglog ), ξ n, n + ). ξ log ξ n < ξ < n + log n < log ξ < logn + ) n log n < ξ log ξ < n + ) logn + ) n log n > ξ log ξ > n + ) logn + ) n log n > loglog + )) loglog ) > n + ) logn + ). 5. Primenom Lagranžove teoreme dokazati α β cos β tan α tan β α β cos α, 0 < β α < π. Rešenje: Za α β važi jednakost. Primenom Lagranžove teoreme na segmentu [β, α], za funkciju f) tan, slično kao u prethodnom zadatku dokazujemo tvrd enje za slučaj β < α. Lopitalovo pravilo. Naći: log + ) a) + log3 + 3 ) log 0 + ) b) + log + + ; c) + ; d) 3 + Rešenje: a) Odred ujemo L log + ) + log3 + 3 ) ) ) + ) + ) + b) Nalazimo arctan π + log ) 3 + ) ) + + )
6 6 L c) Imamo log 0 + ) + log ) + + ) ) + ) )0 9 ) ) + ) + + )0 ) ) ) + + )0 ) ) ) 5. L + 3 ) + log 3 ) + log 6 ) log d) Dobijamo L arctan π + log ) ) 4 + ) 3 + ) ) ) ) ) + + ) 3 + ) + ) 3 + ) 3.. Odrediti: a) + ) log + ) ; b) ) tan π ; sin c) log 0. Rešenje: a) Imamo ) L + ) log + ) 0 ) log ) + ) + ) 0. ) + + ) b) Važi L ) tan π 0 ) cotan π c) Dobijamo 0 0 ) sin π π π.
7 cos sin sin sin log sin 0 L log 0 0 ) 0 0 cos sin 0 0 ) cos sin cos 0 sin 0 4 sin + cos ) cos 0 cos + cos sin ) Izračunati: a) tan π ) ) /; ; b) π/ cos 0 π arccos c) log e ) ) ; d) 4 )e / 4 ; 0+ + e) log ). Rešenje: a) Računamo L tan π π/. cos ) ) sin π π/ cos sin sin + cos ) ) sin + cos π/ sin b) Neka je L 0 π arccos ) /. Logaritmovanjem leve i desne strane, dobijamo Sada je L e /π. c) Imamo ) log L 0 log π arccos 0 0 ) 0 π arccos π L 0+ ) log π arccos 0 log e ). Logaritmovanjem leve i desne strane, dobijamo log L 0+ ) 0+ Imamo da je L e. d) Odred ujemo log e log ) 0+ e e e 0+ e π. log log e ) 0 0 ) 0+ e e. e
8 8 ) L 4 )e / ) 4 + 0) + + 4) 3. 4 e / ) + e/ 4 3 e / 4 ) e / ) e / + 4 e / 4 + e /) e / e) Imamo L log ) ) log 0 0 ) ) log 0 0 ) + ) 4. Naći granične vrednosti a) 0 cotan ) sin ; Rezultat: a) ; b) ; c). Tejlorova formula. log + ) b) log c) 0+ ) ) 0+.. Za funkciju f) e odrediti Tejlorov polinom drugog stepena u okolini tačke i ostatak u Tejlorovoj formuli u Peanovom obliku. Rešenje: U okolini tačke Tejlorov polinom drugog stepena ima oblik T ) f) + f )! a ostatak u Peanovom obliku je jednak Za datu funkciju f odred ujemo ) + f ) ),! R ) o ) ). f) e, f ) e e e ) f ) f ) e, f ) e ) + e ) e 4 + ) f ) f ) e. Tejlorov polinom je jednak T ) e + e ) e ) e + ).
9 9. Odrediti Tejlorov polinom stepena dva u okolini tačke 0 za funkciju Odrediti ostatak u Peanovom obliku. f) e. Rezultat: Tejlorov polinom drugog stepena u okolini nule ima oblik T ) f0) + f 0)! a ostatak u Peanovom obliku je R ) o ). Imamo + f 0),! f0), f ) e e f 0) f ) 0, f ) 4 e ) 3 e e e f 0) f ) Sada je T ) f0) + f 0)! + f 0) +! Odrediti Tejlorov polinom stepena dva u okolini tačke za funkciju Odrediti ostatak u Peanovom obliku. f) ). Rešenje: Tejlorov polinom drugog stepena u okolini tačke ima oblik T ) f) + f )! a ostatak u Peanovom obliku R ) o ) ). ) + f ) ),! Važi f). Izvod funkcije f odredićemo primenom logaritamskog diferenciranja. Imamo Dobijamo Sada je f) ) / log log f) log ) log f) log ) / f ) log ) + f) f ) f) log ) + ) ) ) ) log ) + ) ). f ) ) log ) + ).
10 0 f ) ) ) log ) + ) + ) log ) + ) ) log ) + ) + ) ) ). ) Računamo f ) 4. Imamo T ) f) + f )! ) + f ) ) + ) + ).! 4. Odrediti Maklorenov polinom trećeg stepena za funkciju f) log + ) 4 +. Naći ostatak u Peanovom obliku. Rešenje: Maklorenov polinom je Tejlorov polinom u okolini nule. Imamo f) M 3 ) + R 3 ) f0) + f 0)! Odred ujemo f) log ) 0, + f 0)! f ) ) ) / 0, f ) 4 + ) 3/ 8 0, 0 f ) 4 + ) 5/ ) 3/) f 0) 3 + o 3 ). 3! ) 4 + Dobijamo M 3 ) Odrediti Tejlorov polinom stepena dva u okolini tačke za funkciju f) sin log. Odrediti ostatak u Lagranžovom obliku. Rešenje: Tejlorov polinom drugog stepena u okolini tačke ima oblik T ) f) + f )! ) + f ) ),! a ostatak u Lagranžovom obliku R ) f ξ) ) 3. 3! Vrednost funkcije je f) 0. Izvodi funkcije f su jednaki f ) cos log, f ) sin log cos log )
11 Imamo T ) f) + f )! Nalazimo treći izvod funkcije f ) ) + f ) )! ). sin log + cos log ) cos log cos log + 3 sin log ξ 3 Ostatak u Lagranžovom obliku je jednak sin log ) sin log + cos log ) 4 cos log ξ + 3 sin log ξ ξ 3 R ) cos log ξ + 3 sin log ξ 6ξ 3 ) 3, pri čemu ξ, ) ili ξ, ). 6. Odrediti A, B R tako da važi jednakost A tan + Be sin o ), 0. Rešenje: Na osnovu aproksimacije funkcije f Maklorenovim polinomom drugog stepena imamo Neka je Odred ujemo f) f0) + f 0)! + f 0) + o ).! f) A tan + Be sin. f0) B, f ) A cos + Besin cos f 0) f ) A + B, 0 f ) A cos 3 sin ) + Besin cos + e sin sin )) f 0) f ) B. 0 Na osnovu Maklorenove formule i zadatog uslova važi jednakost f) f0) + f 0) + f 0) + o ) B + A + B) +!! B + o ) o ). Imamo odakle je A 6, B. B, A + B 4, B,
12 7. Odrediti a, b, c R tako da važi jednakost e tan + a + b + c o ), 0. Rešenje: Na osnovu Tejlorove formule u okolini nule, za funkciju f imamo Odred ujemo Sada je f) f0) + f 0)! + f 0) + o ).! f) e tan 0, f ) e tan cos, 0 f ) e tan sin ) cos 4 + etan cos 3 0. e tan o ) e tan o ), odakle imamo a /, b, c. 8. Dokazati jednakost + ) o ), 0. Rešenje: Na osnovu Tejlorove formule u okolini nule, za funkciju f) +) 05 imamo Odred ujemo Sada je odakle sledi data jednakost. 9. Dokazati jednakost f) f0) + f 0)! f) + ) 05 0, + f 0) + o ).! f ) 05 + ) , f ) ) ) o ), arctan o 3 ), 0.
13 Rešenje: Datu jednakost ćemo dokazati na osnovu Tejlorove formule u okolini nule, za funkciju f) arctan. Član o3 ) prepoznajemo kao Peanov oblik ostatka u aproksimaciji funkcije Tejlorovim polinomom trećeg stepena f) f0) + f 0)! + f 0)! Računamo f) arctan 0, 0 f ) arctan + ) 0 + 0, Sada je f ) ) + f 0) 3 + o 3 ). 3! ) ) 0, f ) + ) + + ) + ) ) + ) 4 + ) + + ) 4 )) 0 + ) 3 0, arctan + o 3 ), odnosno, arctan o 3 ). 0. Primenom Tejlorove formule predstaviti polinom po stepenima ). f) Rešenje: Na osnovu Tejlorove formule imamo f) T 5 ) + R 5 ) f) + f )! + f 4) ) 4! ) + f )! ) 4 + f 5) ) 5! ) + f ) ) 3 3! ) 5 + f 6) ξ) ) 6. 6! Odred ujemo f) 4 i izvode f ) , f ) , f ) 60 60, f 4) ) 0 0, f 5) ) 0 0. Kako je f 6) ) 0 za svako R, to je R 5 ) 0 i važi f) T 5 ), za R. Sada je f) 4 + ) + 6 ) ) )4 + 0 ) ) + 3 ) + 0 ) ) 4 + ) 5. 3 Napomenimo da smo ovde mogli da računamo aproksimaciju Tejlorovim polinomom višeg stepena od 5, ali bi zbog f k) ) 0, R, k 6 koeficijenti uz ) k, k 6 bili jednaki 0.
14
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)
Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
4 Izvodi i diferencijali
4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012
MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x
f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z).
Z-TRANSFORMACIJA Laplaceova transformacija je primer integralne transformacije koja se primenjuje na funkcije - originale. Ova transformacija se primenjuje u linearnim sistemima koji su opisani diferencijalnim
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
Granične vrednosti realnih funkcija i neprekidnost
Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1
Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
1. Funkcije više promenljivih
1. Funkcije više promenljivih 1. Granične vrednosti funkcija više promenljivih Definicija 1. Funkcija f : D( R n R ima graničnu vrednost u tački (x 0 1, x 0 2,..., x 0 n D i jednaka je broju α R ako važi
Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0
. y PRVI IZVOD Neka je y f() funkcija definisana na intervalu [a,b], 0 unutrašnja tačka tog intervala, Δ ( 0) priraštaj argumenta i Δy odgovarajući priraštaj funkcije. Ako postoji granična vrijednost količnika
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Tejlorova formula i primene
MATEMATIQKA GIMNAZIJA Maturski rad iz matematike Tejlorova formula i primene Uqenik Benjamin Linus Mentor mr Srđan OgƬanovi Beograd, 007 Sadrжaj Uvod 3 Tejlorova formula 4 Tejlorova formula za polinome
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
8 Funkcije više promenljivih
8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
3.1. Granične vrednosti funkcija
98 3. FUNKCIJE: GRANIČNE VREDNOSTI I NEPREKIDNOST 3.1. Granične vrednosti funkcija 3.1.1. Definicija i osnovne osobine Da bismo motivisali definiciju granične vrednosti funkcija, dajemo dva primera. Posmatrajmo
TEORIJA REDOVA. n u k (n N) (2) k=1. u k. lim S n = S, kažemo da zbir (suma) reda. k=1 S = k=1
TEORIJA REDOVA NUMERIČKI REDOVI. OSNOVNI POJMOVI DEFINICIJA. Neka je {u n } n N realan niz. Izraz oblika k= u k = u + u 2 + + u n + () naziva se beskonačan red, ili kraće red. Broj u n naziva se opšti
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Determinante. Inverzna matrica
Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE
Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )
POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:
POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije
Neodred eni integrali
Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
FUNKCIJE VIŠE REALNIH PROMENLJIVIH
I G L A V A FUNKCIJE VIŠE REALNIH PROMENLJIVIH U nauci i praksi često se javljaju situacije u kojima postoji zavisnost izmedju nekoliko realnih veličina a, b, c,, h pri čemu je jedna od njih potpuno odredjena
ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš
1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva
Primena izvoda funkcije
Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3(1) (2015), 17-40 Primena izvoda funkcije Mirjana Dimitrijević student prve godine na Departmanu
Jednodimenzionalne slučajne promenljive
Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
10 Iskazni račun - deduktivni sistem za iskaznu logiku
10 Iskazni račun - deduktivni sistem za iskaznu logiku Definicija 20 Iskazni račun je deduktivni sistem H = X, F orm, Ax, R, gde je X = S {,, (, )}, gde S = {p 1, p 2,..., p n,... }, F orm je skup iskaznih
Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa
Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Diferencijabilnost funkcije više promenljivih
Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.
Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Granične vrednosti realnih nizova
Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu
Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
Vektorski prostori. Vektorski prostor
Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Na grafiku bi to značilo :
. Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama
IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA
IZRAČUNAVANJE KONAČNIH SUMA METODIMA DIFERENTNOG RAČUNA Izlaganje - Seminar za matematičare, Fojnica 2017.g. Prof. dr. MEHMED NURKANOVIĆ Prirodno-matematički fakultet Univerziteta u Tuzli 13.01.2015. godine
POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti
POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za
MATEMATIKA II. Dr Boban Marinković
MATEMATIKA II VEŽBE Dr Boban Marinković 1 Neodredjeni integral dx = x + C, dx x = ln x + C, dx = arcsin x + C, 1 x 2 a x dx = ax ln a + C, cos x dx = sin x + C, dx x 2 a = 1 2 2a ln x a x + a + C, dx x2