Riešenie sústavy lineárnych rovníc. Priame metódy.
|
|
- Θάλεια Ράγκος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16
2 Obsah 1 Základy 2 Systémy s trojuholníkovou maticou 3 Použitie Gaussovej eliminácie 4 Použitie QR faktorizácie 5 Špeciálne matice sústavy 6 Cvičenie G. Okša: Priame metódy 2/16
3 Základy Nech A R m n, x R n a b R m, b 0. Potom lin. systém rovníc Ax = b je konzistentný, ak existuje vektor x taký, že A x = b. V opačnom prípade je nekonzistentný. Veta: Existencia a jednoznačnost riešenia 1 Systém Ax = b je konzistentný práve vtedy, ked b range(a), t.j. hod(a) = hod((a, b)). 2 Ak je systém konzistentý a stĺpce A sú lineárne nezávislé, potom riešenie je jediné. 3 Ak je systém konzistentý a stĺpce A sú lineárne závislé, potom Ax = b má nekonečne vel a riešení. 4 Ked je A regulárna (t.j. m = n a det(a) 0), potom je systém konzistentný pre l ubovol né b a má jediné riešenie. Homogénny systém Ax = 0 má netriviálne riešenie x 0 práve vtedy, ak sú stĺpce A lin. závislé. Ak má Ax = 0 netriv. rieš., potom má nekonečne vel a riešení. Pri m = n to nastane pre singulárnu A. G. Okša: Priame metódy 3/16
4 Systémy s trojuholníkovou maticou Nech L R n n je dolná trojuholníková a regulárna. Potom systém Ly = b sa rieši tzv. elimináciou vpred ( forward elimination ): 1. for (k = 0; k < n; k + +) { 2. if (k == 0) y[k] = b[k]/l[k][k]; ( 3. else y[k] = b[k] ) k 1 j=0 L[k][j] y[j] /L[k][k]; } Nech U R n n je horná trojuholníková a regulárna. Potom systém Ux = b sa rieši tzv. spätnou substitúciou ( backward substitution ): 1. for (k = n 1; k >= 0; k ) { 2. if (k == n 1) x[k] = b[k]/u[k][k]; ( 3. else x[k] = b[k] ) n 1 j=k+1 U[k][j] x[j] /U[k][k]; } G. Okša: Priame metódy 4/16
5 Použitie Gaussovej eliminácie (GE) bez pivotizácie Ak A = L U je LU faktorizácia A, potom sústava Ax = b má tvar LUx = b a substitúcia Ux = y vedie na riešenie pôvodnej sústavy v troch makro -krokoch: 1. Vypočítaj LU fakt. matice A pomocou GE. 2. Vyrieš: Ly = b, kde L je dolná trojuholníková matica. 3. Vyrieš: Ux = y, kde U je horná trojuholníková matica. Výpočtová zložitost : n 3 /3 + n 2 flops. G. Okša: Priame metódy 5/16
6 Použitie GE s čiastočnou pivotizáciou (GEPP) - 1/2 Klasický prístup: Najprv LU fakt. A s čiast. pivot., a potom riešenie dvoch troj. systémov. Efektívnejší postup: Pracovat s rozšírenou maticou sústavy (A, b) a aplikovat GEPP naraz na A aj b. 1. for (k = 0; k < n 1; k + +) { // cyklus cez stĺpce 2. Nájdi: a rk,k = max{ a ik : k i n}; // Výmena riadkov - čiastočná pivotizácia 3. for (j = k; j < n; j + +) a kj a rk,j; 4. b k b rk ; // Výpočet činitel ov 5. for (i = k + 1; i < n; i + +) m ik = a ik /a kk ; G. Okša: Priame metódy 6/16
7 GEPP - 2/2 // Update A a b 6. for (i = k + 1; i < n; i + +) { 7. b i = b i + m ik b k ; 8. for (j = k + 1; j < n; j + +) a ij = a ij + m ik a kj ; } 9. } // koniec cyklu cez k Po (n 1) krokoch dostaneme sústavu Ux = b (n 1) s hornou trojuholníkovou maticou, ktorú vyriešime spätnou substitúciou. Stabilita: Nech ˆx je vypočítané riešenie lineárneho systému Ax = b pomocou GE. Potom ˆx je presným riešením lin. systému s perturbovanou maticou sústavy: (A + E)ˆx = b, kde: E c (n n 2 ) ρ A µ, kde ρ je faktor rastu (rôzny pre rôzne varianty GE), c je malá konštanta a µ je jednotka zaokrúhlenia ( round-off unit ). Výp. zložitost s GEPP: n 3 /3 flops a O(n 2 ) porovnaní. G. Okša: Priame metódy 7/16
8 Použitie QR faktorizácie - 1/2 Riešenie Ax = b s použitím QR faktorizácie matice sústavy A: 1. Vypočítaj QR fakt. matice A pomocou HT alebo GT: Q T A = R. 2. Sformuj: b = Q T b. 3. Vyrieš: Rx = b pomocou spätnej substitúcie. Na sformovanie b nepotrebujeme Q T explicitne - stačí nám faktorizovaná forma Q T. Ak napr. použijeme Householderove reflexie, potom: Q T = H n 1 H n 2 H 1 a b = Q T b môžme formovat rekurzívne: y 1 = b; y i+1 = H i y i, 1 i n 1; b = y n. Navyše, vektory u i pre jednotlivé H i nemusíme ukladat, pretože H i môžme aplikovat súčasne na A (i) aj y i ; čiže pracujeme s rozšírenou maticou (A, b). G. Okša: Priame metódy 8/16
9 Použitie QR faktorizácie - 2/2 Stabilita (Lawson a Hanson, 1974): Nech ˆx je vypočítané riešenie lin. systému Ax = b s použitím Householderovej QR faktorizácie. Potom ˆx je presným riešením lin. systému: (A + E)ˆx = b + δb, kde: E F (3 n n) A F µ + O(µ 2 ), δb (3 n n) b µ + O(µ 2 ). Metóda je teda spätne stabilná. Výpočtová zložitost s HT: 2n 3 /3 flops a n odmocnín. Výpočtová zložitost s GT: 4n 3 /3 flops a n 2 /2 odmocnín. G. Okša: Priame metódy 9/16
10 Symetrická a pozitívne definitná matica - 1/3 Veta: Nech A je SPD rádu n. Potom existuje jednoznačná tzv. Choleskyho faktorizácia matice A v tvare: A = H H T, kde H je dolná trojuholníková s kladnými diagonálnymi prvkami. Faktor H je explicitne daný ako H = L D 1/2, kde L je dolná troj. matica s jednotkami na diagonále z LU faktorizácie matice A s použitím GE bez pivotizácie a D = diag(u 1/2 11, u1/2 22,..., u1/2 nn ) (u ii sú diagonálne prvky matice U). Faktor rastu pri GE bez pivotizácie je ρ = 1. Takže GE bez pivotizácie je pre SPD matice stabilná. G. Okša: Priame metódy 10/16
11 SPD matica - 2/3 Výpočet Choleskyho faktorizácie: V praxi sa Choleskyho faktorizácie sa nepočíta pomocou Gaussovej eliminácie, ale takto: 1. for (k = 0; k < n; k + +) { 2. for (i = 0; i < k; i + +) h ki = 3. h kk = a kk k 1 j=0 h2 kj ; } V tomto algoritme 1 j=0 () = 0 a h 00 = a 00. Potom systém Ax = b sa rieši v dvoch krokoch: 1. Hy = b (dolná trojuholníková matica); 2. H T x = y (horná trojuholníková matica). ( a ki i 1 j=0 h ij h kj ) /h ii ; G. Okša: Priame metódy 11/16
12 SPD matica - 3/3 Stabilita: Nech ˆx je vypočítané riešenie lineárneho systému Ax = b pomocou Choleskyho faktorizácie SPD matice A. Potom ˆx je presným riešením lin. systému s perturbovanou maticou sústavy: (A + E)ˆx = b, kde: E 2 c 1 (n) A 2 µ, a c 1 (n) je pomaly rastúca funkcia n. Relatívna chyba riešenia: x ˆx ˆx c 2 (n) κ(a) O(µ), kde κ(a) = A A 1 je číslo podmienenosti matice A. Výpočtová zložitost : n 3 /6 + n 2 flops a n odmocnín. G. Okša: Priame metódy 12/16
13 Diagonálne dominantná matica Definícia: Matica A = (a ij ) rádu n je stĺpcovo diagonálne dominantná, ak: a kk > n i=1,i k a ik k = 1, 2,..., n. Podobne je A riadkovo diagonálne dominantná, ak: a kk > n i=1,i k a ki k = 1, 2,..., n. Stabilita: Faktor rastu pre GE bez pivotizácie stĺpcovo resp. riadkovo diagonálne dominantných matíc je ρ 2. Takže tento algoritmus je pre tieto matice stabilný, nie je nutná žiadna pivotizácia. G. Okša: Priame metódy 13/16
14 Trojdiagonálna matica - 1/2 Trojdiagonálna matica T má LU dekompozíciu v špeciálnom tvare, kde oba faktory sú bidiagonálne matice; pre L treba vypočítat iba dolnú subdiagonálu a pre U iba diagonálu: a 1 b 1. T = c bn 1 = c n 1 u 1 b 1. l bn 1. l n 1 a n u n G. Okša: Priame metódy 14/16
15 Trojdiagonálna matica - 2/2 Algoritmus pre výpočet LU fakt. trojdiagonálnej matice: 1. u 1 = a 1 ; 2. for (i = 2; i <= n; i + +) { 3. l i = c i /u i 1 ; 4. u i = a i l i b i 1 ; } Potom systém Tx = b riešime v dvoch krokoch: Ly = b a Ux = y. Stabilita: Ak T je zároveň SPD, potom tento postup je stabilný a má prednost pred Choleskyho faktorizáciou, pretože nepoužíva výpočet odmocnín. Ak T nie je SPD, potom táto faktorizácia môže byt nestabilná a treba použit GE s čiastočnou pivotizáciou, pre ktorú je faktor rastu ρ 2. Výpočtová zložitost : 4n flops s použitím horeuvedeného algoritmu LU fakt. G. Okša: Priame metódy 15/16
16 Cvičenie 1 Naprogramujte v jazyku C elimináciu vpred a spätnú substitúciu pre náhodné trojuholníkové matice a náhodné pravé strany. 2 Naprogramujte v C riešenie Ax = b pre náhodné A a b s využitím QR faktorizácie matice A pomocou Householderových reflexií. 3 Naprogramujte v C riešenie Ax = b pre náhodné A a b s využitím LU faktorizácie matice A pomocou Gaussovej eliminácie s čiastočnou pivotizáciou. G. Okša: Priame metódy 16/16
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Διαβάστε περισσότεραMotivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Διαβάστε περισσότεραNumerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
Διαβάστε περισσότεραVLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
Διαβάστε περισσότεραPodmienenost problému a stabilita algoritmu
Podmienenost problému a stabilita algoritmu Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Podmienenost a stabilita 1/19 Obsah 1 Vektorové a
Διαβάστε περισσότεραStart. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Διαβάστε περισσότεραGoniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Διαβάστε περισσότεραKomplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Διαβάστε περισσότεραx x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Διαβάστε περισσότεραAx = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Διαβάστε περισσότεραCvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Διαβάστε περισσότεραÚvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
Διαβάστε περισσότεραM6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Διαβάστε περισσότεραMatematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Διαβάστε περισσότεραMatematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Διαβάστε περισσότεραARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Διαβάστε περισσότεραMIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Διαβάστε περισσότερα1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Διαβάστε περισσότερα15. Matlab Lineárna algebra
1 Portál pre odborné publikovanie ISSN 1338-0087 15. Matlab Lineárna algebra Blaho Michal MATLAB/Comsol 18.09.2009 Matlab pracuje s dátami vo forme vektorov a matíc. Základnej práci s vektormi a maticami
Διαβάστε περισσότερα1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3
Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia
Διαβάστε περισσότεραARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Διαβάστε περισσότεραObvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Διαβάστε περισσότεραIntegrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Διαβάστε περισσότεραEkvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Διαβάστε περισσότερα1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17
Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy
Διαβάστε περισσότεραGramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Διαβάστε περισσότεραPevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Διαβάστε περισσότεραK K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )
Διαβάστε περισσότεραPrechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Διαβάστε περισσότεραVzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke
Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke 23.5.26 Príklad č. Riešte sústavu Bx = r (B r) 2 3 4 2 3 4 6 8 8 2 (B r) = 6 9 2 6 3 9 2 3 4 2 3 2
Διαβάστε περισσότεραΕπίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas)
Επίλυση ενός τριδιαγώνιου γραµµικού συστήµατος Ax = d µε τη µέθοδο απαλοιφής του Gauss (µέθοδος του Thomas) Εστω το ακόλουθο n n τριδιαγώνιο γραµµικό σύστηµα Ax = d A = b 1 c 1 a 2 b 2 c 2 0 a 3 b 3 c
Διαβάστε περισσότεραNelineárne optimalizačné modely a metódy
Nelineárne optimalizačné modely a metódy Téma prednášky č. 8 Metódy transformujúce úlohu naviazaný extrém na úlohu na voľný extrém Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie
Διαβάστε περισσότεραVektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
Διαβάστε περισσότεραTomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Διαβάστε περισσότεραNumerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
Διαβάστε περισσότερα7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Διαβάστε περισσότεραModerné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Διαβάστε περισσότεραObsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Διαβάστε περισσότεραMATEMATIKA I. Doc. RNDr. Michal Šabo, CSc
MATEMATIKA I Doc. RNDr. Michal Šabo, CSc 2 Obsah Predhovor 5 2 VYBRANÉ STATE Z ALGEBRY 2. Úvod................................... 2.2 Reálne n-rozmerné vektory...................... 2.3 Matice..................................
Διαβάστε περισσότεραNumerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
Διαβάστε περισσότερα3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Διαβάστε περισσότερα1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Διαβάστε περισσότεραFaculty of Mathematics, Physics and Informatics Comenius University Bratislava. NumDif
Numerické riešenie diferenciálnych rovníc Jela Babušíková Faculty of Mathematics, Physics and Informatics Comenius University Bratislava Klasifikácia diferenciálnych rovníc: obyčajné - počiatočná a okrajová
Διαβάστε περισσότεραLineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Διαβάστε περισσότεραNumerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Διαβάστε περισσότεραCieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Διαβάστε περισσότεραNumerická lineárna algebra. Zobrazenie
Numerická lineárna algebra. Zobrazenie reálnych čísiel v počítači Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Reálne čísla v počítači 1/16
Διαβάστε περισσότεραÚvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2
Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický
Διαβάστε περισσότεραΠαναγιώτης Ψαρράκος Αν. Καθηγητής
Ανάλυση Πινάκων Κεφάλαιο 2: Παραγοντοποίηση LU Παναγιώτης Ψαρράκος Αν Καθηγητής ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Εθνικό Μετσόβιο
Διαβάστε περισσότεραΜάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Διάλεξη 3: Βασικές τεχνικές επίλυσης γραμμικών συστημάτων Μάθημα Επιλογής 8 ου εξαμήνου
Διαβάστε περισσότερα6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Διαβάστε περισσότεραRIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
Διαβάστε περισσότεραHASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
Διαβάστε περισσότεραObyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
Διαβάστε περισσότεραΠαρουσίαση 2 ης Άσκησης:
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχανικών Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων Παρουσίαση 2 ης Άσκησης: Ανάπτυξη παράλληλου κώδικα και μελέτη της επίδοσης του αλγορίθμου
Διαβάστε περισσότερα1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Διαβάστε περισσότεραMatematika 2. Lineárna algebra. (ver )
Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok
Διαβάστε περισσότεραG. Monoszová, Analytická geometria 2 - Kapitola III
text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je
Διαβάστε περισσότεραKATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Διαβάστε περισσότεραNUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA A MATEMATICKÁ ŠTATISTIKA Stavebná fakulta Doc.Ing. Roman Vodička, PhD. RNDr. PavolPurcz, PhD.
Διαβάστε περισσότεραMatematická analýza pre fyzikov IV.
119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica
Διαβάστε περισσότεραp(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie
1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje
Διαβάστε περισσότεραPríklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
Διαβάστε περισσότεραNávrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Διαβάστε περισσότεραMATEMATIKA I ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA
Διαβάστε περισσότεραFakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2
NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC
Διαβάστε περισσότεραJ J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Διαβάστε περισσότεραM8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu
Διαβάστε περισσότεραMatematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Διαβάστε περισσότεραZáklady automatického riadenia
Základy automatického riadenia Prednáška 1 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita
Διαβάστε περισσότεραPRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Διαβάστε περισσότεραÚvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
Διαβάστε περισσότεραHľadanie, skúmanie a hodnotenie súvislosti medzi znakmi
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo
Διαβάστε περισσότεραRiadenie zásobníkov kvapaliny
Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory
Διαβάστε περισσότεραFUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Διαβάστε περισσότερα3. kapitola. Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou. priesvitka 1
3. kapitola Axiomatická formulácia modálnej logiky Vzťah medzi syntaxou a sémantikou priesvitka 1 Axiomatická výstavba modálnej logiky Cieľom tejto prednášky je ukázať axiomatickú výstavbu rôznych verzií
Διαβάστε περισσότερα... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
Διαβάστε περισσότεραMATEMATIKA. Martin Kalina
MATEMATIKA Martin Kalina Slovenská technická univerzita v Bratislave Všetky práva vyhradené. Nijaká časť textu nesmie byť použitá na ďalšie šírenie akoukoľvek formou bez predchádzajúceho súhlasu autorov
Διαβάστε περισσότεραMini minimaliz acia an BUˇ Koˇ sice 2011
Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou
Διαβάστε περισσότεραAerobTec Altis Micro
AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp
Διαβάστε περισσότεραDeliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Διαβάστε περισσότεραMetódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
Διαβάστε περισσότεραUČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Διαβάστε περισσότεραmnožiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG
STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom
Διαβάστε περισσότεραSpojitosť a limity trochu inak
Spojitosť a limity trochu inak Štefan Tkačik Abstrakt Spojitosť funkcie alebo oblastí je základným stavebným kameňom matematickej analýzy. Pochopenie jej podstaty uľahčí chápanie diferenciálneho a integrálneho
Διαβάστε περισσότεραPageRank algoritmus. Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky
Univerzita Komenského v Bratislave Fakulta Matematiky, Fyziky a Informatiky PageRank algoritmus Bakalárska práca Študijný program: Informatika Študijný odbor: 9.2.1 Informatika Školiace pracovisko: Katedra
Διαβάστε περισσότεραDefinícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Διαβάστε περισσότεραvantum s.r.o. VŠETKO PRE ELEKTROERÓZIU V3 Kap.11 / str. 1
VŠETKO PRE ELEKTROERÓZIU V3 Kap.11 / str. 1 Prúdové kontakty pre rezačky Brother 5400 Horný a dolný prúdový kontakt pre sériu HS 300 materiál: karbid wolfrámu OKB: 632276000 5401 Horný a dolný prúdový
Διαβάστε περισσότεραΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 06, 26 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Η ανάλυση LU 2. Η ανάλυση LDM T και η ανάλυση LDL T 3. Συμμετρικοί
Διαβάστε περισσότεραPrednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák
Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραTechnická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Διαβάστε περισσότεραPREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Διαβάστε περισσότερα1 Úvod Sylabyaliteratúra Základnéoznačenia... 3
Obsah 1 Úvod 3 1.1 Sylabyaliteratúra.... 3 1.2 Základnéoznačenia.... 3 2 Množiny a zobrazenia 4 2.1 Dôkazy... 4 2.1.1 Základnétypydôkazov... 4 2.1.2 Matematickáindukcia... 4 2.1.3 Drobnéradyakodokazovať....
Διαβάστε περισσότερα2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4
Παράδειγμα 2x 1 +2x 2 +0x 3 +6x 4 = 8 2x 1 + x 2 x 3 + x 4 = 1 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4 Επαυξημένος πίνακας: 2 2 0 6 8 2 1 1 1 1 Ã = 3 1 1 2 3 1 2 6 1 4 Γενικό σύστημα a 11 x 1 +a
Διαβάστε περισσότεραAproximačné algoritmy. (7. októbra 2010) DRAFT
R. Královič Aproximačné algoritmy (7. októbra 2010) ii Obsah 1 Úvod 1 1.1 Algoritmy a zložitosť........................... 1 1.2 Lineárne programovanie......................... 1 1.3 Použité vzťahy..............................
Διαβάστε περισσότερα(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
Διαβάστε περισσότερα1.1 Zobrazenia a funkcie
1 Teória vypočítateľnosti poznámky z prednášky #1 1.1 Zobrazenia a funkcie Definícia. Čiastočné (totálne) zobrazenie trojice (A, B, f) pre ktoré platí: f A B Ku každému vstupu a A existuje najviac jeden
Διαβάστε περισσότεραUNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA Martin Samuelčík BRATISLAVA 2004 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
Διαβάστε περισσότεραC. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
Διαβάστε περισσότερα