Aproksimacija. Desanka Radunović NUMERIČKE METODE. 4. Talasići Srednjekvadratna aproksimacija Fourier-ova analiza 13
|
|
- Βαρνάβας Βλαστός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Desanka Radunović NUMERIČKE METODE Aproksimacija. Srednjekvadratna aproksimacija. Metoda najmanjih kvadrata 8 3. Fourier-ova analiza 3 4. Talasići 3 5. Ravnomerna aproksimacija 38
2 Aproksimacija u HILBERTOVOM prostoru norma f = (f, f), rastojanje f g = (f g, f g) Element najbolje aproksimacije Q = n ( E n(f) ) = f n i= c i g i ( i= = f c i g i n i= c i g i, f n i= ) c i g i POSTOJI, jer je prostor linearan i normiran, JEDINSTVEN JE, jer je prostor strogo normiran
3 En(f) = f Q (f Q, Q) =, Q = n ci gi i= Kako odrediti element najbolje aproksimacije za f? Q = gj, (f Q, gj) =, n i= c i (g i, gj) = (f, gj) j =,..., n, ( g i, gj ) = δ ij, c j = ( f, gj) Q = n (f, gi) gi, i= ( E n(f) ) = f Q = f n i= (f, gi) Bessel-ova nejednakost, Parseval-ova jednakost (n = ) 3
4 Lagrange-ova interpolacija funkcije +5x sa čvorovima ravnomerno rasporedjenim, Čebišev-ljevim 4
5 Interpolacija funkcije +5x Hermite-ovim polinomom (, 3,,, ), kubnim splajnom 5
6 Srednjekvadratna aproksimacija funkcije +5x polinomom osmog stepena sa težinskom funkcijom p(x), sa težinskom funkcijom p(x) = e x. 6
7 SREDNJEKVADRATNA aproksimacija (L) skalarni proizvod (f, g) = b a p(x) f(x) g(x) dx, p(x) > norma f = b a p(x) ( f(x) ) dx ( E n(f) ) = f Q = inf Q b a p(x) ( f(x) Q(x) ) dx 7
8 Procena broja stanovnika SAD godine. odre - dena diskretnom varijantom srednjekvadratne aproksimacije 3 5 predicted value true value data approximation Linear polynomial approximation 3 5 predicted value true value data approximation Cubic polynomial approximation polinomom prvog stepena, polinomom trećeg stepena. 8
9 Metoda NAJMANJIH KVADRATA Gauss (8-), procena orbite asteroida Ceres skalarni proizvod (f, g) = n i= pi f(xi) g(xi) dx, pi > norma f = n pi i= ( f(x i) ) ( E n(f) ) = f Q = inf Q n i= pi ( f(x i) Q(xi) ) dx 9
10 Procena broja stanovnika SAD. godine pravom P(x) = c + cx, (gj(x) = x j ) P(xi) = u(xi), i =,...,, F (c, c) = i= (u(xi) c cxi) F c F c = = tj. c i= c i= + c xi + c i= i= xi = xi xi = i= i= u(xi) u(xi) xi x ( ) u(x) A A c = A b, gde je A = x c, c =, b = u(x).. c. x u(x)
11 Procena eksponencijalnom funkcijom u(x) Q(x) = ce c x Exponential approximation 3 predicted value true value data approximation F (c, c) = i= ( u(x i) c e c xi ) ln ( u(x) ) ln ( Q(x) ) = ln(c) + cx = c + cx
12 Aproksimacija tačaka kružnicom (x c) + (y c) = r nelinearan problem.5.5 F (c, c, r) = n ( r (x i c) (yi c) ) i=.5 linearan problem c3 = r c c xic + yic + c3 = x i + y i A A c = A b
13 Harmonici, sin x, cos x, sin x, cos x,..., sin nx, cos nx,
14 FOURIER-ova ANALIZA (Joseph Fourier,87) a k = π n Q(x) = a + (a k cos kx + b k sin kx). π π k= f(x) cos kx dx, b k = π π π f(x) sin kx dx π lim f a n π n k= (a k cos kx + b k sin kx) dx =. f(x) = k= c k e ıkx, c k = π π π f(x)e ıkx dx 4
15 4 6 8 vreme (s) frekvencija (Hz) Vremenski domen signala Frekvencijski domen signala 5
16 Kompresija signala u frekvencijskom domenu vreme (s) frevencija (Hz) 6
17 Suma Fourier-ovog reda Dirac-ove funkcije sabiraka, sabiraka 4. FFT 7
18 Suma Fourier-ovog reda Heaviside-ove funkcije sabiraka, sabiraka 8
19 Suma Fourier-ovog reda linearne funkcije sabiraka, sabiraka 9
20 Sopstvene funkcije ( ) d dx e ıkx = ık e ıkx, e ıkx = e ıkh h e ıkx Neperiodična funkcija x = π T t, f T (t) f( π T t), K = kπ T = k K T f T (t) = c k = T F (t) = π k= T T f( π T t)eıkπ T t dt = T c k e ıkt = k= T T T e ıkt ( T ˆF (K)e ıkt dk, ˆF (K) = f T (t)e ıkt dt, T f T (t)e ıkt dt ) F (t)e ıkt dt
21 Diskretna Fourier-ova transformacija xj = j π n, f j = f(xj), j =,..., n, W = e ıπ n = n e ıπ n k= c k W kj = fj, j =,..., n, n n j= fjw kj = c k, k =,..., n, F c = f, (F F = n I) n F f = c F =... W W... W n W W 4... W (n ) W n W (n )... W (n )
22 y = Fn x yj = y e j + W j ny o j y m+j = y e j W j ny o j (j=,m, n=m) FFT i i 4 4i 4 4+4i 6 4 4i 4 4+4i.7+.7i i.7+.7i i 4 4i 4.68i i 4+4i i
23 Stacionaran i nestacionaran signal 4 f f cos (π x) + cos (π 5 x) + cos (π 5 x) + cos (π x) cos (π x), [, 3] cos (π 5 x), [3, 6] cos (π 5 x), [6, 8] cos (π x), [8, ] 3
24 Fourier-ov spektar f stacionarnog signala, nestacionarnog signala f 4
25 Talasić oscilatorna funkcija sa kompaktnim nosačem ψ a,b (x) = a ψ ( ) x b a Translacija talasića (parametar b) psi(x) psi(x )
26 sin(x) 6.8 sin(x) 3.4 sin(4x).57 psi(x) 3 psi(x).5 psi(4x).75 Dilatacija sinusoide i talasića (param. a) 6
27 Diskretni talasići a = j, b = k j, k, j Z ψ jk (x) = j/ ψ( j x k), ψ jk (x), x [ j k, j (k + )]. k.. log(a) 7
28 Multirezolucija prostora L (a) V V V V V... (b) j Z Vj = {}, j Z Vj = L(R) (c) f L(R) i j Z, f(x) Vj f(x) Vj (d) f L(R) i k Z, f(x) V f(x k) V (e) ϕ V tako da je {ϕ(x k)} k Z Rieszov bazis u V. ϕ j,k (x) = j/ ϕ( j x k), j, k Z; {ϕ j,k (x)} k Z Riesz-ov bazis u Vj Dilataciona jednačina ϕ(x) = N k= c(k) ϕ(x k), ϕ(x) dt = 8
29 Prostor talasića Wj: Vj = Vj Wj, j Z Talasić majka ψ(x) W definisan je jednačinom talasića ψ(x) = N k= d(k) ϕ(x k) ψ j,k (x) = j/ ψ( j x k) k Z; {ψ j,k (x)} k Z bazis u Wj Multirezolucijski razvoj f(x) = j Z b j,k ψ j,k (x) = a J,k ϕ j,k (x)+ k Z k Z J b j,k ψ j,k (x) j= k Z V J W J W J 9
30 ϕ(x) = ϕ(x) + ϕ(x ) ψ(x) = ϕ(x) ϕ(x ) dradun/talasic4.html Haar-ova četvrtka c() = c() = Haar-ov talasić d() = d() = 3
31 Daubechies Db funkcija skaliranja i talasić (ortogonalni sistem) d() = c(3) = 3 4 3, d() = c() = 3 4, d() = c() = , d(3) = c() =
32 Generisanje linearnog splajna kaskadnim algoritmom: ϕ () (x) je četvrtka, ϕ (n+) (x) = ϕ(n) (x) + ϕ (n) (x ) + ϕ(n) (x ), n =,,.... 3
33 Piramidalni algoritam dekompozicija a j,k = l c(l k)a j,l, b j,k = l d(l k)a j,l c() = c() = d() = d() =
34 Razlaganje signala piramidalnim algoritmom x w w w3 v3 34
35 Piramidalni algoritam rekonstrukcija ( ) a j,l = c(l k)aj,k + d(l k)b j,k k Kompresija prag = prag = c()=c()=d()= d()= 35
36 Original i kompresovani signali original podaci PR = PR =
37 Obrada signala (analiza, sinteza, kompresija ) lociranje i predvidanje - zemljotresa, proučavanje udaljenih galaksija, analiza i kompresija medicinskih signala ( ECG, EEG), kontrola kvaliteta analizom zvučnog signala, komunikacije (kompresija). Obrada slike kompresija otisaka prstiju u odnosu : (JPEG ), kompresija slike, kompjuterska grafika (uzastopno renderisanje), kompjuterska vizija (multirezolucijski pristup). Numeričke metode teorija aproksimacija, multigrid tehnika, modeliranje diferencijalnim jednačinama. 37
38 RAVNOMERNA aproksimacija (C) ( n f = sup f(x), En(f) = inf sup f cigi(x) ) x [a,b] c x [a,b] i= Čebišev: f(xi) Q(xi) = α( ) i f Q, i=,n+, α=± L a y y y3 y4 b z z z z3 z4 -L 38
39 Aproksimacija konkavne funkcije pravom Q(x) = c + cx f(x) f(a) c c a = αl f(d) c c d = αl f(b) c c b = αl f (d) Q (d) = x a d b 39
40 Aproksimacija funkcije +5x polinomom osmog stepena srednjekvadratna, ravnomerna 4
41 Polinomi Čebiševa Tn(x) = cos(n arccos x), n =,.... T(x) =, T(x) = x, T n+ (x) = x Tn(x) Tn (x) ( ( Tn(x) = x + Ortogonalnost (Tn, Tm) ) n x + x Tn(x)Tm(x) x x ) n dx =, m n π, m = n π, m = n = Najmanje odstupanje od max P n(x) max x [,] x [,] n Tn(x) = n Orth. polynomials 4
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
ZA NEUPUĆENE WAVELETS
Desanka Radunović Matematički fakultet, Beograd TALASIĆI ZA NEUPUĆENE WAVELETS Petnica, 3 maj 25 Furijeova analiza Odre - deni zapis date veličine eksplicitno izražava neku informaciju o toj veličini,
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
L 2 -σύγκλιση σειρών Fourier
Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό
Teme za seminarski iz NIZ. 1. tema: Crtanje funkcije skaliranja i talasića piramidalnim algoritmom
Teme za seminarski iz NIZ 1. tema: Crtanje funkcije skaliranja i talasića piramidalnim algoritmom Izbor nivoa rezolucije Zadavanje koeficijenata dilatacione jednačine (suma mora biti jednaka 2); ponuditi
ΜΕΜ251 Αριθμητική Ανάλυση
ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής
Desanka P. Radunović T A L A S I Ć I (WAVELETS)
Desanka P Radunović T A L A S I Ć I (WAVELETS) AKADEMSKA MISAO Beograd, 005 Predgovor Knjiga je nastala kao rezultat želje autora da jednu novu, vrlo atraktivnu oblast primenjene matematike približi studentima
Desanka P. Radunović T A L A S I Ć I (WAVELETS)
Desanka P Radunović T A L A S I Ć I (WAVELETS) AKADEMSKA MISAO Beograd, 005 Predgovor Knjiga je nastala kao rezultat želje autora da jednu novu, vrlo atraktivnu oblast primenjene matematike približi studentima
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
Apì ton diakritì kôbo ston q ro tou Gauss
Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012
MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x
Σημειώσεις Ανάλυσης Ι
Σημειώσεις Ανάλυσης Ι 6. Συναρτήσεις Πρωταρχική έννοια στη φυσική είναι η έννοια της συνάρτησης. Π.χ. η θέση ενός σωματιδίου ως συνάρτηση του χρόνου x = f(t) ή x(t). Στη πρώτη περίπτωση προσδιορίζουμε
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Θαλής (ΜΙΣ:379416) Μέθοδος Φωκά για Ασυνεχή Προβλήματα
Το Πρόβλημα Θαλής ΜΙΣ:379416) για Ασυνεχή Προβλήματα Διονύσιος Μαντζαβίνος 1, Παπαδοπούλου Έλενα 2, Παπαδομανωλάκη Μαριάννα 2, Σαριδάκης Γιάννης 2, Σηφαλάκης Τάσος 2, Ασβεστάς Μάριος 2 1 Τμήμα Εφαρμοσμένων
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 (αʹ) Υπάρχει μια ομάδα ασκήσεων για κάθε κεφάλαιο των σημειώσεων,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
Κεφάλαιο 6 ιανυσµατικοί χώροι...1
6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh
Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός
Anˆlush Fourier kai Olokl rwma Lebesgue. Prìqeirec Shmei seic
Anˆlush Fourier kai Olokl rwma Lebesgue Prìqeirec Shmei seic Tm ma Majhmatik n Panepist mio Ajhn n Aj na, 22 Perieqìmena I Anˆlush Fourier Εισαγωγή 3. Τριγωνομετρικά πολυώνυμα..........................
Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)
Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche
Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ
. Μέθοδος Frobenius Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ d w Γενική µορφή της γραµµικής.ε. ης τάξης: dz + P (z)dw + Q(z)w = dz Μορφή της.ε. όταν το σηµείο z = z είναι κανονικό ανώµαλο σηµείο d w dz
Σειρές Fourier. Κεφάλαιο Σειρές Fourier ολοκληρώσιµων συναρτήσεων. f(x) dλ(x) u(x) dλ(x) + i. (tf(x) + sg(x)) dλ(x) = t. f(x) dλ(x) = Re ix 0
Κεφάλαιο 5 Σειρές Fourier 5. Σειρές Fourier ολοκληρώσιµων συναρτήσεων Σε αυτό το κεφάλαιο ϑεωρούµε συναρτήσεις µε µιγαδικές τιµές. Αν f : [a, b] C είναι οποιαδήποτε συνάρτηση, τότε η f γράφεται στη µορφή
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
lim f n(x) = f(x) 1 ǫ < n ln ǫ N (ǫ, x) = ln ( )
ΟΜΟΙΟΜΟΡΦΗ ΣΥΓΚΛΙΣΗ Εστω {f n x), n N} µια ακολουθία συναρτήσεων ορισµένων στο διάστηµα I = [, b] ή, b] ή [, b) ή, b) ) ΟΡΙΣΜΟΣ Η ακολουθία συναστήσεων συγκλίνει σηµειακά point wise convergence) στην συνάρτηση
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Αρµονική Ανάλυση ( ) Φυλλάδιο Ασκήσεων 3
Αρµονική Ανάλυση (2017 2018) Φυλλάδιο Ασκήσεων 3 0. (α) Εστω f L (T). είξτε ότι σ n ( f ) f n N. (ϐ) Εστω f L (T). είξτε ότι (γ) είξτε ότι S n ( f ) f + n k=1 sin(kt) k n k= n [Υπόδειξη: Για το (γ) ϑεωρήστε
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
( y = 2, x R) και ( y = 0, x R ) ή ισοδύναμα πάνω στην ευθεία z = 2
ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΦΕΒΡΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγματικό μέρος uxy (, ) = ycosxκαι φανταστικό μέρος vxy (, ) = y sinx, όπου = x+ iy
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]
συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Σύγκλιση σειρών Fourier σε χώρους L p
Σύγκλιση σειρών Fourier σε χώρους L p Μιχάλης Σαράντης και Κωνσταντίνος Τσίνας Βασικά αποτελέσµατα από την ανάλυση Fourier Ορισµός.. Ο n-οστός πυρήνας του Dirichlet ορίζεται ως (.) D n (y) Πρόταση.. Για
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου.
Λύσεις μερικών ασκήσεων του τρίτου φυλλαδίου.. Έστω 0 < a
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x 2 + 1 = 0 N = {1, 2, 3....}, Z Q a, b a, b N c, d c, d N a + b = c, a b = d. a a N 1 a = a 1 = a. < > P n P (n) P (1) n = 1 P (n) P (n + 1) n n + 1 P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + 1)
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak
Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ. Ιωάννινα 2014
ΘΕΩΡΙΑ ΠΡΟΣΕΓΓΙΣΗΣ ΔΗΜΗΤΡΙΟΣ ΝΟΥΤΣΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΚΩΝ Ιωάννινα 0 Περιεχόμενα ΕΙΣΑΓΩΓΗ 5. Νόρμες.................................... 6. Υπαρξη και μονοσήμαντο.......................... 8 ΟΜΟΙΟΜΟΡΦΗ
Κβαντομηχανική Ι 2o Σετ Ασκήσεων. Άσκηση 1
Κβαντομηχανική Ι 2o Σετ Ασκήσεων Άσκηση 1 Ξεκινάμε με την περίπτωση Ε
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ 2011 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
[] ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΔΕΚΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Δείτε στις «Σημειώσεις Μιγαδικού Λογισμού» σελ β) Ας είναι ux (, ) = x+ cos( π ) και vx (, ) = cos( π x) το πραγματικό και το φανταστικό μέρος
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier
Κεφάλαιο 6 Σύγκλιση των μερικών αθροισμάτων της σειράς Fourier Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Zygmund 2002, Katznelson 2004 και Stein and Shakarchi 20. 6. Όχι σύγκλιση σε
Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1
Κβαντομηχανική Ι Λύσεις προόδου Άσκηση 1 ψ(x) = A Sin (k x), < x < α) Sin (k x) = eikx e ikx i Mε πιθανές τιμές ορμής p = ± ħk, από τον τύπο του De Broglie. Kαθεμιά έχει πιθανότητα 50%. b) p = ψ p ψ =
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.
3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της