Randomized Algorithms

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Randomized Algorithms"

Transcript

1 Randomized Algorithms 7 a RA 2016/17 1 / 26

2 Modely podľa umiestnenia pravdepodobnosti I. modelom pravdepodobnostného algoritmu je pravdepodobnostné rozdelenie nad množinou deterministických stratégií {A 1,..., A m } Pre vstup w náhodne zvolíme i R {1,..., m} a realizujeme výpočet C i = A i (w), ktorého časová zložitosť je Time(C i ) (X? = Y, AB? = C,...) II. pravdepodobnostný algoritmus modelujeme nedeterministickým algoritmom s pravdepodobnostným rozdelením nad nedeterministickými voľbami opakované používanie náhodnej voľby (pravdepodobnostný QSort,...) Modely 2016/17 2 / 26

3 Modely podľa chyby A() - algoritmus; F() - čo počítame Las Vegas Pr[A(x) = F (x)] = 1 (voľba šéfa, Lazy Select,...); snaha o znižovanie zložitosti dobrým očakávaným prípadom { x L, Pr[A(x) = 1] 1/2 Monte Carlo s jednosmernou chybou x / L, A(x) = 0 (porovnanie databáz na rovnosť) Monte Carlo s obojsmernou { chybou 1/2 + ε Pr[A(x) = F (x)] (porovnanie databáz na rôznosť) > 1/2 Modely 2016/17 3 / 26

4 Modely X Y a Monte Carlo s obojsmernou chybou X = x 1 x 2... x n v počítači R I Y = y 1 y 2... y n v počítači R II L = {(X, Y ) X Y } R I j R {1,..., n} j, xj R II if x j { y j then accept Pr[accept] = 1 2 else 1 2n Pr[reject] = n počet prenášaných bitov: 2 log n vs. n pri determinizme korektnosť: X = Y chyba pri Pr[accept] = n X Y chyba pri voľbe j R {1,..., n} a následne Pr[reject] = n aká je pravdepodobnosť chyby? Modely 2016/17 4 / 26

5 Modely X Y - analýza korektnej odpovede pravdepodobnosť korektnej odpovede accept return(1) reject return(0) { i {1,..., n} C i,l l {0, 1} v prvej fáze v druhej fáze C i i {1,..., n}v prvej fáze X = Y, (X, Y ) / L E 0 = {C i0 1 i n} Pr[E 0 ] = Pr[C i0 ] = 1 n ( ) ( 2n = n 1 1 n 2 + 2n) 1 > 1/2 X Y, (X, Y ) L!j : x j y j E 1 = {C j } {C i1 i j} Pr[E 1 ] = 1 n + i j 1 n ( ) 2n = 1 n + n 1 n ( n 1 ) 2n > 1/2 Modely 2016/17 5 / 26

6 Modely 2 definície LasVegas 1 algoritmus A? je Las Vegas ak A? (x) = F (x) alebo A? (x) =?, pričom Pr[A? (x) =?] 1/2 2 algoritmus A je Las Vegas ak Pr[A(x) = F (x)] = 1 1 = 2 1 opakuj A, kým nezískaš korektnú odpoveď 2 E(# opakovaní ) = 2 2 = 1 nechaj A bežať max 2E(T) krokov ak nemáš odpoveď, return(?) Modely 2016/17 6 / 26

7 znižovanie chyby opakovaním Monte Carlo s ohraničenou chybou Pr[A(x) = F (x)] 1/2 + ε požadovaná pravdepodobnosť chyby δ znižovanie { chyby opakovaním t krát opakuj A A t rozhodni väčšinou X počíta korektné odpovede A t vypočítame 1 Pr[X = i] 2 1 Pr[A(x) = F (x)] = t/2 1 i=0 Pr[X = i] 3 1 Pr[A(x) = F (x)] = δ postačujúci počet opakovaní t = 2 ln δ ln(1 4ε 2 ) ε, δ sú konštanty, preto aj t je konštanta Modely 2016/17 7 / 26

8 znižovanie chyby opakovaním Monte Carlo s ohraničenou chybou pre konkrétne x: p(x) = Pr[A(x) = F (x)] = 1/2 + ε x, ε x ε Pr[X = i] = ( ) t i ( ε x) i ( 1 2 ε x) t i = ( t i < ( ) t i ( 1 4 ε2 x) i [ ( 1 2 ε x)( ε x) ] t/2 i = ( ) t i ( 1 4 ε2 x) i ( 1 4 ε2 x) t 2i = ( t i ) ( 1 4 ε2 x) i ( 1 2 ε x) t 2i ) ( 1 4 ε2 x) t/2 ( t i 1 Pr[A(x) = F (x)] = t/2 1 i=0 Pr[X = i] < ( 1 4 ε2 ) t/2 t/2 1 i=0 < ( 1 4 ε2 ) t/2 t ( t i=0 i = (1 4ε 2 ) t/2 ) = (1 4ε 2 ) t/2 2 t 2 t ) ( 1 4 ε2 ) t/2 ( t i) (1 4ε 2 ) t/2 = δ t = 2 ln δ ln(1 4ε 2 ) Modely 2016/17 8 / 26

9 znižovanie chyby opakovaním Monte Carlo s neohraničenou chybou Pr[A(x) = F (x)] > 1/2 Napr: Pr[A(x) = F (x)] = 1/2 + 2 x, δ požadovaná chyba 2 ln δ 2 ln δ t = ln(1 4ε 2 t = ) ln( x ) 2 ln δ t = ln( x ) 2 ln δ 2 2 x = 2(ln δ)2 2 x ln(1 4y) 4y y počet opakovaní potrebný pre dosiahnutie chyby δ môže byť exponenciálny Modely 2016/17 9 / 26

10 pravdepodobnostné triedy zložitosti RP { x L : Pr[A(x) = 1] 1/2 RP x / L : A(x) = 0 Lemma L RP polynóm q a PTM M: polynomiálny čas RP NP x L Pr[M(x) = 1] > 1/q( x ) x / L M(x) = 0 L RP : Pr[A(x) = 1] 1/2, stačí q( x ) = 2 Pr[M(x) = 1] > 1/q( x ) Pr[chyba po t opakovaniach] ( ) t 1 1 q( x ) = e t/q( x ) t=q( x ) < 1/2 Modely 2016/17 10 / 26

11 pravdepodobnostné triedy zložitosti ZPP ZPP := RP corp polynomiálny čas ZPP NP conp Lemma L ZPP PTM M? : x L return accept alebo? x / L return reject alebo? Pr[?] 1/2 L RP corp, M, com sú odpovedajúce stroje if x L(M) then accept else if x L(coM) then reject else return(?) z M? získame M RP preklopením? na reject M corp preklopením? na accept Modely 2016/17 11 / 26

12 pravdepodobnostné triedy zložitosti PP polynomiálny čas PP := x L Pr[A(x) = 1] > 1/2 Lemma NP PP PSPACE PP PSPACE simulácia s počítaním M NP PP nárast počtu akceptujúcich výpočtov pridaním rovnakoveľkého akceptujúceho podstromu N Modely 2016/17 12 / 26

13 pravdepodobnostné triedy zložitosti BPP BPP { x L : Pr[A(x) = 1] 2/3 x / L : Pr[A(x) = 0] 2/3 2/3 3/4; stačí ɛ > 1/2 polynomiálny čas Lemma L BPP PTM a polynóm p(x) taký, že Pr[chyba] 1/2 p( x ) analýza počtu opakovaní: pre Pr[korektne] > 1/2 + ε a požadovanú pravdepodobnosť chyby δ: BPP: ε = 1/4, δ = 1/2 p( x ) t = t = ln δ 2 ln(1 4ε 2 ) ln δ 2 ln(1 4ε 2 ) = 2p( x ) ln 2 4/3 Modely 2016/17 13 / 26

14 pravdepodobnostné triedy zložitosti BPP Theorem BPP P/poly 1 PTM M, vstup x, x = n, čas výpočtu p(n), r {0, 1} p(n) M(x, r) je deterministický výpočet 2 ukážeme, že existuje m vektorov r i,..., r m takých, že x, x = n, Majority(M(x, r 1 ),..., M(x, r m )) dáva korektnú odpoveď 3 z polynomiality m vyplýva existencia stroja z P/poly Modely 2016/17 14 / 26

15 pravdepodobnostné triedy zložitosti BPP 2. r i,..., r m {0, 1} p(n) : x, x = n, Majority(M(x, r 1 ),..., M(x, r m)) je korektná odpoveď A(n) = (r 1,..., r m), M(x, A(n)) = Majority(M(x, r 1 ),..., M(x, r m)) BPP: z m náhodných behov je m/4 zlých; nechceme, aby ich bolo >m/2 Chernoff: Pr[# zlých m/2] e δ2 µ/3 = e m/12 S x = {A(n) M(x, A(n)) je nesprávna odpoveď } E( S x ) e m/12 2 A(n) E( S x ) 2 n e m/12 2 A(n) ak E( S x ) < 2 A(n), tak existuje konkrétne A(n), ktoré vedie ku korektnej odpovedi M(x, A(n)) pre všetky x, x = n A(n) = mp(n) 2 n e m/12 2 mp(n) < 2 mp(n) m = 12(n + 1) vyhovuje Modely 2016/17 15 / 26

16 pravdepodobnostné triedy zložitosti vzťah zložitostných tried RP NP P ZPP NP BPP PP PSPACE co-np co-rp co-np Modely 2016/17 16 / 26

17 δ BPP Zdroje náhodných postupností/bitov perfect random source náhodná premenná generujúca nekonečné postupnosti x 1, x 2,... {0, 1} bitov také, že vyžadujeme (y 1,..., y n ) {0, 1} n Pr[x 1 = y 1,..., x n = y n ] = 2 n nezávislosť výsledok i-teho hodu mincou nezávisí od výsledkov predchádzajúcich hodov korektnosť pravdepodobnosť x i = 1 musí byť presne1/2. čo ak od nezávislosti upustíme? δ-random source S p náhodná premenná generujúca nekonečné postupnosti x 1, x 2,... {0, 1} bitov taká, že 0 < δ 1/2, p : {0, 1} (δ, 1 δ) y 1,..., y n Pr[x 1 = y 1,..., x n = y n ] = n i=1 (y ip(y 1,..., y i 1 ) + (1 y i )(1 p(y 1,..., y i 1 ))) pravdepodobnosť, že i-ty bit=1 je p(y 1,..., y i 1 ), čo je číslo medzi δ a 1 δ, ľubovoľne závislé od prvých (i 1) hodnôt Modely 2016/17 17 / 26

18 δ BPP Zdroje náhodných postupností/bitov 2SAT začni s náhodným priradením α R {0, 1} n ; opakuj náhodné preklopenie bitu tak, aby sa nesplnená klauzula stala splnenou E[# preklopení ] n 2 pri δ-náhodnom zdroji možno vynútiť exponenciálne //E[t(n)] fair minca, x spĺňajúce priradenie t(i) - očakávaný počet preklopení, ak na začiatku sa od x líši v i bitoch t(0) = 0 t(i) 1/2(t(i 1) + t(i + 1)) + 1 t(n) = t(n 1) + 1 t(1) 2n 1, t(i) 2ni i 2, t(n) n 2 nahradíme rovnosťami a potom t(i) x(i) Modely 2016/17 18 / 26

19 δ BPP Zdroje náhodných postupností/bitov 0 δ 1/2, TS M, 0/1-synovia, P(v)-cesta z koreňa stromu výpočtu C(x) do vrchola v δ-priradenie F: hrany(c(x)) (δ, 1 δ) F(0-syn)+F(1-syn)=1 Pr[list] = α P(list) F (α) Pr[M(x) = + ] = +list l Pr[l] 0 RP=0 BPP=P každý list musí hovoriť správne 1/2 RP = RP, 1/2 BPP = BPP každá hrana ohodnotená 1/2 ak δ < 1/2 tak δ BPP = BPP δ BPP BPP BPP δ BPP simulácia BPP použitím δ random source Modely 2016/17 19 / 26

20 δ BPP BPP δ BPP predpoklady: chyba BPP stroja N znížená na 1/32 x je vstup p( x ) čas výpočtu, n = p( x ) 3 log n + 5 k vhodná konštanta, k = 2δ 2δ 2 idea: simulácia 2 k výpočtov s "náhodnými bitmi" získanými prepočtom z bitov generovaných δ-náhodným zdrojom + rozhodovanie väčšinou blok k bitov tvorí binárne číslo κ = κ 1,..., κ k λ = λ 1,..., λ k k bit κ λ= κ i λ i mod 2 i=1 Modely 2016/17 20 / 26

21 δ BPP BPP δ BPP β 1,..., β n bloky bitov generovaných δ-náhodným zdrojom 2 k j-ty výpočet N(x) používa "náhodné bity" (β 1 j, β 2 j,..., β n j) zlá postupnosť bitov vedie k chybnej odpovedi B množina zlých postupností z predpokladov: B n Σ stroj rozhoduje väčšinou j-te vlákno simuluje výpočet N((β 1 j,β 2 j,...β n j),x) T = {(β 1 Z, β 2 Z,..., β n Z); Z = 0, 1,..., 2 k 1} pravdepodobnosť chyby: Pr[ T B T /2] Modely 2016/17 21 / 26

22 δ BPP BPP δ BPP bias(β i Z) = (Pr[β i Z = 1] Pr[β i Z = 0]) 2 ukážeme 2 1 k k (Pr[β i Z = 1] Pr[β i Z = 0]) 2 = Z=0 2 k 1 β=0 pr[β] k 1 β=0 pr[β]2 (δ 2 + (1 δ) 2 ) k 3 E( T B ) T 8 4 Pr[ T B > T /2] 1/4 Modely 2016/17 22 / 26

23 δ BPP BPP δ BPP Lemma (1) 1 2 k 1 2 k Z=0 (Pr[β i Z = 1] Pr[β i Z = 0]) 2 = 2 k 1 β=0 pr[β]2 2 k 1 ( 1) β Z pr[β] = β Z = 0 ( 1)β Z = 1 β Z = 1 ( 1) β Z = 1 = Pr[β Z = 0] Pr[β Z = 1] β=0 2 k 1 Z=0 (Pr[β i Z = 1] Pr[β i Z = 0]) 2 = = ( 2 k 1 2 ) k 2 1 Z=0 β=0 ( 1)β Z pr[β] = 2 k 1 2 k 1 Z=0 β=0 pr[β] k 1 2 k 1 Z=0 β 1,β 2 =0 ( 1)(β 1+β 2 ) Z pr[β 1 ]pr[β 2 ] = 2 k 1 2 k 1 Z=0 β=0 pr[β] k 1 β 1,β 2 =0 pr[β k 1 1]pr[β 2 ] ( 1) (β 1+β 2 ) Z Z=0 }{{} 0 = 2 k 2 k 1 β=0 pr[β]2 Modely 2016/17 23 / 26

24 δ BPP BPP δ BPP Lemma (2) 2 k 1 β=0 pr[β]2 (δ 2 + (1 δ) 2 ) k nech β a β sa líšia v i-tom bite, p i = pr[i-ty bit je 1] v sume 2 k 1 β pr[β] 2 sú dvojice líšiace sa v jednom bite; optikou i-teho bitu, v ktorom sa líšia, je to Api 2 + A(1 p i ) 2 maximum pre p i {δ, (1 δ)} preto 2 k 1 β=0 pr[β] 2 k i=0 ( ) k δ 2i (1 δ) 2(k i) = (δ 2 + (1 δ) 2 ) k i Modely 2016/17 24 / 26

25 δ BPP BPP δ BPP 2 k 1 Z=0 bias(β i Z) L1 2k 1 = 2 k β=0 pr[β] 2 L2 2 k (δ 2 + (1 δ) 2 ) k bit β i Z je vychýlený, ak bias(β i Z) 1/n 2 pr[ nevychýlený bit = 1] ( n, n ) inak by bias(β j ) > (1/n) 2 počet vychýlených bitov "v riadku" je max n 2 2 k (δ 2 + (1 δ) 2 ) k, v celom výpočte max n 3 2 k (δ 2 + (1 δ) 2 ) k chceme n 3 2 k (δ 2 + (1 δ) 2 ) k 2 k /32 k log n 2δ 2δ 2 inak by súčet vychýlení presiahol bias riadku Modely 2016/17 25 / 26

26 δ BPP BPP δ BPP Lemma (3) E( T B ) T 8 vychýlená postupnosť - obsahuje vychýlený bit; max 2 k /32 postupností je vychýlených E[ T B ] = n (t 1...t n) T (b 1...b n) B i=1 pr[b i = t i ] Corollary T obsahuje vychýlené (B) aj nevychýlené (U) postupnosti (T = B U, B 2 k /32) E( T B = (t 1...t n) T 2k + 32 }{{} B t 1,...,t n U b 1...b n B (b 1...b n) B n i=1 pr[b i = t i ] ( ) n = 2k 2n + 2k 2n ( ( = 2k ) n ) 2k 2k (1 + e) 32 n 32 8 = T 8 Pr[ T B > T /2] 1/4 ( ) 1 n ( ) n 2 n Modely 2016/17 26 / 26

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Τυχαιότητα (Randomness) I

Τυχαιότητα (Randomness) I I Χρησιμοποιώντας το μοντέλο δένδρων υπολογισμού, θα ορίσουμε κλάσεις πολυπλοκότητας που βασίζονται στις πιθανότητες, με βάση τυχαίες επιλογές. Αυτή η προσέγγιση είναι πολύ χρήσιμη από πρακτική άποψη,

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

2-INF-135/15 Pravdepodobnostné algoritmy LS 2017/18

2-INF-135/15 Pravdepodobnostné algoritmy LS 2017/18 2-INF-135/15 Pravdepodobnostné algoritmy LS 2017/18 Dôkaz PCP vety 7.a 10.5.2018 def, príklady, význam,... PCP(probabilistically checkable proofs): L PCP[r(n), q(n)] ak existuje pravdepodobnostný polytime

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Πιθανοτικοί Αλγόριθμοι

Πιθανοτικοί Αλγόριθμοι Πιθανοτικοί Αλγόριθμοι ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Teória pravdepodobnosti

Teória pravdepodobnosti 2. Podmienená pravdepodobnosť Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 23. februára 2015 1 Pojem podmienenej pravdepodobnosti 2 Nezávislosť náhodných udalostí

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo

Διαβάστε περισσότερα

2 Chyby a neistoty merania, zápis výsledku merania

2 Chyby a neistoty merania, zápis výsledku merania 2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné

Διαβάστε περισσότερα

Numerická lineárna algebra. Zobrazenie

Numerická lineárna algebra. Zobrazenie Numerická lineárna algebra. Zobrazenie reálnych čísiel v počítači Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Reálne čísla v počítači 1/16

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky

Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO. Pavol Ďuriš. Výpočtová zložitosť

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO. Pavol Ďuriš. Výpočtová zložitosť FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO Pavol Ďuriš Výpočtová zložitosť Máj 2009 Autor: Pavol Ďuriš Názov: Výpočtová zložitosť Vydavateľ: Knižničné a edičné centrum FMFI UK Rok vydania:

Διαβάστε περισσότερα

ιαλογικά συστήµατα αποδείξεων (Interactive proof systems) Κρυπτογραφία & Πολυπλοκότητα καθ. Στάθης Ζάχος παρουσίαση: Νίκος Λεονάρδος

ιαλογικά συστήµατα αποδείξεων (Interactive proof systems) Κρυπτογραφία & Πολυπλοκότητα καθ. Στάθης Ζάχος παρουσίαση: Νίκος Λεονάρδος 1 ιαλογικά συστήµατα αποδείξεων (Interactive proof systems) Κρυπτογραφία & Πολυπλοκότητα καθ. Στάθης Ζάχος παρουσίαση: Νίκος Λεονάρδος 2 Εισαγωγή Proof Systems: Η απόδειξη είναι µια διαδικασία που σκοπό

Διαβάστε περισσότερα

Podmienenost problému a stabilita algoritmu

Podmienenost problému a stabilita algoritmu Podmienenost problému a stabilita algoritmu Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Podmienenost a stabilita 1/19 Obsah 1 Vektorové a

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Προσομοίωση Δημιουργία τυχαίων αριθμών

Προσομοίωση Δημιουργία τυχαίων αριθμών Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého

Διαβάστε περισσότερα

Deliteľnosť a znaky deliteľnosti

Deliteľnosť a znaky deliteľnosti Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

Tυχαιοποιηµένοι Αλγόριθµοι (CLR, κεφάλαιo 8.3 και 10)

Tυχαιοποιηµένοι Αλγόριθµοι (CLR, κεφάλαιo 8.3 και 10) Tυχαιοποιηµένοι Αλγόριθµοι (CLR, κεφάλαιo 8.3 και 10) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Ο τυχαιοποιµένος αλγόριθµος QuickSort Αλγόριθµοι Επιλογής Τυχαιποιηµένος Αλγόριθµος Ο αλγόριθµος των

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia

Διαβάστε περισσότερα

Πιθανότητες και Αλγόριθμοι

Πιθανότητες και Αλγόριθμοι Πιθανότητες και Αλγόριθμοι ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πιθανοτικοί Αλγόριθμοι Πιθανοτικός αλγόριθμος κάνει τυχαίες επιλογές και εξαρτά

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Pseudorandomness. Pseudorandom Generators - Derandomisation. Παναγιώτης Γροντάς ,

Pseudorandomness. Pseudorandom Generators - Derandomisation. Παναγιώτης Γροντάς , Pseudorandomness Pseudorandom Generators - Derandomisation Παναγιώτης Γροντάς µπλ 17.05.2012, 24.05.2012 1 / 47 Παναγιώτης Γροντάς(µΠλ ) Pseudorandomness Κλάσεις Πολυπλοκότητας Θα χρησιμοποιήσουμε τις

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

K r i t i k i P u b l i s h i n g - d r a f t

K r i t i k i P u b l i s h i n g - d r a f t n n T ime(n) = Θ(n 2 ) T ime(n) = Θ(2n) n i=1 i = Θ(n2 ) T (n) = 2T ( n 2 ) + n = Θ(n log n) i i i i i i i & i i + L(1..n) i L(i) n n L n i j : L[i] L[1..j]. (j n) j = j + 1 L[i] < L[j] i = j i

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

Aproximačné algoritmy. (7. októbra 2010) DRAFT

Aproximačné algoritmy. (7. októbra 2010) DRAFT R. Královič Aproximačné algoritmy (7. októbra 2010) ii Obsah 1 Úvod 1 1.1 Algoritmy a zložitosť........................... 1 1.2 Lineárne programovanie......................... 1 1.3 Použité vzťahy..............................

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Automaty a formálne jazyky

Automaty a formálne jazyky Automaty a formálne jazyky Podľa prednášok prof. RNDr. Viliama Gefferta, DrSc., PrírF UPJŠ Dňa 8. februára 2005 zostavil Róbert Novotný, r.novotny@szm.sk. Typeset by LATEX. Illustrations by jpicedit. Úvodné

Διαβάστε περισσότερα

Metódy numerickej matematiky I

Metódy numerickej matematiky I Úvodná prednáška Metódy numerickej matematiky I Prednášky: Doc. Mgr. Jozef Kristek, PhD. F1-207 Úvodná prednáška OBSAH 1. Úvod, sylabus, priebeh, hodnotenie 2. Zdroje a typy chýb 3. Definície chýb 4. Zaokrúhľovanie,

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017 Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania

Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania Pozemné laserové skenovanie Prednáška 2 Názov prednášky: Teória chýb; Osnova prednášky: Základné pojmy Chyby merania Zdroje chýb Rozdelenie chyba merania Meranie accurancy vs. precision Polohová presnosť

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισμού

Στοιχεία Θεωρίας Υπολογισμού Κεφάλαιο 3 Στοιχεία Θεωρίας Υπολογισμού Στο κεφάλαιο αυτό παρουσιάζεται μια εισαγωγή σε βασικές έννοιες της θεωρίας υπολογισμού, με έμφαση στην υπολογιστική πολυπλοκότητα. Η εξοικείωση με τις έννοιες αυτές

Διαβάστε περισσότερα

Υπολογισιμότητα και Πολυπλοκότητα Computability and Complexity

Υπολογισιμότητα και Πολυπλοκότητα Computability and Complexity Υπολογισιμότητα και Πολυπλοκότητα Computability and Complexity Διδάσκων: Στάθης Ζάχος Επιμέλεια Διαφανειών: Μάκης Αρσένης CoReLab ΣΗΜΜΥ - ΕΜΠ Μάιος 2017 Διδάσκων: Στάθης Ζάχος ( CoReLab - NTUA) Υπολ &

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),

Διαβάστε περισσότερα

conp and Function Problems

conp and Function Problems conp and Function Problems 1 Ένα πρόβλημα απόφασης λέμε ότι επιλύεται σε μηντετερμινιστικό πολυωνυμικό χρόνο αν υπάρχει ένας μηντετερμινιστικός αλγόριθμος που, εκμεταλλευόμενος μια τυχαία επιλογή, μπορεί

Διαβάστε περισσότερα

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση

Διαβάστε περισσότερα

1.1 Zobrazenia a funkcie

1.1 Zobrazenia a funkcie 1 Teória vypočítateľnosti poznámky z prednášky #1 1.1 Zobrazenia a funkcie Definícia. Čiastočné (totálne) zobrazenie trojice (A, B, f) pre ktoré platí: f A B Ku každému vstupu a A existuje najviac jeden

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

STREŠNÉ DOPLNKY UNI. SiLNÝ PARTNER PRE VAŠU STRECHU

STREŠNÉ DOPLNKY UNI. SiLNÝ PARTNER PRE VAŠU STRECHU Strešná krytina Palety 97 Cenník 2018 STREŠNÉ DOPLNKY UNI SiLNÝ PARTNER PRE VAŠU STRECHU POZINKOVANÝ PLECH LAMINOVANÝ PVC FÓLIOU Strešné doplnky UNI Cenník 2018 POUŽITEĽNOSŤ TOHOTO MATERIÁLU JE V MODERNEJ

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

❷ s é 2s é í t é Pr 3

❷ s é 2s é í t é Pr 3 ❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)

ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Apì ton diakritì kôbo ston q ro tou Gauss

Apì ton diakritì kôbo ston q ro tou Gauss Apì ton diaritì Ôbo ston q ro tou Gauss 1 Isoperimetri anisìthta sto diaritì Ôbo Θεωρούμε την οικογένεια J των συναρτήσεων J : [0 1] [0 ) που ικανοποιούν τα εξής: J0) = J1) = 0. Για κάθε a b [0 1] a +

Διαβάστε περισσότερα

Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας

Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Εργαστήριο 6: Αναζήτηση, Ανάλυση Πολυπλοκότητας Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Αναζήτηση με linearsearch, binarysearch, ternarysearch - Ανάλυση Πολυπλοκότητας ternarysearch

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db).

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db). Eulerovské grafy Denícia Nech G = (V, E) je graf. Uzavretý ah v G sa nazýva eulerovská kruºnica, ak obsahuje v²etky hrany G. Otvorený ah obsahujúci v²etky hrany grafu sa nazýva eulerovská cesta. Graf sa

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ TE Αρχές Ψηφιακών Συστημάτων Επικοινωνίας και Προσομοίωση Εαρινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage:

Διαβάστε περισσότερα