Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
|
|
- Βάαλ Δελή
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
2 Obsah Čo je jednotkový koreň (unit root) a čo spôsobuje Ak má proces jednotkový koreň - ako dáta transformovat, aby sme s nimi mohli pracovat a použit ARMA metodológiu Ako z dát zistit, či má proces jednotkový koreň unit root testy Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.2/27
3 Príklady Majme proces y t = y t 1 +u t : je to nestacionárny AR(1) proces s jednotkovým koreňom pre jeho diferencie y t = y t y t 1 platí y t = u t teda y t je stacionárny proces Majme nestacionárny proces s jednotkovým koreňom (1 1 2 L)(1 L)x t=1+(1 1 3 L)u t Potom pre diferencie y t = y t y t 1 =(1 L)y t platí (1 1 2 L) y t=1+(1 1 3 L)u t, teda y t je stacionárny proces Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.3/27
4 Príklady Majme nestacionárny proces s dvojnásobným jednotkovým koreňom (1 1 2 L)(1 L)2 x t =1+(1 1 3 L)u t Potom pre druhé diferencie 2 y t = ( y t )=(1 L)(1 L)y t =(1 L) 2 y t platí (1 1 2 L) 2 y t =1+(1 1 3 L)u t, teda 2 y t je stacionárny proces Vo všeobecnosti: Ak má proces jednotkový koreň násobnosti k (a ostatné mimo jednotkového kruhu), tak jeho k-te diferencie sú stacionárne Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.4/27
5 ARIMA modely Ak treba proces k-krát diferencovat, aby sme dostali stacionárny proces, nazýva sa integrovaný proces rádu k, označujeme I(k) Ak tie k-te diferencie sú ARMA(p,q), tak o pôvodnom procese hovoríme, že je ARIMA(p,k,q). Napríklad x t, ak (1 1 2 L)(1 L)2 x t =1+(1 1 3 L)u t, je proces ARIMA(1,2,1). Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.5/27
6 Ciel Uvažujme najprv AR(1) model: x t = δ+αx t 1 +u t Chceme: testovat hypotézu o jednotkovom koreni (vtedy je proces nestacionárny), teda H 0 : α=1 zistit, či sa dá zamietnut v prospech stacionarity - H 1 : ρ <1 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.6/27
7 Jednotkový koreň a t-štatistika Skúsme použit testovanie hypotéz o koeficientoch regresného modelu známe z ekonometrie. Napríklad: Majme vektor x=1:200 Vygenerujeme y=x+rnorm(200)*sigma Odhadneme model y= c+ρx+ε Zaznamenávame: odhad parametra ρ hodnotu t-štatistiky zodpovedajúcej hypotéze H 0 : ρ=1(ktorá platí) Zopakujeme10 5 krát a vykreslíme histogram Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.7/27
8 Jednotkový koreň a t-štatistika Príklad vygenerovaných dát: Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.8/27
9 Jednotkový koreň a t-štatistika Odhadnutá regresia: Odhadnutý koeficient ρ je T-štatistika k hypotéze ρ=1je Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.9/27
10 Jednotkový koreň a t-štatistika Odhad parametra ρ: normálne rozdelenie Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.10/27
11 Jednotkový koreň a t-štatistika t-štatistika k hypotéze H 0 : ρ=1: t-rozdelenie Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.11/27
12 Jednotkový koreň a t-štatistika Druhá simulácia: Majme vektor z vygenerovaný ako z t = z t 1 +ε t Zoberieme x=z[1:200], y=z[2:201], teda y t = z t, x t = z t 1 Odhadneme model y= c+ρx+ε Zaznamenávame: odhad parametra ρ hodnotu t-štatistiky zodpovedajúcej hypotéze H 0 : ρ=1(ktorá platí) Zopakujeme10 5 krát a vykreslíme histogram Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.12/27
13 Jednotkový koreň a t-štatistika Príklad vygenerovaných dát - časový rad z: Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.13/27
14 Jednotkový koreň a t-štatistika Príklad vygenerovaných dát : dáta do regresie Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.14/27
15 Jednotkový koreň a t-štatistika Odhadnutá regresia: Odhadnutý koeficient ρ je t-štatistika k hypotéze ρ=1je = 2.88 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.15/27
16 Jednotkový koreň a t-štatistika Odhady parametra ρ: nemá normálne rozdelenie Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.16/27
17 Jednotkový koreň a t-štatistika "t-štatistika" k hypotéze H 0 : ρ=1: nemá t-rozdelenie Na testovanie hypotézy nemôžeme použit kritické hodnoty t-rozdelenia Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.17/27
18 Jednotkový koreň a t-štatistika Riešenie - základná myšlienka: ponecháme výpočet testovaciej štatistiky ale budeme používat iné kritické hodnoty Kvantily z našej simulácie: - približne také by mali byt kritické hodnoty Otázka: Čo ak nemáme AR(1) proces, ale všeobecnejší? Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.18/27
19 Testovanie jednotkového koreňa AR(1) proces: (1) y t = ρy t 1 +u t jednotkový koreň znamená, že ρ=1. Ekvivalentne: y t =(ρ 1)y t 1 +u t a zaujíma nás t-štatistika zo signifikancie koeficienta pri y t 1 - ale s inou kritickou hodnotou Tá kritická hodnota závisí od počtu dát zmení sa, ak rovnica (1) obsahuje konštantu a/alebo lineárny trend Vo všeobecnosti: y t = α+βt+(ρ 1)y t 1 +u t Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.19/27
20 Testovanie jednotkového koreňa AR(p) proces: y t = α 1 y t 1 +α 2 y t α p y t p +u t jednotkový koreň α α p =1. Upravíme do tvaru: y t = ρy t 1 +θ 1 y t 1 +θ 2 y t θ p 1 y t p+1 +u t, kde ρ= p j=1 α j, θ i = p j=i+1 α j pre i=1,...,p 1 Ekvivalentne: y t =(ρ 1)y t 1 +θ 1 y t 1 +θ 2 y t θ p 1 y t p+1 +u t a zaujíma nás t-štatistika z koeficienta pri y t 1 Vo všeobecnosti: y môže mat trend a/alebo intercept y t = α+βt+(ρ 1)y t 1 +θ 1 y t 1 +θ 2 y t θ p 1 y t p+1 +u t Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.20/27
21 Augmented Dickey-Fuller test (ADF) Wayne A. Fuller (1976) David A. Dickey, Wayne A. Fuller (1979, 1981) Odhadujeme rovnicu y t = α+βt+(ρ 1)y t 1 +θ 1 y t θ k y t k +u t pričom musíme rozhodnút, či zahrnút konštantu α a/alebo lineárny trend β (podl a toho, či ich obsahuje proces y) určit k Zaujíma nás potom t-štatistika zo signifikancie koeficienta pri y t 1, ale so správnymi kritickými hodnotami Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.21/27
22 ADF test - kritické hodnoty James G. MacKinnon (1991) - dostupné ako súčast doplnenej verzie z roku 2010: James G. MacKinnon: Critical Values for Cointegration Tests. Queen s Economics Department Working Paper No. 1227, Dostupné online: Simulačne získané hodnoty: Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.22/27
23 ADF test - kritické hodnoty Ak v regresii používame T dát, kritická hodnota je β +β 1 /T+β 2 /T 2 V našom príklade zo simuácií: konštanta bez trendu, T=200: pre 1 percento: / /200 2 = pre 5 percent: / /200 2 = Porovnajme s t-rozdelením (úplne iné) a s kvantilmi zo simulácií (ok) Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.23/27
24 ADF test v R-ku Knižnica urca Funkcia ur.df (ur - unit root, df - Dickey-Fuller) s parametrami: type: možnosti sú drift (konštanta bez lineárneho trendu), trend (konštanta aj lineárny trend), none (nič) lags: maximálny počet lagov selectlags: kritérium, podl a ktorého sa vyberá počet lagov (informačné kritériá: AIC, BIC) Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.24/27
25 ADF test v R-ku Príklad: spread z predchádzajúcich prednášok (rozdiel dlhodobej a krátkodobej úrokovej miery) Príkaz: summary(ur.df(spread,type="drift",lags=8,selectlags="bic") summary preto, aby sme dostali aj kritické hodnoty, nielen testovaciu štatistiku Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.25/27
26 ADF test v R-ku Výstup: odhadnutá regresia a z nej získaná hodnota testovacej štatistiky: Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.26/27
27 ADF test v R-ku Výstup: hodnota testovacej štatistiky a kritické hodnoty: Kritérium: Hypotézu o jednotkovom koreni zamietame, ak je štatistika menšia ako kritická hodnota. Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.27/27
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Modelovanie dynamickej podmienenej korelácie kurzov V4
Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.
HANA LAURINCOVÁ KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP Štatistika Poistná matematika
UNIVERZITA KOMENSKÉHO, BRATISLAVA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KATEDRA POISTNEJ MATEMATIKY A ŠTATISTIKY PARCIÁLNA A MNOHONÁSOBNÁ KORELÁCIA: KLASICKÝ VS. NEPARAMETRICKÝ PRÍSTUP (Bakalárska práca)
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Časové rady Ján Pekár Prednáška 6 Odhady parametrov
Prednáška 6 Odhady parametrov Predošlá prednáška Výberová PACF Rekurzívne metódy: Durbin-Levinson Reprezentácia inovácií Rekurzívne metódy: Algoritmus inovácií Príklad: Algoritmus inovácií pre predpoveď
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Viktória Rusnáková Porovnání přesných a asymptotických testů Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN
CDF(BIVNORM or CHISQ or DICKEYF or F or NORMAL or T or WTDCHI, DF=CHISQ T, DF1=F, DF2=F, NLAGS= Dickey-Fuller, NOB=, NVAR=, RHO=BIVNORM, EIGVAL=WTDCHI, LOWTAIL or UPTAIL or TWOTAIL, CONSTANT, TREND, TSQ,
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Základy práce s ekonometrickým programom GRETL
Základy práce s ekonometrickým programom GRETL Martin Lukáčik, Viktor Slosiar GRETL je voľne dostupný softvérový produkt so zameraním na štatistické metódy podporujúci ekonometrické analýzy 1. Samotný
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ. Zdroje: Kompendium statistického zpracování dat, VPS s r. o.
TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ Zdroje: Kompendium statistického zpracování dat, VPS s r. o. Témy prednášky ŠTATISTIKA, HYPOTÉZA TESTY ŠTATISTICKÝCH HYPOTÉZ (Testy štatistickej významnosti) t-test (STUDENTOV)
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
OLS. University of New South Wales, Australia
1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Panelové dáta v programe EViews
Panelové dáta v programe EViews Martin Lukáčik, Adriana Lukáčiková, Karol Szomolányi Panelové dáta sú kombinované prierezové a časové údaje. Pri panelových údajoch existuje časový rad pre každú entitu
Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)
ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
5. Partial Autocorrelation Function of MA(1) Process:
54 5. Partial Autocorrelation Function of MA() Process: φ, = ρ() = θ + θ 2 0 ( ρ() ) ( φ2, ) ( φ() ) = ρ() φ 2,2 φ(2) ρ() ρ() ρ(2) = φ 2,2 = ρ() = ρ() ρ() ρ() 0 ρ() ρ() = ρ()2 ρ() 2 = θ 2 + θ 2 + θ4 0
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Riadenie zásobníkov kvapaliny
Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q)
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια 1 ΥΠΟΔΕΙΓΜΑΤΑ
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Επαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)
Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i
Numerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh
Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta
Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)
ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Planárne a rovinné grafy
Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák
Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
Obsah. Motivácia a definícia. Metódy výpočtu. Problémy a kritika. Spätné testovanie. Prípadová štúdia využitie v NBS. pre 1 aktívum pre portfólio
Value at Risk Obsah Motivácia a definícia Metódy výpočtu pre 1 aktívum pre portfólio Problémy a kritika Spätné testovanie Prípadová štúdia využitie v NBS Motivácia Ako kvantifikovať riziko? Nakúpil som
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΣ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΩΝ ΥΠΗΡΕΣΙΩΝ «Μακροχρόνιες διακυμάνσεις στις τιμές αργού πετρελαίου και ναύλων και διαχείριση χαρτοφυλακίου» Διπλωματική
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Μοντελοποίηση των αποδόσεων των κρατικών ομολόγων των χωρών της Ευρωζώνης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ & ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μοντελοποίηση των αποδόσεων των κρατικών
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Κρίση και Κατάρρευση στην Ελλάδα του Μεσοπολέµου: Πεπρωµένο ή ολέθρια σφάλµατα? Νίκος Χριστοδουλάκης
Κρίση και Κατάρρευση στην Ελλάδα του Μεσοπολέµου: Πεπρωµένο ή ολέθρια σφάλµατα? Νίκος Χριστοδουλάκης Μάϊος 212 Γιατί θεωρούν µοιραία την έξοδο από το Ευρώ? Roubini (211): «Με την σηµερινή λιτότητα και
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Príručka ku kurzu SPÔSOBILOSŤ PROCESU
E+6 E+5 E+ E+ E+ E+ E+ E- Príručka ku kurzu SPÔSOBILOSŤ PROCESU E- E- E- E-5 E-6 E-7 E-8,5,7,9,,,5,7,9,,,5 ÚVOD Z noriem a inej literatúry je známych mnoho postupov, ako stanoviť spôsobilosť procesu. Existuje
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500