Cap. 2 Sisteme radiante. Capitolul 2
|
|
- Εὔα Αποστολίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Cap. 2 Sisteme radiante
2 Cuprins mecanisme de radiație metode de analiză radiația dipolului electric parametrii fundamentali ai antenelor tipuri constructive de antene
3 2.1. Introducere antenă = sistem (dispozitiv) utilizat la emisia și/sau recepția undelor electromagnetice (radio) structură de tranziție între sursa de emisie și spațiul liber spațiul liber și receptor tipuri de antene cu conductor filiform (dipol liniar, buclă, elice) cu apertură (fantă, segment de ghid, horn piramidal sau tronconic) rețele de antene antene cu suprafețe reflectante antene cu lentile focalizatoare antene microstrip
4 2.1. Introducere
5 2.1.1 Mecanismul de radiație mecanismul prin care câmpul electromagnetic generat de sursă și ghidat spre antenă se desprinde pentru a forma o undă electromagnetică de spațiu liber Fie un conductor liniar în care sarcina electrică cu densitatea ρ v se deplasează cu viteza v; densitatea de curent în conductor este (5.1.1) J = v v pentru un conductor foarte subține, densitatea de sarcină devine liniară ρ l și (5.1.2) J = l v Dacă J este constant, atunci nu există radiație; pentru un curent variabil în timp într-un conductor de lungime l se poate scrie (5.1.3) dj dt = dv l dt = l a (5.1.4) l dj dt =l l a
6 2.1.1 Mecanismul de radiație pentru a se obține radiație electromagnetică trebuie să existe curent variabil în timp sau mișcare accelerată a sarcinii în cazul unui curent constant: nu există radiație pentru un conductor rectiliniu și infinit există radiație pentru un conductor curb, neomogen sau de lungime finită și neadaptat
7 2.1.1 Mecanismul de radiație
8 2.1.2 Dipol electric liniar în linia bifilară, câmpurile emise de fiecare conductor se anulează reciproc deoarece conductorii sunt apropiați crescând distanța dintre conductori, câmpul radiat devine nenul dipolul liniar (obținut prin îndoirea liniei la 90 ) face parte din categoria structurilor cu undă staționară jumătățile de dipol sunt în antifază și vor emite în spațiul liber sumându-se l=λ/2 dipol acordat, randament maxim
9 2.1.2 Dipol electric liniar lungimea electrică a unui dipol
10 2.1.3 Metode de analiză Metoda ecuațiilor integrale (Integral Equations IE) necunoscuta este parte a integrandului adecvată antenelor cu conductori filiformi și cu lungime mică (~λ) se parcurg 2 etape: formularea analitică completă a problemei metode numerice de rezolvare a ecuațiilor (de ex. metoda momentelor) cele mai cunoscute variante: ecuații integrale pentru câmpul electric (Electric Field Integral Equations EFIE) condiții la limită pentru câmpul electric tangențial ecuații integrale pentru câmpul magnetic (Magnetic Field Integral Equations MFIE) condiții la limită pentru curentul electric indus
11 2.1.3 Metode de analiză Metoda difracției (bazată pe teoria geometrică a difracției) Geometrical Theory of Diffraction GTD, extensie a Geometrical Optics GO adecvată antenelor de dimensiuni mari (>>λ) introduce mecanisme de difracție în optica geometrică pentru a evita limitările acesteia Metode hibride
12 2.2 Radiația dipolului electric dipolul electric de lungime foarte mică este sursă elementară de radiație se utilizează coordonate sferice
13 2.2 Tipuri de dipol electric dipol infinitezimal: l<λ/50 (curent constant) dipol mic: λ/50<l<λ/10 (curent triunghiular) dipol cu undă staționară: λ/2<l<4λ (curent sinusoidal)
14 Se utilizează potențialul vector rezolvând ecuația Helmholtz neomogenă (2.2.1) 2 A z r k 2 0 A z r = 0 J z, k 0 = 0 0 se presupune că, pentru distanțe mari (r>>l) A z (r, φ, θ) = A z (r) și se obține [ 1 d d r 2 dr r2 dr k ] (2.2.2) 2 A r = J 0 z 0 z Se face apel la funcția Green scalară ce satisface ecuația (în coordonate sferice): și are forma 2.2 Dipolul electric; funcția Green (2.2.3) [ 2] 1 d d r 2 dr r2 dr k G 0 0 r = r (2.2.4) G 0 r = e jk 0 r 4 r
15 2.2 Dipolul electric; funcția Green Soluția ecuației (2.2.1) este de forma (2.2.5) A z r = 0 4 unde V 0 este volumul ce conține sursa. e jk 0 r I 0 l este numit momentul dipolului electric infinitezimal pentru un dipol mic (cu distribuție de curent triunghiulară) r V 0 J z dv 0 Pentru un dipol infinitezimal parcurs de un curent constant I 0 se obține l /2 (2.2.6) J z dv 0 = I 0 dl=i 0 l l /2 V 0 (2.2.7) I z z ={ I 0 1 2z/l, 0 z l /2 I 0 1 2z/l, l /2 z 0
16 2.2 Dipolul electric; curenți și pentru (2.2.6) se obține (2.2.8) 0 l /2 l /2 I 0 1 2z/l dz 0 I 0 1 2z/l dz= I 0 l 2 în continuare se va utiliza doar relația pentru dipolul infinitezimal pentru potențialul vector se va obține (2.2.9) A z r = 0l I 0 4 e jk 0 r r câmpul electromagnetic se determină din (2.2.10) H r = 1 0 A z r (2.2.11) E r = j A z r j 0 0 A z r
17 2.2 Dipolul electric în coordonate sferice (2.2.12) A z r = k A z r = r cos sin A z r = A r A (2.2.13) A r = r A z cos, A = A z sin se au în vedere transformările de coordonate (2.2.14) [ r ]=[ sin cos sin sin cos ] cos cos cos sin sin sin cos 0 [ i j k ] și (2.2.15) A z r =[ 1 r r ra 1 r A r ]
18 2.2 Dipolul electric; componente câmp câmpul magnetic este atunci (2.2.16) H r =H r = l I jk r 1 r 2 e jk r 0 sin în locul relației (2.2.11) este preferabilă utilizarea ecuației Maxwell (2.2.17) și având în vedere (2.2.18) H r = H = r [ E r = 1 j 0 H r 1 rsin H sin ] [ 1 r r ] r H se obține (2.2.19) E r = j l I k 0 jk 0 r 1 2 r 3 e jk r 0 cos r j l I k 0 k 2 0 r jk 0 r 1 2 r 3 e j k 0r sin
19 2.2 Dipolul electric; zone de câmp spațiul liber din jurul antenei este divizat în trei zone: zona apropiată reactivă zona apropiată de emisie (Fresnel) zona îndepărtată de emisie (Fraunhofer) Se consideră zona îndepărtată pentru care k 0 r >>1 zonele apropiate corespund termenilor în r -2 și r -3 zona îndepărtată corespunde termenilor în r -1 din (2.2.16) și (2.2.19) se obțin pentru zona îndepărtată (2.2.20) H r =H r = jk 0 l I 0 e jk r 0 sin 4 r (2.2.21) E r =E = j k 0 l I 0 0 e jk r 0 sin 4 r relații ce satisfac ecuația undelor sferice (2.2.22) 0 H r = r E r
20 2.3 Parametrii fundamentali ai antenelor Frecvența de lucru și banda de trecere În intervalul de frecvențe în care adaptarea antenei la fider se realizează cu un factor de undă staționară mai mic de 1,1 se consideră că antena funcționează corect Frecvența de lucru f 0 este frecvența pentru care antena este perfect adaptată la fider =1 Banda de trecere B este dată de variația relativă a frecvenței pentru care antena funcționează corect (2.3.1) B= f max f min f Diagrame de radiație = f f 0 = f f 0 [ 100%] reprezentarea (tridimensională) a unei funcții F(θ,ϕ) a valorilor relative ale intensității câmpului sau ale puterii radiate în raport cu unghiurile θ și ϕ pentru valori constante ale distanței r de la punctul de măsură (în zona Fraunhofer) și antenă, raportate la valorile maxime corespunzătoare
21 2.3.2 Diagrame de radiație se utilizează diagrame bidimensionale care reprezintă curbe obținute prin secționarea suprafețelor în plane adecvat selectate Diagrame de câmp E, (2.3.2) F E, = E M pentru dipolul electric se obține E, (2.3.3) F E, = = sin E /2,
22 Diagrame de putere (2.3.4) Diagrame de radiație E, 2 F P, = E M 2 Puterea radiată de antenă în zona îndepărtată este dată de vectorul Poynting (2.3.5) P, = 1 2 R E H * = 1 2 li 0 2 k 0 2 Z 0 4 r 2 sin 2 r iar pentru dipol (2.3.6) F P, = P, P /2, =sin2
23 2.3.3 Directivitate deschiderea unghiulară = unghiul θ0 dintre punctele de pe diagramă în care puterea radiată scade cu 3dB față de puterea maximă Directivitatea Intesitatea de radiaţie pe direcţia, (5.3.7) D, = Intesitatea de radiaţie a sursei izotrope = P, Intensitatea de radiație pe o direcție dată este definită ca puterea radiată de antenă în unitatea de unghi solid și este egală cu produsul dintre densitatea de radiație (egală cu vectorul Poynting mediat, real) și pătratul distanței până în punctul respectiv: P 0
24 2.3.3 Directivitate (2.3.8) P, =r 2 S r, [W /sr ] Puterea totală radiată de antenă în zona îndepărtată este (2.3.9) P= P, ds S unde S este o suprafață ce înconjoară complet antena. Pentru un radiator izotrop (2.3.10) de unde (2.3.11) P 0 = S P 0, ds=p 0 P 0 =P 0 /4 cu care directivitatea devine D, = P, (2.3.12) P 0 d =4 P 0 =4 P, P 0
25 2.3.3 Directivitatea dipolului electric pentru dipolul electric, puterea radiată este (2.3.13) P= l I 0 2 k din (2.3.13) (2.3.8) se găsește pentru dipol: (2.3.14) sin 2 d d = l I 0 2 k D, =4 l I 0 2 k sin 2 /32 k li 0 2 /12 = 3 2 sin2 pe direcția de maximă intensitate de radiație θ 0 = π/2, ϕ 0 =0 directivitatea este maximă: (2.3.15) D max =D 0 = P max P 0 =4 P max P =1,5 se definesc directivități parțiale pe direcțiile de polarizare D 0 =D D (2.3.16)
26 2.3.4 Câștigul antenei Câștigul pe o anumită direcție este definit ca raportul dintre intensitatea de radiație a antenei și intensitatea de radiație a unei antene izotrope, ambele alimentate cu aceeași putere Pin: (2.3.17) G, = P, =4 P, P 0 P in =const P in Câștigul unei antene este un parametru ce descrie eficiența antenei, pe când directivitatea măsoară doar proprietățile directive ale acesteia Dacă prin η A se notează randamentul sau eficiența globală antenei, definit prin raportul dintre puterea radiată de antenă și puterea aplicată acesteia (2.3.18) A =P / P in câștigul poate fi scris sub forma (2.3.19) G, = A 4 P, = P A D,
27 2.3.4 Câștigul antenei câștigul maxim se va afla pe direcția de maximă directivitate sau de radiație maximă (2.3.20) G, max =G M = A D 0 eficiența antenei η A este dată de (2.3.21) A = c d R η c pierderile în conductori η d pierderi în dielectrici η R = 1- Γ 2 pierderi prin reflexie
28 2.3.5 Impedanța de intrare impedanța pe care o are antena la punctul de conectare cu linia de alimentare, fiind în general o mărime complexă (2.3.22) Z A =R A j X A
29 2.3.5 Impedanța de intrare în condiții de adaptare jumătate din puterea captată este furnizată sarcinii propriuzise iar cealaltă jumătate (P+P P ) este împrăștiată (radiată) (P) și disipată pe rezistența de pierderi (P P ) la antenă fără pierderi (R P =0) numai jumătate din puterea recepționată ajunge pe sarcină iar cealaltă jumătate este reradiată (împrăștiată), de unde noțiunea de arie efectivă
30 2.3.6 Polarizarea polarizarea undelor emise de către antenă pe direcția specificată (dacă direcția nu este specificată atunci se ia direcția de directivitate maximă)
31 2.4 Tipuri de antene
32 2.4 Dipolul radiant
33 2.4 Antena în sfert de lambda și dipolul îndoit
34 2.4 Arii de antene; controlul fazei
35 2.4 Arii de antene; controlul fazei
36 2.4 Arii de antene
37 2.4 Arii de antene; dipol cu reflector
38 2.4 Antene Yagi
39 2.4 Antene cu reflector diedru
40 2.4 Antene cu reflector paraboloid
41 2.4 Antene Horn
42 2.4 Lentile
43 2.4 Arii de lentile
44 2.4 Antene microstrip
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale. Copyright Paul GASNER 1
2. Ecuaţii de propagare a câmpului electromagnetic. Noţiuni fundamentale Copyright Paul GASNER 1 Ecuaţii Helmholtz pentru medii omogene, izotrope şi infinite Unde electromagnetice plane Unde armonice plane
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor. Copyright Paul GASNER 1
9. Interacţiunea câmpului electromagnetic de înaltă frecvenţă cu substanţa. Polarizarea dielectricilor Copyright Paul GASNER 1 Cuprins Mecanisme de polarizare a dielectricilor Polarizarea electronică şi
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.
Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Interferenta undelor sau Despre cuplarea a doua antene.
Interferenta undelor sau Despre cuplarea a doua antene. 1 Bazele teoriei cuplarii antenelor sint similare interferentei undelor invatata in liceu in clasa a 11-a, in capitolul de compunere a oscilatiilor.
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Maşina sincronă. Probleme
Probleme de generator sincron 1) Un generator sincron trifazat pentru alimentare de rezervă, antrenat de un motor diesel, are p = 3 perechi de poli, tensiunea nominală (de linie) U n = 380V, puterea nominala
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Circuite electrice in regim permanent
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede
2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar
Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,
vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Ecuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE
STDIL FENOMENLI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE Energia electrică este transportată şi distribuită la consumatori sub formă de tensiune alternativă. În multe aplicaţii este însă necesară utilizarea
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Studiul câmpului magnetic în exteriorul unui conductor liniar foarte lung parcurs de un curent electric. Verificarea legii lui Biot şi Savart
Legea lui Biot şi Savart Studiul câmpului magnetic în exteriorul unui conductor liniar foarte lung parcurs de un curent electric. Verificarea legii lui Biot şi Savart Obiectivul experimentului Măsurarea
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Propagarea Interferentei. Frecvente joase d << l/(2p) λ. d > l/(2p) λ d
1. Introducere Sunt discutate subiectele urmatoare: (i) mecanismele de cuplare si problemele asociate cuplajelor : cuplaje datorita conductiei (e.g. datorate surselor de putere), cuplaje capacitive si
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL
7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in
Reflexia şi refracţia luminii.
Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular
IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.
II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)
Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Circuite cu diode în conducţie permanentă
Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea
Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
Lucrul mecanic şi energia mecanică.
ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al
Transformări de frecvenţă
Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
Examen. Site Sambata, S14, ora (? secretariat) barem minim 7 prezente lista bonus-uri acumulate
Curs 12 2015/2016 Examen Sambata, S14, ora 10-11 (? secretariat) Site http://rf-opto.etti.tuiasi.ro barem minim 7 prezente lista bonus-uri acumulate min. 1pr. +1pr. Bonus T3 0.5p + X Curs 8-11 Caracteristica
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA. Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ
UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică şi Telecomunicaţii EXAMEN LICENŢĂ SPECIALIZAREA ELECTRONICĂ APLICATĂ 2015-2016 UNIVERSITATEA POLITEHNICA DIN TIMIŞOARA Facultatea de Electronică
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Fig Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30].
Fig.3.43. Dependenţa curentului de fugă de temperatură. I 0 este curentul de fugă la θ = 25 C [30]. Fig.3.44. Dependenţa curentului de fugă de raportul U/U R. I 0 este curentul de fugă la tensiunea nominală
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Control confort. Variator de tensiune cu impuls Reglarea sarcinilor prin ap sare, W/VA
Control confort Variatoare rotative electronice Variator rotativ / cap scar 40-400 W/VA Variatoare rotative 60-400W/VA MGU3.511.18 MGU3.559.18 Culoare 2 module 1 modul alb MGU3.511.18 MGU3.559.18 fi ldeş
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Stabilizator cu diodă Zener
LABAT 3 Stabilizator cu diodă Zener Se studiază stabilizatorul parametric cu diodă Zener si apoi cel cu diodă Zener şi tranzistor. Se determină întâi tensiunea Zener a diodei şi se calculează apoi un stabilizator
Capitolul 4 Amplificatoare elementare
Capitolul 4 mplificatoare elementare 4.. Etaje de amplificare cu un tranzistor 4... Etajul emitor comun V CC C B B C C L L o ( // ) V gm C i rπ // B // o L // C // L B ro i B E C E 4... Etajul colector
Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1
Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener
Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare
Transformata Laplace
Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate