LETNA PRIPRAVA. 8. razred devetletke. Ivan Narat, OŠ Tončke Čeč. Marjana Dornik, Tihana Smolej, Maja Turk, Majda Vehovec
|
|
- Ναβουχοδονόσορ Ανδρέου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Šolsko leto 2012/2013 LETNA PRIPRAVA MATEMATIKA 8. razred devetletke Ivan Narat, OŠ Tončke Čeč Marjana Dornik, Tihana Smolej, Maja Turk, Majda Vehovec KOCKA 8, učbenik Marjana Dornik, Tihana Smolej, Maja Turk, Majda Vehovec KOCKA 8, delovni zvezek OŠ TONČKE ČEČ Keršičeva Trbovlje Tel.: 03/ , fax: 03/
2 SKLOPI PO UČNEM NAČRTU TEMA Št. ur Geometrija in merjenje 35 Aritmetika in algebra 71 Druge vsebine 14 Skupaj 120 Nerazporejenih je 20 ur.
3 TEMA: GEOMETRIJA IN MERJENJE Učenci v tretjem vzgojno-izobraževalnem obdobju: utrjujejo pretvarjanje merskih enot in jih povežejo z reševanjem geometrijskih nalog; razvijajo geometrijske predstave v ravnini in prostoru; razvijajo uporabo geometrijskega orodja pri načrtovalnih geometrijskih nalogah; razvijajo strategije geometrijskih konstrukcij z uporabo geometrijskega orodja; opisujejo postopek geometrijske konstrukcije; razvijajo natančnost in spretnost pri računanju neznanih količin pri likih in telesih. SKLOP: GEOMETRIJSKI POJMI opišejo večkotnik in ga označijo (oglišča, stranice, kote, diagonale), poznajo vsoto notranjih in zunanjih kotov večkotnika, usvojijo pojem pravilni večkotnik, poznajo in uporabljajo strategije načrtovanja večkotnikov, uporabljajo strategije za računanje obsega in ploščine večkotnika (npr. uporaba obrazca, merjenje, preoblikovanje na znane like), razumejo pomen števila π, izračunajo obseg in ploščino kroga z uporabo obrazcev, izračunajo dolžino krožnega loka in ploščino krožnega izseka z uporabo obrazcev, razumejo in uporabljajo dolžino krožnega loka kot del dolžine krožnice ter ploščino krožnega izseka kot del ploščine kroga, rešijo besedilne naloge v povezavi s krogom (z računalom in brez njega), poznajo lastnosti pravokotnega trikotnika in imena stranic, poznajo Pitagorov izrek in ga uporabljajo pri računanju neznane dolžine stranice v pravokotnem trikotniku, rešijo besedilne naloge z uporabo Pitagorovega izreka v ravnini (z računalom in brez njega), poznajo osnovne pojme pri kocki in kvadru, izračunajo površino in prostornino kocke in kvadra (z računalom in brez njega), uporabljajo Pitagorov izrek pri reševanju nalog o kocki in kvadru, uporabljajo obrazec za površino in prostornino kocke in kvadra za izračun neznanih količin. Večkotnik Krog, krožnica Krožni izsek, krožni lok Kocka Kvader Pitagorov izrek SKLOP: TRANSFORMACIJE Transformacije v večkotnikih
4 Tema: ARITMETIKA IN ALGEBRA Učenci v tretjem vzgojno-izobraževalnem obdobju: usvojijo številske predstave in računske operacije v množici realnih števil, spoznajo odnose med številskimi množicami, usvojijo osnove linearne funkcije, formalno (z uporabo pravil) rešujejo linearne enačbe, uporabljajo odstotni (procentni) račun, premo in obratno sorazmerje v problemskih situacijah, usvojijo temeljno znanje o algebrskih izrazih. SKLOP: REALNA ŠTEVILA utemeljijo razloge za razširitev množice naravnih števil, celo (racionalno) število preberejo in upodobijo na številski premici (realni osi), racionalnemu številu poiščejo nasprotno vrednost, ugotovijo, kateri množici števil pripada dano število, racionalnemu številu določijo absolutno vrednost, poznajo in uporabljajo znak za absolutno vrednost, uredijo števila po velikosti, spoznajo iracionalna števila (le informativno), oblikujejo ali nadaljujejo dano zaporedje v množici celih števil, uporabljajo žepno računalo pri računanju z negativnimi števili, ločijo med množicami N, Z, Q, R in razumejo odnos med njimi ( ). Cela števila Absolutna vrednost Racionalna števila Iracionalna števila Realna števila Urejenost števil Zaporedja SKLOP: RAČUNSKE OPERACIJE IN NJIHOVE LASTNOSTI na številski osi ponazorijo vsoto celih oziroma racionalnih števil, seštevajo cela števila in poznajo vsoto nasprotnih števil, prevedejo odštevanje racionalnih števil v seštevanje in poenostavijo izraz z odpravljanjem oklepajev, izračunajo vrednost izraza s celimi števili (seštevanje in odštevanje), seštevajo in odštevajo racionalna števila, pomnožijo celo oziroma racionalno število z ( 1), pomnožijo celi oziroma racionalni števili, izračunajo zmnožek celih (racionalnih) števil, uporabljajo in razumejo dogovor o opuščanju znaka za množenje, poiščejo danemu celemu oziroma racionalnemu številu obratno vrednost, delijo celi oziroma racionalni števili, z žepnim računalom zanesljivo izvajajo računske operacije z racionalnimi števili.
5 Seštevanje in odštevanje celih in racionalnih števil Množenje in deljenje celih in racionalnih števil Računske operacije s celimi števili Računske operacije s celimi in z racionalnimi števili SKLOP: IZRAZI izračunajo vrednost številskih izrazov, razumejo pomen spremenljivk v izrazih, prepoznajo izraze s spremenljivkami, izračunajo vrednost izraza s spremenljivkami za izbrane vrednosti spremenljivk, v izrazu prepoznajo in razlikujejo člene in faktorje, računajo z algebrskimi izrazi: seštevajo, odštevajo, množijo enočlenik z veččlenikom, izpostavijo skupni faktor, opazujejo vzorce, ugotovijo pravilo in ga zapišejo z algebrskim izrazom. Številski izrazi Preprosti algebrski izrazi Vzorci SKLOP: ODSTOTNI (PROCENTNI) RAČUN TER PREMO IN OBRATNO SORAZMERJE prepoznajo in opredelijo premo in obratno sorazmerje, s sklepanjem rešijo besedilne naloge o premem in obratnem sorazmerju, narišejo graf premega in obratnega sorazmerja (tabela), poznajo povezavo med odstotnim (procentnim) računom in premim sorazmerjem ter rešijo naloge z odstotki (določanje celote, odstotka in deleža); opredelijo in zapišejo razmerje dveh količin, poenostavijo razmerje, Premo in obratno sorazmerje SKLOP: POTENCE razumejo zapise zelo velikih in zelo majhnih števil, uporabljajo računalo za računanje s števili, ki so zapisana kot potence, zapišejo zmnožek enakih faktorjev kot potenco in obratno, poznajo pojme: osnova, eksponent, potenca in vrednost potence, izračunajo vrednost potence (osnova je lahko celo število, ulomek, decimalno število ali kvadratni koren števila), razložijo razliko med zapisoma in,, kvadrirajo racionalno število, izračunajo kvadratni koren popolnih kvadratov manjših števil, rešijo enačbo oblike, izračunajo z računalom kvadratni koren pozitivnega racionalnega števila, utemeljijo rezultat korenjenja s kvadriranjem,
6 uporabljajo kvadriranje in korenjenje kot obratni računski operaciji, ocenijo korene nepopolnih kvadratov z različnimi strategijami, delno korenijo, racionalizirajo imenovalec ulomka, računajo kvadratni koren z žepnim računalom ter izračunajo vrednost izraza, kjer nastopajo kvadratni koreni, poznajo zapis,, množijo in delijo potence z enakimi osnovami, potencirajo zmnožek in ulomek, uporabljajo pravila za potenciranje v izrazih s potencami, izračunajo izraze s potencami (npr. ). Številski izrazi Preprosti algebrski izrazi Vzorci SKLOP: FUNKCIJA upodobijo točko z dano koordinato na realni osi, uporabljajo izraze: koordinatni sistem, koordinatni osi (abscisa, ordinata), upodobijo točko z danima koordinatama v ravnini, preberejo koordinati dane točke v koordinatnem sistemu in ju zapišejo kot urejen par števil, poznajo in uporabljajo pojma neodvisna in odvisna spremenljivka, berejo grafe, upodobijo množice točk, ki ustrezajo pogojem a x, x a, a x b na številski osi, k besedilu sestavijo algebrski izraz, ga tabelirajo in narišejo ustrezen graf. Koordinatni sistem v ravnini Medsebojna odvisnost količin Funkcije realne spremenljivke Graf funkcije SKLOP: ENAČBE IN NEENAČBE rešijo enačbe oblike: a x = b, x a = b, a x = b, x a = b, x a = b, a : x = b, (a 0, x 0, a, b Q) in naredijo preizkus, prepoznajo identično ter ekvivalentno enačbo, rešijo neenačbe: a x, x a, a x b v množici celih števil; Linearne enačbe in neenačbe
7 Tema: DRUGE VSEBINE Učenci v tretjem vzgojno-izobraževalnem obdobju: uporabljajo orodja za obdelavo podatkov in razvijajo kritičen odnos do njihove uporabe, uporabljajo merila za sredino in razpršenost, na primerih spoznajo statistično verjetnost, rešujejo kombinatorične probleme povezane z življenjskimi situacijami, razvijajo bralne sposobnosti: bralno razumevanje, odnos do branja, interes za branje, razvijajo bralne strategije: prelet, vprašanja, branje, ponovni pregled, poročanje, rešujejo odprte in zaprte probleme: berejo besedilo, oblikujejo vprašanja, analizirajo podatke, matematično zapišejo postopek reševanja, grafično predstavijo podatke, kritično vrednotijo rešitev, oblikujejo odgovor, modelirajo, preiskujejo vzorce in razvijajo matematično mišljenje: prostorsko predstavljivost in abstraktno mišljenje, razvijajo ustvarjalnost in samoiniciativnost, povezujejo znanje različnih predmetnih področij. Sklop: ZBIRANJE, UREJANJE IN PREDSTAVITEV PODATKOV razberejo podatke iz prikazov in jih interpretirajo, pri reševanju problemov izberejo in izdelajo primeren prikaz za predstavitev podatkov, uporabljajo primerne prikaze in tabele za prikaz življenjskih situacij (populacija, sprememba tečaja valute, bruto družbeni proizvod, rast prebivalstva itd.), izdelajo prikaz z računalniško preglednico, kritično razmišljajo o orodjih za prikazovanje podatkov, razvijajo kritični odnos do interpretacije rezultatov, izdelajo empirično preiskavo; Grafi Empirična preiskava Sklop: MERILA ZA SREDINO IN RAZPRŠENOST razumejo in uporabijo aritmetično sredino pri reševanju matematičnih problemov, razumejo in uporabijo aritmetično sredino v realističnih kontekstih, kritično ovrednotijo rešitev problema (pomen aritmetične sredine); Aritmetična sredina
8 Sklop: MATEMATIČNI PROBLEMI IN PROBLEMI Z ŽIVLJENJSKIMI SITUACIJAMI Pri reševanju besedilnih nalog (problemov) je poudarek na branju z razumevanjem. uporabljajo geometrijsko znanje za reševanje življenjskih problemov (konstrukcija strehe, površina zemljišča itd.), uporabljajo pretvarjanje merskih enot pri reševanju matematičnih problemov in problemov iz življenjskih situacij, uporabljajo pretvarjanje merskih enot pri reševanju geometrijskih problemov, rešijo indirektne besedilne naloge, modelirajo fizične objekte z geometrijskimi modeli (npr. fizični model strehe modeliramo z geometrijskim modelom piramide), samostojno oblikujejo vzorce, opazujejo in prepoznajo pravilo v vzorcu in vzorec nadaljujejo, prepoznajo pravilo v vzorcu, poiščejo posplošitev in zapišejo algebrski izraz. Matematični problemi in problemi z življenjskimi situacijami (odprti, zaprti) Geometrijski problemi z življenjskimi situacijami Modeliranje (geometrijski modeli) Vzorci
9 Minimalni standardi za 8. razred Učenec: 1. Uporablja cela in racionalna števila v življenjskih situacijah. 2. Poišče nasprotno in obratno vrednost števila. 3. Primerja in ureja cela števila. 4. Izračuna vrednost številskega izraza s celimi in racionalnimi števili (z največ tremi računskimi operacijami). 5. Upošteva prednost računskih operacij v izrazu. 6. Uporablja žepno računalo za izračun vrednosti številskega izraza. 7. Potencira cela in racionalna števila. 8. Pozna kvadratni koren popolnega kvadrata (do števila 20). 9. Sešteva, odšteva in množi enočlenike. 10. Izračuna vrednost izraza s spremenljivko, če je znana vrednost spremenljivke. 11. Množi enočlenik z dvočlenikom. 12. V koordinatni mreži upodobi točko, narisani točki odčita koordinati. 13. Prepozna odvisnost količin. 14. Pozna in uporablja lastnosti premega sorazmerja. 15. Bere podatke iz različnih prikazov in jih uredi v preglednici. 16. Pozna lastnosti večkotnika in ga opiše. 17. Izračuna obseg in ploščino kroga. 18. Uporablja Pitagorov izrek. 19. Izdela model kocke in kvadra. 20. Izračuna površino in prostornino kocke in kvadra. 21. Uporablja skico pri reševanju geometrijskih nalog. 22. Reši matematični problem in problem z življenjsko situacijo.
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραOSNOVNA ŠOLA ZBORA ODPOSLANCEV Trg zbora odposlancev 28, 1330 Kočevje Tel.: Fax:
OSNOVNA ŠOLA ZBORA ODPOSLANCEV Trg zbora odposlancev 28, 1330 Kočevje Tel.: 01 895 17 94 Fax: 01 893 13 48 e-mail: os.zbodp@guest.arnes.si MATEMATIKA Letna priprava za 9. razred devetletke Šolsko leto:
Διαβάστε περισσότεραMATEMATIKA KURIKUL ZA ŠOLSKO LETO 2008/2009 POSLOVNO-KOMERCIALNA ŠOLA CELJE POKLICNA IN STROKOVNA ŠOLA
POSLOVNO-KOMERCIALNA ŠOLA CELJE POKLICNA IN STROKOVNA ŠOLA KURIKUL ZA ŠOLSKO LETO 2008/2009 MATEMATIKA PROGRAM: SREDNJE POKLICNO IZOBRAŽEVANJE: ADMINISTRATOR in TRGOVEC Letnik Število ur 1. 99 OPERATIVNI
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραMATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Διαβάστε περισσότεραKotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.
DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni
Διαβάστε περισσότερα6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil?
USTNA VPRAŠANJA IZ MATEMATIKE šolsko leto 2005/2006 I. NARAVNA IN CELA ŠTEVILA 1. Naštejte lastnosti operacij v množici naravnih števil. Primer: Izračunajte na dva načina vrednosti izrazov 2. Opišite vrstni
Διαβάστε περισσότεραLJUDSKA UNIVERZA NOVA GORICA
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA 1 1. del EKONOMSKI TEHNIK PTI gradivo za interno uporabo Pripravila: Mateja Strnad Šolsko leto 2011/12 KAZALO 1 ŠTEVILA... 1 1.1 NARAVNA IN CELA ŠTEVILA... 1 1.1.1
Διαβάστε περισσότεραMATEMATIKA. Predmetni izpitni katalog za splošno maturo
Ljubljana 2015 MATEMATIKA Predmetni izpitni katalog za splošno maturo Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 2017, dokler ni določen novi. Veljavnost kataloga za leto,
Διαβάστε περισσότεραKotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Διαβάστε περισσότεραNa pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
Διαβάστε περισσότερα*N * MATEMATIKA. razred NAVODILA ZA VREDNOTENJE. Sreda, 4. maj Državni izpitni center. NACIONALNO PREVERJANJE ZNANJA v 9.
Državni izpitni center *N1614012* 9. razred MATEMATIKA Sreda, 4. maj 2016 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA v 9. razredu RIC 2016 2 N161-401--2 SPLOŠNA NAVODILA Prosimo, da najprej
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότερα1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA
1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v množici naravnih števil. 2. Kakšen je vrstni red računskih operacij v množici celih števil?
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραSEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραŠOLSKI CENTER NOVO MESTO
ŠOLSKI CENTER NOVO MESTO Srednja elektro šola in tehniška gimnazija M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 006/007 NARAVNA ŠTEVILA Katera števila imenujemo naravna števila? Naštejte
Διαβάστε περισσότεραGimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Διαβάστε περισσότεραVPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE
VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE ŠTEVILSKE MNOŽICE NARAVNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v N. Osnovne računske operacije so seštevanje in množenje (+, *): a) ZAKON O
Διαβάστε περισσότεραPREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA
PREDMETNI IZPITNI KATALOG ZA POKLICNO MATURO MATEMATIKA Predmetni izpitni katalog je določil Strokovni svet RS za splošno izobraževanje na 60. seji 27. 8. 2003 in se uporablja v programih za pridobitev
Διαβάστε περισσότεραMatematika pri maturi iz fizike, taksonomija in banka nalog
Matematika pri maturi iz fizike, taksonomija in banka nalog Aleš Mohorič FMF, Univerza v Ljubljani Projekt Scientix (2012-2015) črpa sredstva iz okvirnega programa Evropske unije za raziskave in razvoj
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραMatematika. Predmetni izpitni katalog za poklicno maturo
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega roka 009, dokler ni dolo~en novi. Veljavnost kataloga za leto, v katerem bo kandidat opravljal
Διαβάστε περισσότεραPredmetni izpitni katalog za poklicno maturo Matematika
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 09, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat
Διαβάστε περισσότεραIgra števil in oblik 5. Priročnik za učitelje v 5. razredu osnovne šole
Igra števil in oblik 5 Priročnik za učitelje v 5. razredu osnovne šole IGRA ŠTEVIL IN OBLIK 5 Priročnik za 5. razred osnovne šole Avtorice: Nataša Centa, Jožica Frigelj, Maja Rakun Beber, Tina Klavs Kožuh,
Διαβάστε περισσότεραPredmetni izpitni katalog za poklicno maturo Matematika
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 07, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat
Διαβάστε περισσότεραMatematika. Predmetni izpitni katalog za poklicno maturo
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 0, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότεραPredmetni izpitni katalog za poklicno maturo Matematika
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega izpitnega roka 04, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat
Διαβάστε περισσότεραD f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,
Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga
Διαβάστε περισσότεραMatematika. Predmetni izpitni katalog za poklicno maturo
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega roka 0, dokler ni določen novi. Veljavnost kataloga za leto, v katerem bo kandidat opravljal
Διαβάστε περισσότεραcot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
Διαβάστε περισσότεραPONOVITEV SNOVI ZA NPZ Matematika 6. razred
PONOVITEV SNOVI ZA NPZ Matematika 6. razred Avtorica: Jelka Županec Šola: VIZ II. OŠ Rogaška Slatina Kazalo. NARAVNA ŠTEVILA... 4. DESETIŠKE ENOTE... 4.2 RAČUNSKE OPERACIJE... 5.2. SEŠTEVANJE... 5.2.2
Διαβάστε περισσότερα*P173C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE ZIMSKI IZPITNI ROK. Ponedeljek, 5. februar Državni izpitni center POKLICNA MATURA
Državni izpitni center *P7C0* ZIMSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Ponedeljek, 5. februar 08 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότερα*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P093C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 11. februar 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Διαβάστε περισσότεραDržavni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
Διαβάστε περισσότερα= Števila 264, 252, 504 zapiši kot produkt praštevil in poišči njihov skupni največji delitelj in
PRIPRAVA NA POM REALNA ŠTEVILA in PKS. Izračunaj: ( ( ) ( )) (( ) ) [ ] ( ( ) ) 4 0 ( ) ( ) 4 + 6 7 4 + + 4 + = 0 4 0 ( + ) 5 + ( 0) ( ) + (( 5) + ( ) ( ) ) = [ ]. Poenostavi in rezultat razstavi: ( +
Διαβάστε περισσότεραJože Berk, Jana Draksler in Marjana Robič. Skrivnosti števil in oblik. Priročnik v 6. razredu osnovne šole
Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Priročnik v 6. razredu osnovne šole 6 Jože Berk, Jana Draksler, Marjana Robič Skrivnosti πtevil in oblik 6 PriroËnik za 6. razred osnovne
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραLJUDSKA UNIVERZA NOVA GORICA MATEMATIKA
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA Matematika za drugi letnik srednjega strokovnega izobraževanja -interno gradivo- Avtor: Samo Žerjal Nova Gorica, februar 016 KAZALO 1 Potenčna funkcija... 1.1 Kvadratna
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότερα*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P03C0* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 0. februar 0 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραNEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Διαβάστε περισσότερα*P172C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE JESENSKI IZPITNI ROK. Petek, 25. avgust Državni izpitni center POKLICNA MATURA
Državni izpitni center *P7C0* JESENSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Petek, 5. avgust 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE nalog
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραVaje iz MATEMATIKE 2. Vektorji
Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo
Διαβάστε περισσότεραPONOVITEV SNOVI ZA NPZ
PONOVITEV SNOVI ZA NPZ ENAČBE 1. naloga : Ugotovi ali sta dani enačbi ekvivalentni! 5x 5 = 2x 2 in 5 ( x - 1 ) = 2 ( x 1 ) da ne 2. naloga : Reši linearni enačbi in napravi preizkusa! a) 5 4x = 2 3x PR:
Διαβάστε περισσότερα*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P101C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 5. junij 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
Διαβάστε περισσότεραDržavni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat
Διαβάστε περισσότεραDr`avni izpitni center MATEMATIKA. Izpitna pola. Sobota, 2. junij 2007 / 120 minut brez odmora
[ifra kandidata: Dr`avni izpitni center *P071C10111* SPOMLADANSKI ROK MATEMATIKA Izpitna pola Sobota,. junij 007 / 10 minut brez odmora Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese s seboj
Διαβάστε περισσότεραMatematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Διαβάστε περισσότεραMODERIRANA RAZLIČICA
Državni izpitni center *N10140122* REDNI ROK MATEMATIKA PREIZKUS ZNANJA Torek, 4. maj 2010 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA ob koncu 2. obdobja MODERIRANA RAZLIČICA RIC 2010 2 N101-401-2-2
Διαβάστε περισσότεραPRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2
3 4 PRIMER UPORABE FUNKCIJ Upogibni moment 2. FUNKCIJE ENE SPREMENLJIVKE T (x) =F A qx M(X )=F A x qx2 2 1 2 DEFINICIJA IN LASTNOSTI FUNKCIJE Naj bosta A in B neprazni množici. Enolična funkcija f : A
Διαβάστε περισσότεραVAJE IZ MATEMATIKE za študente gozdarstva. Martin Raič
VAJE IZ MATEMATIKE za študente gozdarstva Martin Raič OSNUTEK Kazalo 1. Ponovitev 2 2. Ravninska in prostorska geometrija 5 3. Linearna algebra 7 4. Ponavljanje pred kolokvijem 8 M. RAIČ: VAJE IZ MATEMATIKE(GOZDARSTVO)
Διαβάστε περισσότερα*P171C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Sobota, 3. junij Državni izpitni center POKLICNA MATURA
Državni izpitni center *P7C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Sobota,. junij 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE
Διαβάστε περισσότεραDefinicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Διαβάστε περισσότεραFunkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.
II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi
Διαβάστε περισσότεραKOTNI FUNKCIJI SINUS IN COSINUS
Univerza v Ljubljani Fakulteta za matematiko in fiziko KOTNI FUNKCIJI SINUS IN COSINUS Seminarska naloga pri predmetu Komuniciranje v matematiki Avtor: Zalka Selak Mentor: prof. dr. Tomaţ Pisanski KAZALO:
Διαβάστε περισσότεραDržavni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
Διαβάστε περισσότεραSproščeno srečanje in izmenjava prvih vtisov. Režim v novem šolskem letu:
1. ura Tema: Uvodna ura Oblika: Poglavje: 1. Prva ura po poletnih počitnicah: Sproščeno srečanje in izmenjava prvih vtisov. Režim v novem šolskem letu: 2. Učbeniki. kontrolne naloge spraševanje 3. Hiter
Διαβάστε περισσότεραEnačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Διαβάστε περισσότερα*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P09C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 6. junij 009 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Διαβάστε περισσότεραMatematika za 4. letnik srednjega strokovnega izobraževanja -interno gradivo-
LJUDSKA UNIVERZA NOVA GORICA Matematika za 4. letnik srednjega strokovnega izobraževanja -interno gradivo- Avtor: Samo Žerjal Nova Gorica, november 016 KAZALO 1 Trigonometrija... 3 1.1 Grafi in lastnosti
Διαβάστε περισσότερα1. UREJENE OBLIKE KVADRATNE FUNKCIJE
1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραMatematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Διαβάστε περισσότεραOsnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1.
Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 1. marec 2010 Obvestila. http://um.fnm.uni-mb.si/ Prosojnice se lahko spremenijo v tednu po predavanjih.
Διαβάστε περισσότεραČas reševanja je 75 minut. 1. [15] Poišči vsa kompleksna števila z, za katera velja. z 2 +2 z +2 i 2 = Im. 1 2i
Bolonjski univerzitetni program Smer: KT K WolframA: DA NE Računski del izpita pri predmetu MATEMATIKA I Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.
Διαβάστε περισσότεραMatematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραDržavni izpitni center MATEMATIKA PREIZKUS ZNANJA. Sreda, 4. maj 2016 / 60 minut
Š i f r a u č e n c a : Državni izpitni center *N16140131* 9. razred MATEMATIKA PREIZKUS ZNANJA Sreda, 4. maj 016 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero ali
Διαβάστε περισσότεραOdvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:
4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah
Διαβάστε περισσότεραDržavni izpitni center MATEMATIKA PREIZKUS ZNANJA. Ponedeljek, 8. maj 2017 / 60 minut
Š i f r a u č e n c a : Državni izpitni center *N17140131* 9. razred MATEMATIKA PREIZKUS ZNANJA Ponedeljek, 8. maj 017 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero
Διαβάστε περισσότεραK U P M Metka Jemec. Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta
U K 20 P K U P M 2 0 1 2 ROZETA 12 M Metka Jemec Konferenca o učenju in poučevanju matematike, M a r i b o r, 2 3. i n 2 4. avgusta 2 0 1 2 Kaj je rozeta? Rozeta je oblika vzorca, narejena v obliki simetrične
Διαβάστε περισσότερα- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότεραStatistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo
Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki
Διαβάστε περισσότερα*P113C10111* MATEMATIKA. Izpitna pola. Torek, 7. februar 2012 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P113C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Torek, 7. februar 01 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
Διαβάστε περισσότεραFunkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραMatematika. BF Lesarstvo. Zapiski ob predavanjih v šolskem letu 2010/2011
Matematika BF Lesarstvo Matjaž Željko Zapiski ob predavanjih v šolskem letu 00/0 Izpis: 9 avgust 0 Kazalo Števila 5 Naravna števila 5 Cela števila 6 3 Racionalna števila 6 4 Realna števila 7 5 Urejenost
Διαβάστε περισσότεραCilji vaje. Osnovni pojmi. Načini grafičnega prikaza podatkov: Načini numeričnega prikaza podatkov: 2. vaja: OPISNA STATISTIKA OB UPORABI MS EXCEL
. vaja: OPISA STATISTIKA OB UPORABI MS EXCEL asist. ejc Horvat, mag. farm. Cilji vaje ačini grafičnega prikaza podatkov: prikaz s stolpci, krogi, trakovi,.. histogram, stolpčni diagram, kvantilni diagram
Διαβάστε περισσότεραvezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραPOROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Διαβάστε περισσότεραFIZIKA NAVODILA ZA OCENJEVANJE
Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A
Διαβάστε περισσότεραSplošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Διαβάστε περισσότεραOsnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
Διαβάστε περισσότεραGEOMETRIJA V RAVNINI DRUGI LETNIK
GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,
Διαβάστε περισσότεραMODERIRANA RAZLIČICA
Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA
Διαβάστε περισσότεραDeljivost naravnih števil
Deljivost naravnih števil. D = {,,, 4, 6, }, V = {, 4, 6, 48, 60 }. (A) in (E). a) S številom so deljiva števila:, 0, 0 in 060. S številom so deljiva števila: 0, 460, 000 in 46. c) S številom 4 so deljiva
Διαβάστε περισσότερα