PONOVITEV SNOVI ZA NPZ
|
|
- Ευδώρα Βλαστός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 PONOVITEV SNOVI ZA NPZ ENAČBE 1. naloga : Ugotovi ali sta dani enačbi ekvivalentni! 5x 5 = 2x 2 in 5 ( x - 1 ) = 2 ( x 1 ) da ne 2. naloga : Reši linearni enačbi in napravi preizkusa! a) 5 4x = 2 3x PR: b ) 5 ( m + 1 ) 3 = 2m + 3 PR : 3. naloga : Reši linearno enačbo! Pazi na oklepaje! Napravi preizkus! 5 (3x 1 ) - 2( x + 1 ) = naloga : Reši linearno enačbo in napravi preizkus! x x naloga : Reši linearno enačbo z ulomki! Pazi, kako odpravljaš ulomke! x 2 2 x naloga : Reši enačbo, rešitev preveri s preizkusom! (8 x + 3 )( x 1 ) = 8x ( x 2 ) PR: 7. naloga : Če trikratniku nekega števila prištejemo 5, dobimo isto, kot če od štirikratnika istega števila odštejemo 3. Izračunaj neznano število! Enačba: Odgovor: 7. naloga : Oče je trikrat starejši od hčere in štirikrat starejši od sina. Skupaj imajo 57 let. Koliko je star vsak od njih? Enačba: Odgovor: 8. naloga : Mati ima 48 let in je štirikrat starejša od hčere. Pred koliko leti je bila sedemkrat starejša od hčere? Enačba : Odgovor: 9. naloga : Na jadrnici so za potovanje pripravili zalogo živeža. Prvi dan so porabili zaloge, drugi dan, tretji dan, četrti dan. Tako je ostalo 3 kg hrane Kako veliko zalogo so pripravili? 10.naloga : Reši linearni enačbi in napravi preizkusa! a) x - 13 = 17x x Preizkus: b ) 43a + 4 = 15 ( 5y - 4 ) Preizkus: 3
2 11. naloga : Reši linearno enačbo! Pazi na oklepaje! 8 ( 2a - 1 ) - 17 ( 3 - a ) = 16 ( - 3a - 2 ) Preizkus: 12. naloga : Reši linearno enačbo in napravi preizkus! 2x 5x 1 x Preizkus : 13. naloga : Reši linearno enačbo z ulomki! Pazi, kako odpravljaš ulomke. 12x 1 13x naloga : Reši enačbo, rešitev preveri s preizkusom! ( 4x 7)(5x 16) (9x 10)(2x 3) Preizkus: Pri naslednjih nalogah najprej iz besedila izlušči enačbo, jo reši in nato zapiši odgovor! 15. naloga : Če od razlike petkratnika števila in 25 odštejemo osemkratnik števila, dobimo isto, kot če od števila odštejemo 65. Za katero število to velja? 16. naloga : Mati ima 40 let in je štirikrat starejša od hčere. Pred koliko leti je bila sedemkrat starejša od hčere? PITAGOROV IZREK 1. naloga : Obseg kvadrata meri 40 cm. Izračunaj dolžino njegove diagonale! 2. naloga:. Izračunaj višino na osnovnico enakokrakega trikotnika, če meri osnovnica 6,6m, krak pa 6,5 m. 3. naloga : Dan je romb z diagonalama e = 30 cm in f = 16 cm. Natančno izračunaj obseg romba! 4. naloga : Skupina vrvohodcev bi rada speljala s 55 m visokega stolpa 280 m dolgo žico na tla. V kolikšni razdalji od stolpa bi žica dosegla tla, če se ne bi nič povesila? 5. naloga Izberi črko pred pravilno izjavo! A a + b = c B a 2 + b 2 = c C c 2 + b 2 = a 2 D a = a b 6. naloga : Ploščina kvadrata meri 144 cm 2. Izračunaj dolžino njegove diagonale!
3 7. naloga: Izračunaj osnovnico enakokrakega trikotnika, če meri višina 2,1 m, krak pa 2,9 m! 8. naloga : Dan je romb s stranici a = 13 cm in f = 24 cm. Izračunaj drugo diagonalo romba in njegovo ploščino! 9. Poimenuj posamezne stranice pravokotnega trikotnika! s r p - r - p s - Zapiši Pitagorov izrek za trikotnik na zgornji sliki : 10. Izračunaj dolžino hipotenuze c v pravokotnem trikotniku s katetama a = 8 cm in b = 6 cm! 11. Na eno decimalko izračunaj dolžino diagonale v kvadratu s stranico a = 4,4 cm! 12. Izračunaj višino na osnovnico enakokrakega trikotnika, če meri osnovnica 2 m, krak pa 2,6 m! 13. Dan je romb z diagonalama e = 6 cm in f = 4 cm. Natančno izračunaj obseg romba! 14. Kako daleč od zidu moraš prisloniti 5 m dolgo lestev, da lahko splezaš 4 m visoko? 15. Višina enakostraničnega trikotnika meri 5 3 cm. Izračunaj njegovo stranico, ploščino in obseg! 16. Ploščina enakokrakega trikotnika je enaka ploščini enakostraničnega trikotnika s stranico a = 4 3 cm, njegova višina pa meri 6 cm. Izračunaj njegovo osnovnico in krak! 17. V pravokotnem trikotniku izračunaj tretjo stranico! a ) k = 4 cm g = 3 cm b) c = 10 cm b = 6 cm 18. Izračunaj diagonalo in ploščino kvadrata s stranico 3 dm! 19. V pravokotniku z obsegom 20 dm meri stranica a = 3 dm. Izračunaj stranico b in diagonalo tega pravokotnika! 20. Dan je enakostranični trikotnik s stranico a = 5 cm. Izračunaj njegovo višino, obseg in ploščino!
4 21. V rombu meri diagonala e 8 cm, diagonala f pa 6 cm. Izračunaj stranico a in ploščino romba! 22. Dan je enakokraki trikotnik s stranico c = 4 cm in stranico b = 5 cm. Izračunaj višino! 23. Dan je enakokraki trikotnik s stranico c = 4 cm in višino v = 3 cm. Izračunaj stranico b! 24. V rombu meri diagonala e 10 cm, diagonala f pa 6 cm. Izračunaj stranico a in ploščino romba! 25. V pravokotniku s ploščino 40 cm 2 meri stranica a = 5 cm. Izračunaj stranico b in diagonalo tega pravokotnika. 26. a ) Izračunaj dolžino hipotenuze c v pravokotnem trikotniku s katetama a = 8 cm in b = 6 cm! b ) Ali je dana trojica števil pitagorejska trojica? 11,13, Daljša osnovnica enakokrakega trapeza meri 62 m, krajša pa 32 m. Krak meri 50 m. Izračunaj višino in ploščino tega trapeza! ,2 m dolg drog se je prelomil tako, da je njegov vrh padel 5,6 m od vznožja Na kateri dolžini se je prelomil drog? 29. Kako dolgo ravno palico lahko spravimo v 1 m široko, 60 cm globoko in 2,1 m visoko omaro? Dolžino palice zaokroži na cm. LINEARNA FUNKCIJA 1. Tabeliraj linearno funkcijo y = -x - 3 za vrednosti x od -3 do 3! x y 2. Ugotovi, ali dane točke ležijo na grafu linearne funkcije. a ) T ( 5, 9 ) y = x + 4 DA NE b ) T ( - 1, 3 ) y = - 2x + 1 DA NE 3. V koordinatnem sistemu nariši grafa naslednjih funkcij. Določi k in n za obe funkciji! 2 2 y = - 2x -+ 1 y = x y = 3x - 1 y - x 4 = Zapiši enačbo premice, ki poteka skozi točki ter izračunaj razdaljo med točkama A in B! A(- 2, 5) in B( 0, 4) A(- 1, 8 ) in B( 2, -5)
5 5. Razvrsti črke pred podatki premic glede na strmino grafa. Prični z najmanjšo strmino! ( a ) y = 2x +5 ( b ) y = 0 ( c ) k = - 2, n = - 7 ( d ) y = x 6. Grafično in računsko določi presek premic a ) y = - 3 x +2 in y = 2x - 5 b ) y = - x + 7 in y - 4x + 3 = 0 7. Iz grafa linearne funkcije določi začetno vrednost n in smerni koeficient k, ter zapiši njeno enačbo! 8. Določi (grafično in računsko ) presečišče premice y = 2x 3 z ordinatno in abscisno osjo! Izračunaj ploščino trikotnika, ki ga ta premica oklepa s koordinatnima osema! 9. Zapiši enačbo premice, ki poteka skozi točki A ( 2, 4 ) in B ( 0, 5 ) ter je vzporedna premici y = 3x 4! OSNOVNI GEOMETRIJSKI POJMI 1. V ravnini leže točke A, B, C. Skozi A in B nariši premico. Koliko vzporednic k premici AB lahko potegneš skozi točko C? ( A ) nobene ( B ) samo eno ( C ) nešteto ( D ) se ne da narisati 2. Pravokotnica iz točke P prebode ravnino v točki N. Točka B leži v ravnini, tako da je BN = 9m in BP = 15 m. Kolikšna je razdalja točke P od ravnine? ( A ) 3 m ( B ) 15 m (C ) 12 m ( Č ) 20 m 3. Poglej sliko in napiši vse pare: a ) vzporednic: b ) sečnic : c ) mimobežnic: a b c 4. Izberi pravilne trditve. Obkroži jih. A ) Dve različni točki določata eno ravnino. B ) Skozi dve različni točki poteka ena ravnina.
6 C ) Dve vzporedni premici določata eno ravnino. D ) Ravnino določajo tri točke, ki ne ležijo na isti premic E ) Mimobežnici nimata skupnih točk in ležita v isti ravnini. F ) Vzporednici nimata skupnih točk in ležita v isti ravnini. 5. Izberi pravilne trditve. Obkroži jih. A ) Presek dveh nevzporednih ravnin je premica. B ) Vse premice v vodoravni ravnini so vodoravne. C ) Če imata premica in ravnina eno skupno točko, leži premica zagotovo v tej ravnini. D ) Mimobežnici nimata skupnih točk in ležita v isti ravnini E ) Ravnino določajo tri točke, ki ne ležijo na isti premic F ) Ravnina je natančno določena s premico in točko izven nje. 6. Zapiši z matematičnimi simboli in opremi s sliko naslednje izjave: a) Premica a je vzporedna premici b. b ) Premica c je pravokotna na premico d. c ) Točka E leži na premici e. d ) Razdalja med točkama A in B meri 3 cm. e) Premici f in g se sekata v točki A. f )Premica c je pravokotna na premico d. g ) Točka G ne leži na premici g. h )Razdalja med točko A in ravnino meri 3 cm. 7. Pomen vsakega zapisa z matematičnimi znaki izrazi z besedami. a b : d ( A, ) p r T : T p : a b : d ( A, B ) : p A : T p : 8. V prostoru so ravnina in premice a, b, c, d, e in f. Odgovori na vprašanja, če o premicah veš naslednje: Premica a leži v ravnini. Premica b je pravokotna na neko premico, ki leži v ravnini. Premica c je v navpični legi. Premica d je pravokotna na dve sekajoči se premici v ravnini. Premica e prebada ravnino. Premica f leži v ravnini, ki je pravokotna na ravnino.
7 Vprašanja : A ) Katera od teh premic je zagotovo pravokotna na ravnino? B ) Katera od teh premic zagotovo ni pravokotna na ravnini? C ) Za katere od teh premic imamo premalo podatkov, da bi lahko zanesljivo sklepali o njihovi pravokotnosti na ravnino? PODOBNOST, RAZMERJA, SORAZMERJA 1. V kolikšnem razmerju so fantje in dekleta 7. b, če je v razredu 16 deklet in 12 fantov? 2. Poenostavi razmerja a ) 36 : 24 b ) 0.25 : 0.5 c ) 5x : 3x 3. Izračunaj neznani člen sorazmerja a ) 18 : x = 2 : 3 b ) 4 : 6 = u : ( - 2 ) c ) 3 : 4 = 1/8 : v d ) 3 : y = 2 4. Načrt hiše je narisan v merilu 1 : Koliko m 2 meri soba, ki jo v načrtu ponazarja 8 cm dolg in 10 cm širok pravokotnik? 5. Stranici pravokotnika sta v razmerju 3 : 2. Obseg pravokotnika je 70 cm. Ploščina pravokotnika v dm 2 je : a) 14 b ) 1176 c ) 350 d ) 2,9 6. Na daljici MN, ki je dolga 8 cm določi točko T tako, da bo daljico razdelila v razmerju 4 : 3. Koliko merita odseka MT IN TN? 7. Nariši podoben trikotnik A' B' C' trikotniku ABC s podatki: a = 3 cm, b = 3.5 cm, c = 4.5 cm ter a' = 4 cm. 8. Stranice trikotnika ABC merijo 9 cm, 12 cm in 15 cm. Najkrajša stranica podobnega trikotnika meri 4,5 cm. Koliko merita ostali dve stranici podobnega trikotnika? 9. Stranice trikotnika ABC so v razmerju 3 : 4 : 5 : Najdaljša stranica podobnega trikotnika A'B'C' meri 7 dm. Izračunaj še ostali dve stranici podobnega trikotnika! 10. Izračunaj neznani člen danega sorazmerja! a ) 3 : 5 = 15 : x b ) 0.7 : x = 1,2 : Načrt zemjišča je narisan v merilu 1 : Na načrtu meri dolžina zemljišča 6 cm in širina 4 cm. Koliko meri ploščina zemljišča v naravi? 12. Števili sta v razmerju 2:3. Njuna vsota je 75. Za kateri dve števili to velja? 13. Daljici AB in CD sta v razmerju 3 : 4. Daljica AB meri 5 cm. Koliko meri daljica CD?
8 14. V trikotniku ABC merijo stranice 6 cm, 7 cm in 8 cm. V trikotniku A B C pa merijo stranice 2,5 cm, 3,5 cm in 4 cm. Ali sta si trikotnika podobna? Zakaj? 15. Trikotniku ABC s podatki : b = 5 cm, c = 4 cm, α = 60, nariši podoben trikotnik A' B C', če meri b = 6 cm! 16. Stranice trikotnika ABC merijo 9 cm, 12 cm in 15 cm. Najkrajša stranica podobnega trikotnika meri 4,5 cm. Koliko merita ostali dve stranici podobnega trikotnika? 17. Nariši daljico AB = 9 cm in jo razdeli v razmerju 3 : 7. Koliko merita oba odseka. 18. Izračunaj neznani člen danega sorazmerja! a ) x : 5 = 15 : 3 b ) 1.7 : 3.4 = x : V neki zmesi sta snovi a in b v razmerju 3 : 5. Koliko ene in koliko druge snovi je v 64 kg zmesi? 20. Daljici AB in CD sta dolgi 12 cm in 16 cm. V kolikšnem razmerju sta? 21. Kraja sta na zemljevidu oddaljena 15 cm. V naravi je njuna razdalja 450 km. V kolikšnem merilu je narisan zemljevid? 22. Stranice trikotnika ABC merijo 9 cm, 12 cm in 15 cm. Najkrajša stranica podobnega trikotnika meri 4,5 cm. Koliko merita ostali dve stranici podobnega trikotnika? 23. Nariši trikotnik A B C, ki je podoben trikotniku ABC, če meri a = 6 cm, β = 60,γ = 75 in a = 5 cm! 24. V trikotniku ABC merijo stranice 6 cm, 7 cm in 8 cm. V trikotniku A B C pa merijo stranice 2,5 cm, 3,5 cm in 4 cm. Ali sta si trikotnika podobna? Zakaj?
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Vaje iz MATEMATIKE 2. Vektorji
Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
GEOMETRIJA V RAVNINI DRUGI LETNIK
GEOMETRIJA V RAVNINI DRUGI LETNIK 2 1 Geometrija v ravnini 1.1 Osnove geometrije Točka je tisto, kar nima delov. Črta je dolžina brez širine. Ploskev je tisto, kar ima samo dolžino in širino. Osnovni zakoni,
Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.
DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni
Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12
Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola
1 3D-prostor; ravnina in premica
1 3D-prostor; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru, ki nimata skupne
Pravokotni koordinatni sistem; ravnina in premica
Pravokotni koordinatni sistem; ravnina in premica 1. Razmisli, v kakšnih legah so lahko v prostoru: (a) premica in ravnina (b) dve ravnini (c) dve premici.ugotovitve zapiši.. 2. Ali sta premici v prostoru,
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
= Števila 264, 252, 504 zapiši kot produkt praštevil in poišči njihov skupni največji delitelj in
PRIPRAVA NA POM REALNA ŠTEVILA in PKS. Izračunaj: ( ( ) ( )) (( ) ) [ ] ( ( ) ) 4 0 ( ) ( ) 4 + 6 7 4 + + 4 + = 0 4 0 ( + ) 5 + ( 0) ( ) + (( 5) + ( ) ( ) ) = [ ]. Poenostavi in rezultat razstavi: ( +
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA Matematika za drugi letnik srednjega strokovnega izobraževanja -interno gradivo- Avtor: Samo Žerjal Nova Gorica, februar 016 KAZALO 1 Potenčna funkcija... 1.1 Kvadratna
Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim
Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva
Deljivost naravnih števil
Deljivost naravnih števil. D = {,,, 4, 6, }, V = {, 4, 6, 48, 60 }. (A) in (E). a) S številom so deljiva števila:, 0, 0 in 060. S številom so deljiva števila: 0, 460, 000 in 46. c) S številom 4 so deljiva
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
D f, Z f. Lastnosti. Linearna funkcija. Definicija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k,
Linearna funkcija Linearna funkcija f : je definirana s predpisom f(x) = kx+n; k, n ᄀ. k smerni koeficient n začetna vrednost D f, Z f Definicijsko območje linearne funkcije so vsa realna števila. Zaloga
1 Seštevanje vektorjev in množenje s skalarjem
Poglavje I Vektorji Seštevanje vektorjev in množenje s skalarjem Za lažjo geometrično predstavo si najprej oglejmo, kaj so vektorji v ravnini. Vektor je usmerjena daljica, ki je natanko določena s svojo
3.letnik - geometrijska telesa
.letnik - geometrijska telesa Prizme, Valj P = S 0 + S pl S 0 Piramide, Stožec P = S 0 + S pl S0 Pravilna -strana prizma P = a a + av 1 Pravilna -strana prizma P = a + a a Pravilna 6-strana prizma P =
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil?
USTNA VPRAŠANJA IZ MATEMATIKE šolsko leto 2005/2006 I. NARAVNA IN CELA ŠTEVILA 1. Naštejte lastnosti operacij v množici naravnih števil. Primer: Izračunajte na dva načina vrednosti izrazov 2. Opišite vrstni
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
INŽENIRSKA MATEMATIKA I
INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
ŠOLSKI CENTER NOVO MESTO
ŠOLSKI CENTER NOVO MESTO Srednja elektro šola in tehniška gimnazija M A T E M A T I K A USTNA VPRAŠANJA S PRIMERI ZA POKLICNO MATURO 006/007 NARAVNA ŠTEVILA Katera števila imenujemo naravna števila? Naštejte
1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA
1 MNOŽICE ŠTEVIL. NARAVNA, CELA, RACIONALNA, REALNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v množici naravnih števil. 2. Kakšen je vrstni red računskih operacij v množici celih števil?
Univerza na Primorskem Pedagoška fakulteta Koper. Geometrija. Istvan Kovacs in Klavdija Kutnar
Univerza na Primorskem Pedagoška fakulteta Koper Geometrija Istvan Kovacs in Klavdija Kutnar Koper, 2007 PREDGOVOR Pričujoče študijsko gradivo je povzeto po naslednjih knigah Richard S. Millman, George
Matematika. Funkcije in enačbe
Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK
abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
SEMINARSKA NALOGA Funkciji sin(x) in cos(x)
FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.
Državni izpitni center. Osnovna raven MATEMATIKA. Izpitna pola 1. Sobota, 4. junij 2011 / 120 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M11140111* Osnovna raven MATEMATIKA Izpitna pola 1 SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat
Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko
Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan
Afina in projektivna geometrija
fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +
3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.
3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
Jože Berk, Jana Draksler in Marjana Robič. Skrivnosti števil in oblik. Priročnik v 6. razredu osnovne šole
Jože Berk, Jana Draksler in Marjana Robič Skrivnosti števil in oblik Priročnik v 6. razredu osnovne šole 6 Jože Berk, Jana Draksler, Marjana Robič Skrivnosti πtevil in oblik 6 PriroËnik za 6. razred osnovne
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
ZBIRKA REŠENIH NALOG IZ MATEMATIKE II
Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno
VAJE IZ MATEMATIKE za študente gozdarstva. Martin Raič
VAJE IZ MATEMATIKE za študente gozdarstva Martin Raič OSNUTEK Kazalo 1. Ponovitev 2 2. Ravninska in prostorska geometrija 5 3. Linearna algebra 7 4. Ponavljanje pred kolokvijem 8 M. RAIČ: VAJE IZ MATEMATIKE(GOZDARSTVO)
1. UREJENE OBLIKE KVADRATNE FUNKCIJE
1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni
LJUDSKA UNIVERZA NOVA GORICA
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA 1 1. del EKONOMSKI TEHNIK PTI gradivo za interno uporabo Pripravila: Mateja Strnad Šolsko leto 2011/12 KAZALO 1 ŠTEVILA... 1 1.1 NARAVNA IN CELA ŠTEVILA... 1 1.1.1
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA
Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE
VPRAŠANJA ZA POKLICNO MATURO IZ MATEMATIKE ŠTEVILSKE MNOŽICE NARAVNA ŠTEVILA 1. Naštej lastnosti osnovnih računskih operacij v N. Osnovne računske operacije so seštevanje in množenje (+, *): a) ZAKON O
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Osnove matematične analize 2016/17
Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja
*P093C10111* MATEMATIKA. Izpitna pola. Četrtek, 11. februar 2010 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P093C10111* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 11. februar 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
Opisna geometrija II. DVO^RTNI POSTOPEK
Opisna geometrija II. DVO^RTNI POSTOPEK 1 Dvo~rtni postopek Pridru`ni ortogonalni projekciji na: - tlorisno ravnino π 1, - narisno ravnino π 2, - prese~na os x 12. Imena: - Monge-ov postopek (Gaspard Monge,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 2. Sobota, 4. junij 2011 / 90 minut
Š i f r a k a n d i d a t a : Državni izpitni center *M111401* Višja raven MATEMATIKA Izpitna pola SPOMLADANSKI IZPITNI ROK Sobota, 4. junij 011 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese
*P171C10113* MATEMATIKA NAVODILA ZA OCENJEVANJE SPOMLADANSKI IZPITNI ROK. Sobota, 3. junij Državni izpitni center POKLICNA MATURA
Državni izpitni center *P7C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA NAVODILA ZA OCENJEVANJE Sobota,. junij 07 POKLICNA MATURA Državni izpitni center Vse pravice pridržane. P7-C0-- NAVODILA ZA OCENJEVANJE
LJUDSKA UNIVERZA NOVA GORICA. MATEMATIKA 1 2. del. EKONOMSKI TEHNIK PTI gradivo za interno uporabo. Pripravila: Mateja Strnad Šolsko leto 2011/12
LJUDSKA UNIVERZA NOVA GORICA MATEMATIKA 1 2. del EKONOMSKI TEHNIK PTI gradivo za interno uporabo Pripravila: Mateja Strnad Šolsko leto 2011/12 KAZALO 1 POLINOMI... 1 1.1 Polinomi VAJE... 1 1.2 Operacije
POLINOMI ČETRTE STOPNJE IN ZLATI REZ
UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO Smer (Matematika UN-BO) - 1. stopnja Belma Delić POLINOMI ČETRTE STOPNJE IN ZLATI REZ Delo seminarja 1 Mentor: prof. dr. Milan Hladnik Ljubljana,
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
KOTNI FUNKCIJI SINUS IN COSINUS
Univerza v Ljubljani Fakulteta za matematiko in fiziko KOTNI FUNKCIJI SINUS IN COSINUS Seminarska naloga pri predmetu Komuniciranje v matematiki Avtor: Zalka Selak Mentor: prof. dr. Tomaţ Pisanski KAZALO:
Emilija Krempuš. Osnovne planimetrijske konstrukcije. Priročnik
Emilija Krempuš Osnovne planimetrijske konstrukcije Priročnik 2 OSNOVNE PLANIMETRIJSKE KONSTRUKCIJE Osnovne planimetrijske konstrukcije Priročnik Priročnik Osnovne planimetrijske konstrukcije je nastal
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Ponedeljek, 8. maj 2017 / 60 minut
Š i f r a u č e n c a : Državni izpitni center *N17140131* 9. razred MATEMATIKA PREIZKUS ZNANJA Ponedeljek, 8. maj 017 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero
Matematika. Predmetni izpitni katalog za poklicno maturo
Predmetni izpitni katalog za poklicno maturo Matematika Predmetni izpitni katalog se uporablja od spomladanskega roka 009, dokler ni dolo~en novi. Veljavnost kataloga za leto, v katerem bo kandidat opravljal
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
*P101C10111* MATEMATIKA. Izpitna pola. Sobota, 5. junij 2010 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P101C10111* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 5. junij 010 / 10 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
PRIMER UPORABE FUNKCIJ 2. FUNKCIJE ENE SPREMENLJIVKE DEFINICIJA IN LASTNOSTI FUNKCIJE. Upogibni moment. M(X )=F A x qx2 2
3 4 PRIMER UPORABE FUNKCIJ Upogibni moment 2. FUNKCIJE ENE SPREMENLJIVKE T (x) =F A qx M(X )=F A x qx2 2 1 2 DEFINICIJA IN LASTNOSTI FUNKCIJE Naj bosta A in B neprazni množici. Enolična funkcija f : A
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)
7. VAJA IZ MEHANIKE TRDNIH TELES (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Pomik deformabilnega telesa je glede na kartezijski koordinatni sistem
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija
Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.
1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
*P103C10111* MATEMATIKA. Izpitna pola. Četrtek, 10. februar 2011 / 120 minut ZIMSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P03C0* ZIMSKI IZPITNI ROK MATEMATIKA Izpitna pola Četrtek, 0. februar 0 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali
Računski del izpita pri predmetu MATEMATIKA I
Kemijska tehnologija Visokošolski strokovni program Računski del izpita pri predmetu MATEMATIKA I 29. 8. 2013 Čas reševanja je 75 minut. Navodila: Pripravi osebni dokument. Ugasni in odstrani mobilni telefon.
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Torek, 8. maja 2007 / 60 minut. NACIONALNO PREVERJANJE ZNANJA ob koncu 2. obdobja NAVODILA U^ENCU
Š i f r a u ~ e n c a: Državni izpitni center *N0710121* REDNI ROK MATEMATIKA PREIZKUS ZNANJA Torek, 8. maja 2007 / 60 minut Dovoljeno gradivo in pripomo~ki: u~enec prinese s seboj modro/~rno nalivno pero
Državni izpitni center MATEMATIKA PREIZKUS ZNANJA. Sreda, 4. maj 2016 / 60 minut
Š i f r a u č e n c a : Državni izpitni center *N16140131* 9. razred MATEMATIKA PREIZKUS ZNANJA Sreda, 4. maj 016 / 60 minut Dovoljeno gradivo in pripomočki: Učenec prinese modro/črno nalivno pero ali
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi neko število f (x) R.
II. FUNKCIJE 1. Osnovni pojmi 2. Sestavljanje funkcij 3. Pregled elementarnih funkcij 4. Zveznost Kaj je funkcija? Definicija Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja D R priredi
*P091C10111* MATEMATIKA. Izpitna pola. Sobota, 6. junij 2009 / 120 minut SPOMLADANSKI IZPITNI ROK
Š i f r a k a n d i d a t a : Državni izpitni center *P09C0* SPOMLADANSKI IZPITNI ROK MATEMATIKA Izpitna pola Sobota, 6. junij 009 / 0 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA FAKULTETA ZA MATEMATIKO IN FIZIKO DIPLOMSKO DELO ZDENKA MIHELIČ
UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA FAKULTETA ZA MATEMATIKO IN FIZIKO DIPLOMSKO DELO ZDENKA MIHELIČ UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA FAKULTETA ZA MATEMATIKO IN FIZIKO Študijski program: matematika
OSNOVNA ŠOLA ZBORA ODPOSLANCEV Trg zbora odposlancev 28, 1330 Kočevje Tel.: Fax:
OSNOVNA ŠOLA ZBORA ODPOSLANCEV Trg zbora odposlancev 28, 1330 Kočevje Tel.: 01 895 17 94 Fax: 01 893 13 48 e-mail: os.zbodp@guest.arnes.si MATEMATIKA Letna priprava za 9. razred devetletke Šolsko leto: