8.0 PREČNI PREREZI. prof. dr. Darko Beg Sodelavec: Blaž Čermelj. Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo
|
|
- Αγαθων Ζέρβας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije JEKLENE KONSTRUKCIJE I 8.0 PREČNI PREREZI prof. dr. Darko Beg Sodelavec: Blaž Čermelj
2 Razvrščanje prečnih prerezov v štiri razrede kompaktnosti Razred Upogibna nosilnost prereza Globalna analiza 1. razred plastična plastična. razred plastična elastična Rotacijska kapaciteta dovolj velika, da omogoči razvoj porušnega mehanizma omejena, razvoj plastičnega členka (običajno razvoj prvega plastičnega členka) 3. razred elastična elastična ne obstaja 4. razred elastična na sodelujočem prerezu elastična ne obstaja
3 Razvrščanje prečnih prerezov v štiri razrede kompaktnosti pl 1. razred pl,, pl el,. razred 4. razred 3. razred 1. razred θ
4 Razmejitev med vitkimi in semikompaktnimi prerezi p f y cr ni nevarnosti lokalnega izbočenja Upogib in tlak p f y b / (8, 4 k ) Ek t t 1(1 ) b 3,5 f y kn / cm + - t d 1 d / t 4 / ( ) 1 d / t 6 (1 ) Čisti tlak - t d d / t 4 Čisti upogib - d / t 14 + Tlačeni previsni del c t - 14 c Pasnica (tlačena) c t 8 - c
5 1 c/t 7ε c/t 33ε c/t 83ε c/t 38ε 3 c/t 14ε c/t 4ε
6 1 c/t 9ε c/t 9ε/α c/t 10ε/(α ) c/t 10ε c/t 10ε/α c/t 10ε/(α ) 3 c/t 14ε c/t 1ε ), za k σ glej EN
7
8 Vitki prerezi etoda sodelujoče širine (lokalno izbočenje) b eff = b = ()
9 Lokalno izbočenje vitkih prerezov Normalne napetosti u u 1,0 f y 1 p t wo (izbočenje) (linearna teorija izbočenja; idealno ravna, elastična pločevina) fy fy1(1 ) b b 1 p cr 8.4 3,5 f y kn / cm realno obnašanje pločevin - nelinearna teorija izbočenja - postkritična nosilnost E t K t K I II 1,0 III p f y cr I ni lokalnega izbočenja, polna nosilnost f y majhne vitkosti II zmanjšanje nosilnosti zaradi lokalnega izbočenja, vpliv zaostalih napetosti in wo srednje vitkosti III postkritična nosilnost velike vitkosti, nosilnost višja kot pri linearni teoriji izbočenja
10 Vpliv geometrijske nepopolnosti pri vitkih pločevinah crit Idealno ravna pločevina crit Idealno ravna pločevina 1, 0 1, 0 Nepopolna pločevina Nepopolna pločevina w 0 w 0 w Elastični odziv vitkih pločevin Elasto-plastični odziv pločevin
11 Vpliv nepopolnosti Geometrijska nepopolnost - nelinearna teorija izbočenja pločevin
12 Pojem sodelujoče širine max f y 1 b beff / beff / b eff b pri p pri p p p
13 Winterjeva sodelujoča širina Redukcija zaradi nepopolnosti 1 p (linearna teorija izbočenja) = 1 0. / p p (Winter) Postkritična nosilnost p
14 Račun sodelujočih širin Pločevine, prečno podprte ob obeh vzdolžnih robovih: SIST EN : 1, 0 pri 0,5 0, 085 0, 055 p p p 0,055 3 pri p 0,5 0,085 0,055 Pločevine z enim prostim vzdolžnim robom: 1 1 SIST EN : 1, 0 pri 0, 748 p 0,188 p p pri 0,748 p
15 b eff Zveza med in vitkostjo pločevine b p b eff b 1 p 1, 0 1 0,/ p p Podprti vzdolžni rob, ψ = 1 Podprti vzdolžni rob, ψ = 0 Podprti vzdolžni rob, ψ = 1 Prosti vzdolžni rob 0,673 1, 0,0 p
16 Za razporeditve napetosti, ki niso konstantne b b eff (celotne širina je tlačena) - b eff b c (del širine je tlačen - bc) - b + p f ( b) bc
17 Sodelujoča širina pri pločevinah, podprtih ob obeh vzdolžnih robovih
18 Sodelujoča širina pri pločevinah z enim prostim vzdolžnim robom
19 Sodelujoča širina pri pločevinah z enim prostim vzdolžnim robom
20 Sodelujoča širina pri prečnih prerezih Pri vitkih prerezih obravnavamo vsako pločevino zase - sodelujočo širino določimo za vsako pločevino posebej
21 Sodelujoč (efektivni) prerez določen s sodelujočo širino Sodelujoč prerez čisti tlak Sodelujoč prerez čisti moment Račun geometrijskih karakteristik: Aeff, Weff, Jeff Rezultat je sodelujoč prerez, v katerem izbočenih delov pločevin ne upoštevamo. Obravnavamo ga enako kot prereze 3. razreda kompaktnosti.
22 Zaradi nesimetričnega razporeda sodelujočih širin se lahko sodelujočemu prerezu spremeni lega težišča glede na začetni prerez: osna sila e N (samo nesimetrični prerezi); moment e. Razvije se dodatni moment = N e N Račun geometrijskih karakteristik: A eff, W eff, J eff en
23 Nosilnost vitkih prerezov en N Ne f N A W eff eff 0 y 4. razred kompaktnosti
24 Strižna podajnost pasnic shear lag Pri širokih pasnicah se zaradi strižne podajnosti pojavi neenakomeren razpored napetosti (shear lag). Upoštevamo ga lahko z metodo sodelujoče širine v tlaku in nategu.
25 Strižna podajnost Strižno podajnost pri stavbah upoštevamo le izjemoma. Pri standardnih vroče valjanih in podobnih varjenih profilih ga zanemarimo, pri ostalih profilih pa, če je izpolnjen pogoj: Točnejši izračun glej SIST EN
26 Elastična kontrola pri kombinaciji napetosti isesov pogoj tečenja začetek plastifikacije (v eni točki) x, Ed z, Ed x, Ed z, Ed Ed 3 1,0 f / f / f / f / f / y 0 y 0 y 0 y 0 y 0 x,ed = vzdolžna napetost v opazovani točki z,ed = prečna napetost v opazovani točki Ed = strižna napetost v opazovani točki Z X Ta pogoj je v primerjavi s kriterijem plastične nosilnosti prečnega prereza zelo konservativen (npr. interakcija -V).
27 Projektna nosilnost prečnih prerezov Prečni prerezi v nategu (vsi razredi kompaktnosti) Projektna nosilnost bruto prereza: N Af, 1.0 y pl, 0 0
28 Projektna nosilnost neto prereza: N 0.9A, 1.5 net u u, f Pogoj duktilne porušitve: A (bruto) N N pl, u, A net A f 0,9 y f u 0 jeklo S35J S355J S
29
30 Prečni prerezi v tlaku 1.,. in 3. razred kompaktnosti N pl, A f y 0 4. razred kompaktnosti N c, A eff 0 f y
31 Prečni prerezi v enoosnem upogibu 1. in. razred kompaktnosti Ed pl, W pl 0 f y 3. razred kompaktnosti 4. razred kompaktnosti Ed el, W el f 0 y Ed c, Weff 0 f y
32 Strižna nosilnost jeklenih prečnih prerezov Strige prevzemajo predvsem pločevine, vzporedne strižni sili. V Ed V Ed Ed S VEd V f Ed y t II A t d 3 v d t V f A f, ( ) 3 3 pl y v y o
33 Prečni prerezi v strigu a a d V=R V d t d k 4,0 5,34 pri 1, 0 R k 5,34 4,0 pri 1,0 Kompaktna stojina (SIST EN ) Vitka stojina (SIST EN ) d t ali 7, d 31 k, t dt fy Vpl, 3 0 a d d t ali 7 d 31 a k, t d dt f V, f( ) w y bw, w w 3 1 Za jekla S35 do S460 = 1., za jekla višje trdnosti = 1.0
34 1... toga robna podpora... podajna robna podpora Toga robna podpora Podajna robna podpora w 0,83/ 0,83/ w 1,08 0,83/ w 0,83/ w 1, 37 / w 0, 7 1, w 0,83/ w w
35 Določanje uklonske nosilnosti prečnih ojačitev prečna ojačitev pre~na oja~itev N S 1 1 t W stojina b 15 t W 15 t W l u =0.75*b e 1 1 T t W uklonska krivulja c, uklon okoli osi 1-1
36 Površina strižnega prereza Av
37 Površina strižnega prereza Av
38
39 Torzijsko obremenjeni prečni prerezi Ovirana torzija Neovirana torzija T T Ed 1,0 T Ed = T t,ed + T w,ed T t,ed T w, Ed prispevek enakomerne (St. Venantove torzije) prispevek ovirane torzije.
40 Enakomerna torzija - cevi T r t ted, ted, 3 It r t t r ( 1)
41 Enakomerna torzija škatlasti prerezi I t ( h t ) ( bt ) hw tf b tw t t w f w w f ted, ted,, f ( hw tf)( b tw) tf T ted, tedw,, ( hw tf )( b tw) tw T
42 Torzija pri odprtih prerezih 1 ( 3 3 t w w f ) I h t b t 3 ted,, f T ted, I t t T, Ed, Ed 1, 5 h bt f f f b t h I 4 tedw,, 3 f f T, Ed ted, f I t t BEd b t h f w /6
43 Torzijsko obremenjeni prečni prerezi V I in H profili V Ed V pl, T, 1 V 1, 5 f /( 3 ) ted, pl, T, pl, y 0 ted, wed, strižna napetost pri enakomerni torziji strižna napetost pri ovirani torziji U profili V 1 V 1, 5 fy /( 3 0 ) fy /( 3 0 ) ted, wed, pl, T, pl,
44 Nosilnost kompaktnih prerezov ( + N) 1. in. razred kompaktnosti (enoosni upogib) n N / N Ed pl, HEB 800 (šibka os) HEB 00 (šibka os) N, pl, 1 N N Ed pl, HEB 800 (močna os) HEB 00 (močna os) točna zveza / N, pl,
45 Plastična nosilnost za enoosni upogib z osno silo Prerez b y z z h y z b n = N Ed / N pl. y tf z t y n Nivo osne sile 0.5a 0.5 n0.5 ali n0.5a n n a 0.5 a ali n a = (A-bt f )/A ; a 0.5 (I, H profili) a w = (A - bt)/a ; a w 0.5 (HOP) a w = (A-bt f )/A ; a w 0.5 (varjeni) n 0.5a w n0.5 ali n0.5a w 1 n (1 0.5 a) N, y, pl, y, pl, y, N, N, y, pl, y, N, z, pl, z, N, z, pl, z, 1 N, y, pl, y, n a 1 a 1 n N, y, pl, y, pl, y, (1 0.5 aw)
46 Plastična nosilnost za enoosni upogib z osno silo h Prerez z y b tf tw y Nivo osne sile n 0.5a f 0.5 n0.5 ali n0.5a f N, Nz,, plz,, 1 n Nz,, plz,, plz,, (1 0.5 a f ) n 0.15 N, pl, n 0.15 n 1,7 N, pl, 1, 04(1 ) za vse vrednosti n n N, pl, (1 ) n = N Ed / N pl. a f = (A - ht)/a ; a 0.5 (HOP) a f = (A-ht w )/A ; a 0.5 (varjeni)
47 Plastična nosilnost za dvoosni upogib z osno silo
48 Interakcijski diagram za dvoosni upogib z osno silo zed, Nz, I in H profili zed, Nz, Pravokotni votli profili yed, Ny, yed, Ny, kjer je n = N Ed / N pl,
49 Račun geometrijskih karakteristik značilnih prerezov
50
51 W el, norm W W el, i el,max W pl, norm W W pl, i pl,max
52 3. razred kompaktnosti ali N N Ed Ed yed, zed, el, y el, z 0 A W yed, zed, N pl, y, el, z, el, f y 1, 0 4. razred kompaktnosti ali N N e N e f Ed A W W yed, Ed Ny zed, Ed Nz y eff eff, y,min eff, z,min 0 N N e N e Ed A f / W f / W f / yed, Ed Ny zed, Ed Nz eff y 0 eff, y,min y 0 eff, z,min y 0 1.0
53 Interakcija strig, upogib in osna sila f f r r f f 3 y V 3( ) y ht w a) b)
54 Interakcija strig + upogib a) b) SIST EN Plastična nosilnost a) b) SIST EN
55 Interakcija striga in upogiba (vsi razredi kompaktnosti) A f f y Vpliv interakcije pri V Ed 0,5V pl, V Ed 1 V pl, h t hw Aw hw (1-)f y Zaradi striga reducirana upogibna nosilnost: W A pl, y y 4tw yv,, yc,, 0 ali w f V V Ed pl, ( ) f y. c. pl. ( ) ( V ) ( ) ( )(1 ) yv,, f pl, f yc,, Ah f f t f, 1.0 Ed pl,
56 Projektna nosilnost prečnih prerezov, N, V 1.,. RAZRED KOPAKTNOSTI y x h w t w x N f y 0 Ed (1 ) pl, w, R e d, 1 y t f x y w Ed pl, N, f, pl, w, Re d, 0 y V 1 Ed Vpl, V pl, A f v y 0 / 3
57 3. RAZRED KOPAKTNOSTI N Ed 1, 0 N N N Ed yed, pl, el, y, yed, w, pl, el, y, pl, ali poenostavljeno 1, 0 V 1 Ed Vpl, V pl, A f v y 0 / 3 4. RAZRED KOPAKTNOSTI N N e Ed A f / W f / yed, Ed Ny 1, 0 eff y 0 eff y 0 V 1 Ed Vb, V V V b, bw, bf,
58 Projektna nosilnost prečnih prerezov 3. razreda kompaktnosti y, Ed el, y, Poenostavljena in natančna enačba, ρ = 0 Poenostavljena enačba, ρ = 0. Poenostavljena enačba, ρ = 0.4 Poenostavljena enačba, ρ = 0.6 Natančnejša enačba, ρ = 0., HEB 00 Natančnejša enačba, ρ = 0.4, HEB 00 Natančnejša enačba, ρ = 0.6, HEB 00 Natančnejša enačba, ρ = 0., HEB 800 Natančnejša enačba, ρ = 0.4, HEB 800 Natančnejša enačba, ρ = 0.6, HEB N N Ed pl,
Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom
D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno
Varnost v strojništvu
Univerza v Ljubljani - Fakulteta za strojništvo Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo Varnost v strojništvu Stabilnost centrično tlačno obremenjenih palic doc.dr. Boris Jerman,
Tretji del. mag. Anton Pristavec - Kontrola nosilnosti žerjavne proge 3. sklop
Tretji del 1 Tretji del Bočna zvrnitev Izbočenje pločevine (stojina, pasnica) Kontrola vertikalnih in horizontalnih pomikov Utrujanje materiala 2 Bočna zvrnitev 3 TEORIJA Poljudno o bočni zvrnitvi Konstrukcijske
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Optimiranje nosilnih konstrukcij
Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Optimiranje nosilnih konstrukcij Uklon in zvrnitev enoosnih nosilnih elementov doc.dr. Boris Jerman, univ.dipl.inž.str. i.prof.dr. Janez Kramar,
6.0 SPOJI. prof. dr. Darko Beg Sodelavec: Blaž Čermelj. Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije JEKLENE KONSTRUKCIJE I 6.0 SPOJI prof. dr. Darko Beg Sodelavec: Blaž Čermelj Spoji Spoji so v jeklenih konstrukcijah
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
PROJEKTIRANJE GRADBENIH KONSTRUKCIJ PO EVROKOD STANDARDIH
Priročnik za PROJEKTIRANJE GRADBENIH KONSTRUKCIJ PO EVROKOD STANDARDIH urednika Darko Beg Andrej Pogačnik Inženirska zbornica Slovenije 2009 Priročnik za projektiranje gradbenih konstrukcij po evrokod
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
1.4 Glavne normalne napetosti v nosilcu 145. Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote
1.4 Glavne normalne napetosti v nosilcu 145 Smeri glavnih normalnih napetosti vzdolž osi nosilca Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote σ xx = M y z =
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)
386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da
Tehniška mehanika 1 [N]
Tehniška mehanika 1 Osnovni pojmi Togo in deformabilno telo, ter masno središče Obnašanje togega telesa lahko obravnavamo, kot obnašanje točke, v kateri je zbrana vsa masa telesa m. To točko imenujemo
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.
Nosilne konstrukcije. Nosilni elementi, ki so obremenjeni izključno s tlačno obremenitvijo, imajo sledeče lastnosti:
Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Nosilne konstrukcije 3. del: Tlačni elementi doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΧΑΛΥΒΔΙΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ (EN & EN1998-1)
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΧΑΛΥΒΔΙΝΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ (EN 1993-1-1 & EN1998-1) Επιλογή Διατομής υλικά: fy (N/mm 2 ) E (N/mm 2 ) G (N/mm 2 ) γ Μο = 1,00 2 Χάλυβας 1 235 210000 80769 γ Μ1 = 1,00 γ Μ2 = 1,25 13 ύψος στύλου
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
r T = 1. Redukcija sile 2. Telo in težišče telesa
1. Redukcija sile Izračunavanje rezultante porazdeljenih sil je lahko zamudno, mnogokrat si pomagamo tako, da porazdeljeno silo nadomestimo z drugim sistemom sil, ki je enostavnejši, njegov vpliv na opazovano
Aksialne obremenitve DOPUSTNE NAPETOSTI IN DIMENZIONIRANJE
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
TRDNOST (VSŠ) - 1. KOLOKVIJ ( )
TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem
Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M0774* SPOMLDNSKI ROK MEHNIK NVODIL Z OCENJEVNJE Sobota, 9. junij 007 SPLOŠN MTUR RIC 007 M07-74-- PODROČJE PREVERJNJ Navedene vrednosti veličin pretvorite
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sreda, 31. avgust 2011 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M117411* MEHNIK JESENSKI IZPITNI ROK NVODIL Z OCENJEVNJE Sreda, 1. avgust 011 SPLOŠN MTUR RIC 011 M11-741-1- PODROČJE PREVERJNJ 1 Izračunajte vrednosti
IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA
Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks
Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος)
ιδηρές ατασκευές Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Σιδηρές Κατασκευές Ι Διάλεξη 8 Μέλη υπό σύνθετη εντατική κατάσταση. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Διάλεξη 8 έλη υπό σύνθετη εντατική κατάσταση χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Analyse af skrå bjælke som UPE200
Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Ponedeljek, 30. avgust 2010 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M07* MEHNIK JESENSKI IZPITNI ROK NVODIL Z OCENJEVNJE Ponedeljek, 0. avgust 00 SPLOŠN MTUR RIC 00 M0-7-- PODROČJE PREVERJNJ Pretvorite podane veličine
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo
Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2009/2010
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 009/010 BF : Viskokošolski strokovni študij 5 10 09 KINEMATIKA IN DINAMIKA TOČKE Kinematika Osnovne kinematične količine: položaj P, vektor hitrosti
OSNOVE STATIČNE VARNOSTI IN STABILNOSTI KONSTRUKCIJ
7. Posvet Sekcije za gradbeništvo in koordinatorje VZD Celje 23.11.2007 OSNOVE STTIČNE VRNOSTI IN STILNOSTI KONSTRUKCIJ Prof. Dr. Vojko KILR Fakulteta za arhitekturo Ljubljana VSEIN VSEIN...2 1. KONSTRUKCIJE
ARMIRANOBETONSKI NADVOZ PREKO TREH POLJ
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za masivne in lesene konstrukcije Jamova c. 2 1 Ljubljana, Slovenija telefon (1) 476 85 98 faks (1) 425 6 83 ARMIRANOBETONSKI NADVOZ
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda
596 6 Geometrijska nelinearnost nosilcev varnost V E pa z enačbo V E = F E F dej 6.92) Z A x je označena ploščina prečnega prereza nosilca, količina i min je najmanjši vztrajnostni polmer, F dej pa je
4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje)
4. VAJA IZ TRDNOSTI (linearizirana elastičnost, plastično tečenje) NALOGA 1: Eden izmed preizkusov za določanje mehanskih lastnosti materialov je strižni preizkus, s katerim določimo strižni modul G. Vzorec
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
BETONSKE KONSTRUKCIJE I.
UNIVERZA V LJUBLJANI Fakulteta za gradbeništvo in geodezijo izr.prof.dr. Jože Lopatič BETONSKE KONSTRUKCIJE I. (študijsko gradivo, UNI GR_B) Ljubljana, 2012 BK I - Predavanja, 2011/12 1 VRSTE IN ZNAČILNOSTI
OSNOVE STROJNIŠTVA (OST)
OSNOVE STROJNIŠTV (OST) Pripravil vsebine: Uroš Lukič, univ.dipl.inž Velenje, Oktober 010 1 V mehatroniki se v kompleksnih elektromehanskih sistemih prepletajo vsebine strojništva, ki bazirajo na osnovah
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor
TEMELJI Ali se posedajo vsi temelji enako če se ne, zakaj ne? (D2)
TEMELJI 1. Ali se posedajo vsi temelji enako če se ne, zakaj ne? (D2) o vsi temelji se ne posedajo enako zaradi o različnih obtežb o različna nosilnost tal (če so ista temeljna tla se posedata enako) o
JEKLENE KONSTRUKCIJE I 10.0 NATEZNI ELEMENTI
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije JEKLENE KONSTRUKCIJE I 10.0 NATEZNI ELEMENTI prof. dr. Darko Beg Sodelavci: Tomaž Rugelj, Blaž Čermelj Skupine
Σιδηρές Κατασκευές Ι Άσκηση 8 Στύλος πινακίδας σήμανσης υπό στρέψη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Άσκηση 8 τύλος πινακίδας σήμανσης υπό στρέψη χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,
Σιδηρές Κατασκευές Ι Άσκηση 6 Διαστασιολόγηση τεγίδας στεγάστρου. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Άσκηση 6 Διαστασιολόγηση τεγίδας στεγάστρου χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια
Za 20 kv stikališče določite ustrezno enopolno shemo z upoštevanjem naslednjih zahtev:
Falteta za eletroteio i račalištvo Uiverze v Ljbljai Katedra za eletroeergetse sistee i aprave - Laboratorij za eletriča orežja Eletrifiacija - vaje VAJA 8 Za 0 V stiališče določite strezo eopolo seo z
Glavni sistem:obremenjen s prvotno obtežbo: P. δ 10. 3 Pomik δ 10 :δ 10 = P (2L ) Reakciji pri levi in desni podpori: ΣV=0
OGM Metoda sil. METODA SIL. OIS METODE Metoda sil se uporablja za račun statično nedoločenih konstrukcij. V njej kot neznanke nastopajo sile. Namenjena je predvsem ročnemu računanju konstrukcij, ki so
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 014/015 BF : Viskokošolski strokovni študij 6. 10. 14 KINEMATIKA IN DINAMIKA TOČKE Kinematika Položaj točke P, opazovalec O, kartezični koordinatni
POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.
3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti
2η Εφαρμογή. 45kN / m και το κινητό της φορτίο είναι qk. 40kN / m.
Κεφάλαιο ο ΔΟΚΟΙ η Εφαρμογή Δίδεται συνεχής δοκός δύο ίσων ανοιγμάτων. Η διατομή της δοκού είναι αμφίπλευρη πλακοδοκός, όπως φαίνεται στο κατωτέρω σχήμα. Οι ποιότητες των υλικών είναι: Χάλυβας B500c και
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΚΥΚΛΙΚΗΣ ΚΟΙΛΟΔΟΚΟΥ ΓΕΜΙΣΜΕΝΗΣ ΜΕ ΣΚΥΡΟΔΕΜΑ
Διάμετρος διατομής υλικά: f (N/mm 2 ) 6 Χάλυβας 2 235 Σκυρόδεμα 2 2 Διατομή Χάλυβα: 12 Χάλυβας Ο/Σ 3 section 355,6x5, συντελεστές ασφαλείας: D (mm) 355,6 γ a = 1, t (mm) 5, γ c = 1,5 A a (cm 2 ) 55,1 γ
ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4
3 ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 000-0 V.4 4 Περιεχόμενα 5 Ειαγωγή...9 Ανοχή χαλύβων...9 3 Φόριη... 4 Υπολογιμός ε δυναμική θραύη... 4. Ονομαικές άεις (ημιεύρος δυναμικής
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Petek, 28. maj 2010 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M1017411* MEHANIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek, 8. maj 010 SPLOŠNA MATURA RIC 010 M101-741-1- PODROČJE PREVERJANJA A A1
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΔΙΠΛΟΥ ΤΑΥ ΕΓΚΙΒΩΤΙΣΜΕΝΗΣ ΣΕ ΣΚΥΡΟΔΕΜΑ
ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΣΥΜΜΙΚΤΟΥ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΔΙΑΤΟΜΗΣ ΔΙΠΛΟΥ ΤΑΥ ΕΓΚΙΒΩΤΙΣΜΕΝΗΣ ΣΕ ΣΚΥΡΟΔΕΜΑ τύπος διατομής υλικά: f (N/mm 2 ) 3 Χάλυβας 2 235 Σκυρόδεμα 5 35 Διατομή Χάλυβα: 7 Χάλυβας Ο/Σ 3 section HE 2 B συντελεστές
2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2
. VAJA IZ TRDNOSTI (tenzor napetosti) (napetostni vektor, transformacija koordinatnega sistema, glavne normalne napetosti, strižne napetosti, ravninsko napetostno stanje, Mohrovi krogi, ravnotežne enačbe)
ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΣΗΜΕΙΩΣΕΙΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΡΙΤΗ ΕΚΔΟΣΗ ΓΕΩΡΓΙΟΣ Α ΠΑΠΑΓΙΑΝΝΟΠΟΥΛΟΣ Δρ Πολιτικός Μηχανικός ΔΗΜΗΤΡΙΟΣ Ε
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
ZBIRKA NALOG IZ STROJNIH ELEMENTOV I. del
Zoran REN Aleš BELŠAK ZBIRKA NALOG IZ STROJNIH ELEMENTOV I. del ZBIRKA NALOG Maribor 01 Zoran Ren in Aleš Belšak: Zbirka nalog iz strojnih elementov I. del 01 akulteta za strojništvo Naslov publikacije:
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
Σιδηρές Κατασκευές Ι Διάλεξη 9 Στρέψη - Στρέβλωση. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Διάλεξη 9 τρέψη - τρέβλωση χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΜΜΙΚΤΗΣ ΑΜΦΙΕΡΕΙΣΤΗΣ ΔΟΚΟΥ (ΕΝ 1993 & ΕΝ 1994) Χάλυβας Ο/Σ ,15. Χ/Φ Συνδ. Διατμ ,25 HEM
Composite Civil Engineering - Ιωλκού 391, Βόλος τηλ.410 47876 ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΜΜΙΚΤΗΣ ΑΜΦΙΕΡΕΙΣΤΗΣ ΔΟΚΟΥ (ΕΝ 1993 & ΕΝ 1994) σελ.1 ιατομή οκού Υλικά: f (N/mm ) E (N/mm ) τ (Ν/mm ) γi 17 Χάλυβας 1 35 10000-1,00
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.