Optimiranje nosilnih konstrukcij
|
|
- Κανδάκη Μιαούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Optimiranje nosilnih konstrukcij Uklon in zvrnitev enoosnih nosilnih elementov doc.dr. Boris Jerman, univ.dipl.inž.str. i.prof.dr. Janez Kramar, univ.dipl.inž.str. Govorilne ure: pisarna: FS telefon: 01/ boris.jerman@fs.uni-lj.si (Tema/Subject: NK -...) SNOVANJE IN DIMENZIONIRANJE TLAČNO OBREMENJENIH NOSILNIH ELEMENTOV Nosilni elementi, ki so obremenjeni izključno s tlačno obremenitvijo, imajo sledeče lastnosti: niso prvenstveno podvrženi nenadnemu rušenju zaradi nagle plastifikacije ali širjenja razpok; morebitne razpoke so nevarne šele v pogojih nestabilnosti ali ob prisotnosti drugih obremenitev; občutljive so na različne vrste nestabilnosti. 2 1
2 Poznamo naslednje nestabilnostne pojave tlačno obremenjenih elementov: upogibni uklon enoosnih nosilnih elementov (NE) vseh tipov prečnega prereza (PP); upogibno-torzijski uklon enoosnih NE odprtega PP; zvrnitev upogibnih nosilcev odprtega PP; izbočitev ravnih tenkostenih delov enoosnih NE ter večosnih tenkostenih nosilnih konstrukcij; nestabilnost oblike tenkostenih enoosnih in večosnih NE; izbočitev enkrat in dvakrat ukrivljenih tenkostenih delov enoosnih NE in ploskovnih konstrukcij. 3 Nekaj slik nestabilnostnih pojavov: 3b 2
3 Uklon centrično tlačno obremenjenih enoosnih NE Vitkost: ˇ Večji i in manjši l se pri enakem A doseže z votlimi elementi (okrogle, kvadratne in pravokotne cevi ter varjeni elementi škatlastega prereza). 4 Uklonska dožina 8 3
4 k < k a k k 9 Uklonska dolžina : ingengineeringgroupm.blogspot.com/2010/04/buckling-example.html&docid=e- Sa3M8zmCzfJM&imgurl= G&w=800&h=600&ei=psTETpCtEonbsgbVm83hCw&zoom=1&iact=hc&vpx=906&vpy=278&dur=552&hovh=194&hovw=259&tx=139&ty =102&sig= &page=5&tbnh=134&tbnw=178&start=74&ndsp=18&ved=1t:429,r:11,s:74 3d 4
5 Diferencialna enačba uklona (za popolnoma raven tlačni element iz idealno elastičnega gradiva, ki ima mejo plastičnosti v neskončnosti) Rešitev te homogene diferencialne enačbe je: 10 Enačba (Euler) poda teoretsko vrednost kritične tlačne obrementive ni primerna za praktično uporabo (veliki faktorji varnosti). 11 5
6 Že v 19. stoletju Karman omeji nosilnost tlačnih elementov z mejo plastifikacije elementa. Tetmayer zmanjša nosilnost za manj vitkte palice (mejna vitkost za jeklo 105, za les 100) V drugi polovici 20. stoletja so v razvitih evropskih državah, v severni Ameriki in na Japonskem opravili ogromno preskusov. Rezultat teh raziskav je bilo pet evropskih krivulj za zmanjševalni faktor K (=kapa) glede na mejo plastičnosti elementa. Uporaba: 11b Evropske uklonske krivulje (za določitev zmanjševalnega faktorja) Zmanjševalni faktor K Relativna (brezdimenzijska) vitkost 12 6
7 Evropske uklonske krivulje Parameter, ki loči krivulje med seboj, je nadomestna neravnost tlačenega elementa w 0, ki jo popisuje faktor geometrijske nepopolnosti α. α zajema neravnosti elementa, zaostale napetosti, nesimetričnost prereza, debelino delov profila in druge okoliščine. Vrednosti tega parametra so: α w 0 13 Kateri uklonski krivulji izdelek pripada, je v splošnem odvisno od vrste in kvalitete tehnologije. V SIST EN je določeno (1/2): 13b 7
8 V SIST EN je določeno (2/2): 13c Plastična vitkost (1/2): je tista vitkost elementa λ, pri kateri sovpadeta kritična uklonska sila in tlačna sila na meji plastifikacije: 14 8
9 Plastična vitkost (2/2): ( je tista vitkost elementa, ko sovpadeta kritična uklonska sila in sila v elementu na meji plastifikacije.) 15 Relativna vitkost : je kvadratni koren razmerja med tlačno silo na meji plastifikacije in dejansko kritično uklonsko silo: 15b 9
10 Zmanjševalni faktor se lahko tudi izračuna: (za optimiranje je to mnogo primernejše) pri pri Pri tem je pomožna količina podana z izrazom: 16 Mejna uklonska sila: Kriterij dimenzioniranja: Vrednost K naglo pada, ko se vrednost λ povečuje preko 1. Ekonomičnost zato narekuje, da se v praksi relativna vitkost omeji: 1. ne preseže vrednosti 1,5 za glavni nosilni element v konstrukciji; 2. ne preseže vrednosti 2,5 za podrejene elemente
11 Diagram nekaterih veličin iz preračuna 17b Kombinirana tlačna in upogibna obremenitev Čista centrična tlačna obremenitev zelo redka. Kombinirana tlačna + strižno-upogibna obremenitev. Ker so strižne obremenitve navadno majhne glede na strižno nosilnost se jih običajno zanemari. Upogibni moment prečne deformacije sicer ravne osi elementa. Hkratna prisotnost tlačne obremenitev in ukrivljene osi povečanje prečnih deformacij osi. 18a 11
12 Znano: Kombinirana tlačna in upogibna obremenitev tri vplivne komponente splošnega obremenitvenega vektorja upogibno-tlačnega nosilca: N, M y in M z ; porazdelitev teh obremenitev vzdolž elementa: N=N(x), M y = M y (x), M z = M z (x). x-os vzdolžna os; y-os upogibno močnejša os; z-os upogibno šibkejša os; N... osna tlačna sila; M y... upogibni moment okoli y-osi (upogibno močnejše); M z... upogibni moment okoli z-osi (upogibno šibkejše). 18b Te komponente spremljajo naslednje največje napetosti v prerezu: Trije klasični kriteriji preverjanje varnosti: Prvi kriterij predstavlja kombinacijo napetosti vseh treh prispevkov, kot da stabilnostni problem ne obstaja
13 Druga dva kriterija upoštevata tudi stabilnostni problem elementa: Koeficienta pred napetostjo zaradi tlačne sile upoštevata vse neidealnosti elementa: α i ; (i=y, z) faktor geometrijske nepopolnosti (evropske krivulje), <1 izraz v imenovalcu povečuje vrednost koeficienta k N (glej naslednjo prosojnico) relativna napetost (glej naslednjo prosojnico) 20 Dodatek: SIST EN Projektiranje jeklenih konstrukcij. Ponderirana tlačna napetosti: Parcialni varnostni faktorji: Parcialni varnostni faktor na strani obremenitve ( 1). Z njim se dejansko obremenitev množi, da je preračun na varni strani. Parcialni varnostni faktor na strani nosilnosti materiala ( 1). Z njim se dejansko nosilnost deli, da je preračun na varni strani
14 Koko blizu sta si vrednosti ponderirane tlačne napetosti in meje plastičnosti popisuje njuno razmerje - relativna napetost: Kako blizu sta si vrednosti ponderirane tlačne napetosti in kritične uklonske napetosti je popisano na sledeč način: Koeficienta in imata v imenovalcu izraz, ki se naglo približuje vrednosti nič, če se ponderirana tlačna napetost približuje kritični uklonski napetosti: 21b Koeficienta pred obema deležema upogibnih napetosti sta podana z izrazoma: V števcu je koeficient β za vpliv porazdelitve upogibnih momentov vzdolž nosilnega elementa. Njegove vrednosti so prikazane v tabeli na naslednji prosojnici. V imenovalcu je izraz, ki povečuje delež upogibnih napetosti, napram prisotnim tlačnim (glej prejšnjo prosojnico). 21c 14
15 M M M M -M M M -1<ψ<1 ψ*m M M 22 Koeficient se pojavlja le ob upogibnih napetostih okrog močnejše osi. Izraža vpliv tega momenta zaradi zvrnitve nosilca (kadar je nosilec nagnjen k temu odprti prerezi, ki imajo vztrajnostni moment okrog močnejše glavne osi bistveno večji kot okrog šibkejše).... mejna upogibna napetost zaradi zvrnitve nosilca.... zmanjševalni faktor pri zvrnitvi nosilca
16 Zvrnitev upogibnih nosilca (Nestabilnostna zvrnitev upogibnega nosilca odprtega prereza. Ta pojav spremlja klasična in zadržana torzija.) močnejša glavna os je y-os; šibkejša glavna os je z-os. y vir: prof.dr. Darko Beg, Jeklene konstrukcije 1, 11.0 Bočna zvrnitev upogibnih nosilcev, Prosojnice z y x V primeru upogibnega nosilca na skici, ki ima odprt enkrat simetričen prerez okrog vertikalne (šibke) osi, je poznana Eulerjeva rešitev za kritično vrednost upogibnega momenta: 24 Eulerjeva (elastična) rešitev za kritično vrednost upogibnega momenta: Razpetina nosilca (razdalja med oporama). so faktorji, ki so odvisni od obremenitve in robnih pogojev na konceh nosilca. deplanacijski vztrajnostni moment prereza nosilca. faktor uklonske dolžine za uklon okrog vertikalne (šibke) osi. Obseg od 0,5 do 1,0. faktor vpliva deplanacije končnih prerezov. Obseg vrednosti od 0,5 do 1,0. Če ni posebnega vpetja za preprečitev deplanacije, je enak 1,0. z-koordinata prijemališča obremenitve, merjeno od težišča prereza. Pozitivna z-os je usmerjena vedno k tlačni pasnici prereza. z-koordinata prijemališča obremenitve, merjeno od strižnega središča. vrednost se računa po obrazcu. Pri dvakrat simetričnih I-prerezih je enaka 0. z koordinata strižnega središča prereza
17 Kadar imamo: vzdolž nosilca porazdeljen konstanten upogibni moment brez prečne sile in dvakrat simetričen prerez in členkasto podporo na konceh ter viličasto rotacijsko oporo na konceh, se obrazec za kritični upogibni moment poenostavi v: 26 V primeru: ene koncentrirane prečne obremenitve in ko ima nosilec dvakrat simetričen I prerez ter členkasti podpori na konceh v z smeri ter viličasti torzijski opori na konceh se prvotni obrazec poenostavi v: deplanacijski vztrajnostni moment 2-x simetričnega I-prereza. z g z g z-koordinata prijemališča obremenitve, merjeno od strižnega središča T S. h z g z g 27 17
18 Rezultat elastične analize se uporabi za določitev relativne vitkosti za primer bočne zvrnitve: Vrednost koeficienta : je za preseke 1. in 2. razreda kompaktnosti enaka 1, v primeru 3. razreda kompaktnosti: v primeru 4. razreda kompaktnosti: 28 : Reltivna vitkost je potrebna za izračun zmanjševalnega zvrnitvenega koeficienta Združen koeficient vseh nepopolnosti nosilca:... za valjane I prereze (krivulja a).... za varjene I prereze (krivulja c)
19 Zmanjševalni koeficient pri bočni zvrnitvi vir: prof.dr. Darko Beg, Jeklene konstrukcije 1, 11.0 Bočna zvrnitev upogibnih nosilcev, Prosojnice 31 Mejni zvrnitveni upogibni moment, ki upošteva: mejo plastičnosti gradiva in vse druge nepopolnosti kot pri centričnem uklonu, se izračuna (podobno kot mejna uklonska tlačna sila): Kriterij dimenzioniranja: zmanjševalni koeficient pri bočni zvrnitvi (ali pri probabilističnem postopku: ) 30 19
20 Viri prof.dr. Darko Beg, Jeklene konstrukcije 1, 11.0 Bočna zvrnitev upogibnih nosilcev, Prosojnice FAGG, Katedra za metalne konstrukcije. Prosojnice 8.1 Tlačne palice 32 20
Varnost v strojništvu
Univerza v Ljubljani - Fakulteta za strojništvo Univerza v Ljubljani - Fakulteta za kemijo in kemijsko tehnologijo Varnost v strojništvu Stabilnost centrično tlačno obremenjenih palic doc.dr. Boris Jerman,
Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom
D. Beg, študijsko gradivo za JK, april 006 KK FGG UL Bočna zvrnitev upogibno obremenjenih elementov s konstantnim prečnim prerezom Nosilnost na bočno zvrnitev () Elemente, ki niso bočno podprti in so upogibno
Nosilne konstrukcije. Nosilni elementi, ki so obremenjeni izključno s tlačno obremenitvijo, imajo sledeče lastnosti:
Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Nosilne konstrukcije 3. del: Tlačni elementi doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
8.0 PREČNI PREREZI. prof. dr. Darko Beg Sodelavec: Blaž Čermelj. Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije JEKLENE KONSTRUKCIJE I 8.0 PREČNI PREREZI prof. dr. Darko Beg Sodelavec: Blaž Čermelj Razvrščanje prečnih prerezov
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,
Aksialne obremenitve DOPUSTNE NAPETOSTI IN DIMENZIONIRANJE
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Tretji del. mag. Anton Pristavec - Kontrola nosilnosti žerjavne proge 3. sklop
Tretji del 1 Tretji del Bočna zvrnitev Izbočenje pločevine (stojina, pasnica) Kontrola vertikalnih in horizontalnih pomikov Utrujanje materiala 2 Bočna zvrnitev 3 TEORIJA Poljudno o bočni zvrnitvi Konstrukcijske
386 4 Virtualni pomiki in virtualne sile. A 2 x E 2 = 0. (4.99)
386 4 Virtualni pomiki in virtualne sile oziroma Ker je virtualna sila δf L poljubna, je enačba 4.99) izpolnjena le, če je δf L u L F ) L A x E =. 4.99) u L = F L A x E. Iz prikazanega primera sledi, da
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Funkcije več spremenljivk
DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije
IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA
Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
TRDNOST (VSŠ) - 1. KOLOKVIJ ( )
TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
r T = 1. Redukcija sile 2. Telo in težišče telesa
1. Redukcija sile Izračunavanje rezultante porazdeljenih sil je lahko zamudno, mnogokrat si pomagamo tako, da porazdeljeno silo nadomestimo z drugim sistemom sil, ki je enostavnejši, njegov vpliv na opazovano
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: objavljeno na vratih in na internetu pisarna: FS - 414 telefon: 01/4771-414
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Tehniška mehanika 1 [N]
Tehniška mehanika 1 Osnovni pojmi Togo in deformabilno telo, ter masno središče Obnašanje togega telesa lahko obravnavamo, kot obnašanje točke, v kateri je zbrana vsa masa telesa m. To točko imenujemo
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
1.4 Glavne normalne napetosti v nosilcu 145. Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote
1.4 Glavne normalne napetosti v nosilcu 145 Smeri glavnih normalnih napetosti vzdolž osi nosilca Vzdolž nevtralne osi oklepajo normale ravnin glavnih napetosti s smerjo x naslednje kote σ xx = M y z =
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
primer reševanja volumskega mehanskega problema z MKE
Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE p p RAK: P-XII//74 Reševanje mehanskih problemov z MKE primer reševanja volumskega mehanskega problema z MKE L
Glavni sistem:obremenjen s prvotno obtežbo: P. δ 10. 3 Pomik δ 10 :δ 10 = P (2L ) Reakciji pri levi in desni podpori: ΣV=0
OGM Metoda sil. METODA SIL. OIS METODE Metoda sil se uporablja za račun statično nedoločenih konstrukcij. V njej kot neznanke nastopajo sile. Namenjena je predvsem ročnemu računanju konstrukcij, ki so
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Kotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA
Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH PARAMETROV NADZEMNEGA VODA Seminar pri predmetu Razdelilna in industrijska omrežja Maja Mikec Profesor: dr. Grega Bizjak Študijsko leto
PROJEKTIRANJE GRADBENIH KONSTRUKCIJ PO EVROKOD STANDARDIH
Priročnik za PROJEKTIRANJE GRADBENIH KONSTRUKCIJ PO EVROKOD STANDARDIH urednika Darko Beg Andrej Pogačnik Inženirska zbornica Slovenije 2009 Priročnik za projektiranje gradbenih konstrukcij po evrokod
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
6.1.2 Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda
596 6 Geometrijska nelinearnost nosilcev varnost V E pa z enačbo V E = F E F dej 6.92) Z A x je označena ploščina prečnega prereza nosilca, količina i min je najmanjši vztrajnostni polmer, F dej pa je
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2009/2010
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 009/010 BF : Viskokošolski strokovni študij 5 10 09 KINEMATIKA IN DINAMIKA TOČKE Kinematika Osnovne kinematične količine: položaj P, vektor hitrosti
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 2014/2015
TEHNIŠKA MEHANIKA - sinopsis predavanj v šolskem letu 014/015 BF : Viskokošolski strokovni študij 6. 10. 14 KINEMATIKA IN DINAMIKA TOČKE Kinematika Položaj točke P, opazovalec O, kartezični koordinatni
Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.
1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
OSNOVE STROJNIŠTVA (OST)
OSNOVE STROJNIŠTV (OST) Pripravil vsebine: Uroš Lukič, univ.dipl.inž Velenje, Oktober 010 1 V mehatroniki se v kompleksnih elektromehanskih sistemih prepletajo vsebine strojništva, ki bazirajo na osnovah
2. VAJA IZ TRDNOSTI. Napetostno stanje valja je določeno s tenzorjem napetosti, ki ga v kartezijskem koordinatnem. 3xy 5y 2
. VAJA IZ TRDNOSTI (tenzor napetosti) (napetostni vektor, transformacija koordinatnega sistema, glavne normalne napetosti, strižne napetosti, ravninsko napetostno stanje, Mohrovi krogi, ravnotežne enačbe)
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Nosilne konstrukcije. Nosilne konstrukcije. Nosilne konstrukcije. Obseg predmeta (4 ECTS): predavanja: 30 ur; seminar: 0 ur; vaje: 30 ur.
Univerza v Ljubljani - Fakulteta za strojništvo KKTS - LASOK Nosilne konstrukcije doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: objava na vratih pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si
6.0 SPOJI. prof. dr. Darko Beg Sodelavec: Blaž Čermelj. Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo
Univerza v Ljubljani Fakulteta za gradbeništvo in geodezijo Katedra za metalne konstrukcije JEKLENE KONSTRUKCIJE I 6.0 SPOJI prof. dr. Darko Beg Sodelavec: Blaž Čermelj Spoji Spoji so v jeklenih konstrukcijah
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti
Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne
Državni izpitni center *M * SPOMLADANSKI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sobota, 9. junij 2007 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M0774* SPOMLDNSKI ROK MEHNIK NVODIL Z OCENJEVNJE Sobota, 9. junij 007 SPLOŠN MTUR RIC 007 M07-74-- PODROČJE PREVERJNJ Navedene vrednosti veličin pretvorite
Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo
Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si, (Tema/Subject: VDPN -...)
BETONSKE KONSTRUKCIJE I.
UNIVERZA V LJUBLJANI Fakulteta za gradbeništvo in geodezijo izr.prof.dr. Jože Lopatič BETONSKE KONSTRUKCIJE I. (študijsko gradivo, UNI GR_B) Ljubljana, 2012 BK I - Predavanja, 2011/12 1 VRSTE IN ZNAČILNOSTI
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Navadne diferencialne enačbe
Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami
BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Univerza v Ljubljani FS & FKKT. Varnost v strojništvu
Univerza v Ljubljani FS & FKKT Varnost v strojništvu doc.dr. Boris Jerman, univ.dipl.inž.str. Govorilne ure: med šolskim letom: srede med 9:00 in 11:30 pisarna: FS - 414 telefon: 01/4771-414 boris.jerman@fs.uni-lj.si,
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Splošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
3.5 OSI in GREDI GRADIVA ZA OSI IN GREDI
3.5 OSI in GREDI UVOD So strojni elementi za prenašanje vrtilnega gibanja. Njihov prerez je po vsej dolžini največkrat okrogel, lahko je tudi kvadraten, pravokoten, šestroben itd. Zaradi spreminjajočega
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
3. VAJA IZ TRDNOSTI. Rešitev: Pomik v referenčnem opisu: u = e y 2 e Pomik v prostorskem opisu: u = ey e. e y,e z = e z.
3. VAJA IZ TRDNOSTI (tenzor deformacij) (pomiki togega telesa, Lagrangev in Eulerjev opis, tenzor velikih deformacij, tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji) NALOGA 1: Gumijasti
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1
Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni
cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.
TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
OSNOVE STATIČNE VARNOSTI IN STABILNOSTI KONSTRUKCIJ
7. Posvet Sekcije za gradbeništvo in koordinatorje VZD Celje 23.11.2007 OSNOVE STTIČNE VRNOSTI IN STILNOSTI KONSTRUKCIJ Prof. Dr. Vojko KILR Fakulteta za arhitekturo Ljubljana VSEIN VSEIN...2 1. KONSTRUKCIJE
Državni izpitni center *M * JESENSKI IZPITNI ROK MEHANIKA NAVODILA ZA OCENJEVANJE. Sreda, 31. avgust 2011 SPLOŠNA MATURA
Š i f r a k a n d i d a t a : Državni izpitni center *M117411* MEHNIK JESENSKI IZPITNI ROK NVODIL Z OCENJEVNJE Sreda, 1. avgust 011 SPLOŠN MTUR RIC 011 M11-741-1- PODROČJE PREVERJNJ 1 Izračunajte vrednosti
vezani ekstremi funkcij
11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
ZBIRKA NALOG IZ STROJNIH ELEMENTOV I. del
Zoran REN Aleš BELŠAK ZBIRKA NALOG IZ STROJNIH ELEMENTOV I. del ZBIRKA NALOG Maribor 01 Zoran Ren in Aleš Belšak: Zbirka nalog iz strojnih elementov I. del 01 akulteta za strojništvo Naslov publikacije:
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Tema 1 Osnove navadnih diferencialnih enačb (NDE)
Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer