ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE"

Transcript

1 ANALIZA SPECRALĂ A SEMNALELOR ALEAOARE. Scopul lucrăr Se sudază caracerzarea în domenul recvenţă a semnalelor aleaoare de p zgomo alb ş zgomo roz ş aplcaţle acesea la deermnarea modulelor răspunsurlor în recvenţă ale unor sseme lnare ş nvarane în mp.. Inroducere Modelarea maemacă a zgomoelor care apar în dspozvele ş rcuele elecronce, dar ş a semnalelor vehculae de ssemele de ransmse a normaţe au necesa nroducerea noţun de semnal aleaor, echvalenă cu noţunea de proces aleaor sau sochasc dn eora probablăţlor. Penru a den un semnal aleaor se consderă o eperenţă oarecare. Prn rezulaul une eperenţe se înţelege una dn posblăţle de realzare a acesea. Mulţmea rezulaelor posble se va num în connuare spaţul eşanoanelor ş va noa cu S. Un semnal aleaor ese de o colecţe de semnale uzuale în mp connuu, nume raecor sau realzăr. Procesele aleaoare sun semnale, cu două propreăţ:. ele sun uncţ de mp. ele sun aleaoare, în sensul că înane de a realza un epermen, nu ese posbl să descrem eac orma de undă ce se va genera. s s Spaţul realzărlor posble, S ( ) ( k ) s n n ( ) τ k ( k ) n k Fgura. Un ansamblu de realzăr posble

2 Spaţul realzărlor posble conţne, ca punce realzărle procesulu, ca uncţ de mp. Un asel de spaţu sau mulţmea uncţlor de mp se numeşe proces sochasc sau proces aleaor. Ese evden că se consderă noţunle de dsrbuţ în probablae ale derelor evenmene posble. Evenmenul, sau realzarea, consue producerea unu anume semnal. 3. Procese saţonare Fecăru punc s dn spaţul S se va asoa o uncţe, cu duraa lmaă în mp: Duraa se ma numeşe ş nervalul de observare. Dacă puncul s ese a, lmaă) sau uncţe eşanon: j (, s ), () s = s, uncţa de mp (, s ) se ma numeşe ş realzare (de duraă j (, j) = s () În gura se araă o mulţme de uncţ eşanon (realzăr) = k, mulţmea de valor: { j j,,, n} { ( k), ( k),, n( k) } = { ( k, s), ( k, s),, ( k, sk) } =. Fând mpul, (3) ese o varablă aleaoare. Prn urmare, un proces poae prv ca ş o mulţme de varable aleaoare, ndeae după mp: { (, s )} procesul se noează smplu cu ().. Penru smplcarea noaţlor nu se evdenţază s ş Se consderă un proces aleaor src saţonar ( ). Prn denţe meda procesulu () ese speranţa maemacă a varable aleaoare ( ) ş se noează cu ( ) : () { ()} () = E = p d unde p () ese densaea de reparţe a varable aleaoare ( ), penru a. (4) Penru un proces src saţonar ese valablă egalaea: adcă meda unu asel de proces ese o consană. = (5) Se consderă în connuare două momene ae, ş reparţe comună a varablelor aleaoare ( ) ş ( ) produs, ( ) ş ( ) ese: ş e p densaea de,,. Aun meda varable aleaoare

3 { } (,,, ) = E = p d d Funcţa care asoază ecăre perech (, ) valoarea, sască a semnalulu aleaor ş se noează (, ) Dacă () R : (, ), (6) se numeşe uncţe de corelaţe R = (7) ese un proces aleaor src saţonar, p depnde numa de derenţa,, ş nu de valorle absolue ale mpulu. Prn urmare, avem: (, ) R = R = R τ,, (8) Propreăţle uncţe de auocorelaţe. Valoarea mede păracă a procesulu aleaor ( ) ese valoarea uncţe de auocorelaţe calculaă în orgne:. Auocorelaţa ese o uncţe pară: R { } ( 0) R = E (9) ( τ ) R ( τ ) =, τ R (0) 3. Funcţa de auocorelaţe R R τ are un mam în orgne: R ( 0) τ, τ R () Analza specrală a semnalelor aleaoare nu se poae ace asupra raecorlor ndvduale, penru că acesea sun semnale de puere nă, dar aceasă analză se poae ace pe crer sasce ş energece. Fe, în aces scop, n, cu n a, o raecore a semnalulu aleaor. Se consderă raecora runchaă: ş () n, < = 0, n res ω ransormaa sa Fourer. Densaea specrală mede de puere a acesu semnal, S ( ω ), se obţne împărţnd densaea sa energecă Se observă că S S ( ω) = ( ω) ω la duraa semnalulu: () (3) ω ese, penru ω a, o varablă aleaoare, denă pe câmpul S. Noând cu m{ } operaorul de medere ş ăcând se obţne o uncţe de ω : 3

4 S E S E { } ( ω) = lm { ( ω) } = lm ( ω ) numă densaea specrală de puere a semnalulu aleaor. (4) Conorm eoreme Wener-Hnn, uncţa de corelaţe sască ş densaea specrală de puere ormează o pereche Fourer: F { R} = S F ( ω ) ese o uncţe pară (vez relaţa 0) ş pozvă: S S 0 τ ω (5) ω, ω R (6) = S( ) ω ω, ω R (7) 4. Procese ergodce Speranţa maemacă E{ } ese o medere de ansamblu, pe oae realzărle unu proces aleaor (). Se ma poae obţne un al p de mede, eecuaă în lungul procesulu, o mede realzaă pe un eşanon al procesulu ş eecuaă în mp. Aceasă medere poae ma uşor mplemenaă, mov penru care se doreşe să şe dacă esă vreo legăură înre medle sasce ş medle emporale. Se consderă o realzare a procesulu ( ), uncţa eşanon ( ), nervalul de observare nd de la la. Se consderă că ( ) ese un proces saţonar. Meda emporală a lu () ese: Ese evden, că ( ) = d () (8) ese o varablă aleaoare, depnzând de realzarea () curenă ş de duraa a nervalulu de observare. Meda sa sască ese: adcă Prn urmare ( ) E{ } = E{ () } d d = = E { } ese o esmare neabăuă a mede (9) = (0) Se spune că procesul () ese ergodc în mede, dacă sun sasăcue două condţ:. Meda emporală ( ). nde spre meda sască, ( ), când, adcă: lm = () 4

5 . Dspersa lu ( ) :, consdera ca varablă aleaoare, nde spre zero, aun când { ( )} lm var = 0 () O ală mede de neres ese auocorelaţa. Se poae den o mede emporală penru esmarea auocorelaţe: R R ( τ, ) = ( + τ) d ( τ, ) ese o varablă aleaoare, dependenă de realzarea nervalulu de medere. (3) ş de lungmea a Se spune, că procesul ( ) ese ergodc în auocorelaţe dacă sun sasăcue două condţ:. lm R ( τ, ) = R ( τ ). { R ( τ ) } lm var, = 0 Penru a avea de propreăţle de ergodae rebue ca procesul să e saţonar Reproca nu ese adevăraă. 5. Semnale aleaoare în sseme lnare Se consderă un ssem cu răspunsul la mpuls h presupus real. Dacă la nrarea acesu ssem se aduce un semnal aleaor saţonar ş ergodc, aun semnalul de la eşre ese o un semnal saţonar ş ergodc ş: S ω = H ω S ω (4) unde S ( ω ), SY Y ω sun densăţle specrale de puere ale semnalelor de nrare, respecv de la eşre, ar H ( ω ) ese răspunsul în recvenţă al ssemulu. 6. Zgomoul alb Analza de zgomo a ssemelor de comuncaţ se bazează de obce, pe o ormă de zgomo dealzaă, numă zgomo alb, a căre densae specrală de puere ese ndependenă de recvenţă. Adjecvul alb se oloseşe în sensul în care se spune că lumna albă conţne în specrul vzbl componene de dverse culor, cu aceeaş nensae. O realzare a zgomoulu alb se noează cu w () ş densaea specrală de puere a procesulu ese: No SW ( ω ) = Parameru N 0 se raporează de obce, eajul de nrare al receporulu ş se eprmă cu: (5) 5

6 N = k (6) 0 e unde e nd emperaura echvalenă de zgomo a receporulu. Funcţa de auocorelaţe a zgomoulu alb ese: Se vede că 0 W N RW τ δ τ o = R τ = penru τ 0. Ca urmare, două eşanoane prelevae dn zgomoul alb, nderen câ de apropae sun ele în mp, sun necorelae. Dacă, în plus, zgomoul alb ese ş gaussan, eşanoanele sun ş sasc ndependene. Zgomoul alb ar avea puerea mede nnă ş de el nu ese realzabl zc. Ese, ma curând, un concep ce uşurează mul calculele ş conduce la rezulae oare apropae de cele dn praccă. (7) Semnalele reale se numesc colorae ş au orme dere penru uncţle de corelaţe ş cea de densae specrală de puere. Câ mp un semnal are o uncţe de corelaţe îngusă, banda de densae specrală a puer ese largă ş în aces caz semnalul ese ma apropa de zgomoul alb. Dacă uncţa de corelaţe ese largă, banda specrală a semnalulu ese îngusă ş semnalul ese ma apropa de un semnal perodc (deermns). 7. Desăşurarea lucrăr Să se deermne epermenal densale specrale de puere ale semnale de la esrea unu generaor de zgomo: zgomo alb s zgomo roz. Avem n aces scop: un generaor de zgomo, un osloscop s analzor specru n mp real (a se vedea anea penru descrerea acesua). Frecvenele cenrale ale lrelor rece banda se esc de pe panoul ronal al analzorulu. Densaea specrala de puere la esrea ecaru lru ese V P S Hz = B unde banda de recvene s acorul de calae al lrulu sun: B = Q + + Q = Obs: Valoarea de reerna ese V re = V,.e. P re = 0 - W penru R= Ω: P e + V [V] = V 0 Pn [ W] [ db] = 0 log = Ve [ db] P [ W] re re V e db 0 V = 0log V e re [ V] [ V] 6

7 ( V [ V] ) e P = cu R= Ω R Analza ncepe apasand pe buonul SAR al analzorulu de specru n mp real; apo se apasa buonul MOMEN. Valorle penru ecare canal se esc n db; penru schmbarea canalulu se olosese comuaorul KANAL, de la 3. Daele se rec nr-un abel de orma: [Hz] Q B [Hz] V e, [db] V e, [V] P [V ] S [V /Hz] unde: = numarul canalulu; = recvena cenrala a lrulu; Q = 4,5 (acorul de calae al FB); B = /Q largmea de banda; P = puerea; S = densae specrala de puere; Se reprezna grac densaea specrala de puere a zgomoulu alb, respecv a zgomoulu roz adca S [V /Hz] unce de [Hz]. Anea Analzor de specru n mp real Schema de prnpu a unu analzor de specru n mp real se prezna n g.. FB De. Aenuaor de nrare FB De. Dspozv de asare FB n De. Fg. Caracersle lrelor rece-banda FB se nerseceaza ca n g. 7

8 B B B B + c c + Fg. Se cunosc marmle, s se se ca oae lrele au acelas acor de calae: Q B = (A) Dn g. rezula: de B + B + + = (A) Q = + ( ) + + (A3) In connuare benzle lrelor rezula dn (A). Noand cu () semnalul de la esrea lrulu FB, s presupunand ca acesa ese o ensune elecrca deecoarele ar rebu sa realzeze operaa: In realae deecoarele realzeaza operaa: u / =, lm e d / θ θ (A4) e, / / () ( θ ) u = dθ (A5) nd o consana a aparaulu. Penru valor suen de mar ale lu se obne Marmea u, = u, = cons. (A6) e e Ue, F = (A7) B reprezna o apromae a densa specrale de puere a semnalulu analza n banda lrulu FB. 8

ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE

ANALIZA SPECTRALĂ A SEMNALELOR ALEATOARE ANALIZA SPECRALĂ A SEMNALELOR ALEAOARE. Scopul lucrării Se sudiază caracerizarea în domeniul frecvenţă a semnalelor aleaoare de ip zgomo alb şi zgomo roz şi aplicaţiile aceseia la deerminarea modulelor

Διαβάστε περισσότερα

5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1.

5.1 Realizarea filtrelor cu răspuns finit la impuls (RFI) Filtrul caracterizat prin: 5. STRUCTURI DE FILTRE NUMERICE. 5.1. 5. STRUCTURI D FILTR UMRIC 5. Realzarea ltrelor cu răspuns nt la mpuls (RFI) Fltrul caracterzat prn: ( z ) = - a z = 5.. Forma drectă - - yn= axn ( ) = Un ltru cu o asemenea structură este uneor numt ltru

Διαβάστε περισσότερα

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte

Lucrarea Nr. 5 Comportarea cascodei EC-BC în domeniul frecvenţelor înalte Lucaea N. 5 opoaea cascode E-B în doenul fecenţelo înale Scopul lucă - edenţeea cauzelo ce deenă copoaea la HF a cascode E-B; - efcaea coespondenţe dne ezulaele obţnue expeenal penu la supeoaă a benz acesu

Διαβάστε περισσότερα

METODE NUMERICE DE REZOLVARE A ECUAŢIILOR ȘI SISTEMELOR DE ECUAȚII DIFERENŢIALE. Autor: Dénes CSALA

METODE NUMERICE DE REZOLVARE A ECUAŢIILOR ȘI SISTEMELOR DE ECUAȚII DIFERENŢIALE. Autor: Dénes CSALA METODE NUMERICE DE REZOLVARE A ECUAŢIILOR ȘI SISTEMELOR DE ECUAȚII DIFERENŢIALE Auor: Dénes CSALA Crcuul R-L sere în regm ranzoru Se conseră un crcu orma nr-un rezsor e rezsenţă R ş o bobnă e nucvae L

Διαβάστε περισσότερα

Metode Numerice de Rezolvare a Ecuațiilor Diferențiale

Metode Numerice de Rezolvare a Ecuațiilor Diferențiale Curs - Meode Numerce de Rezolvare a Ecuațlor Derențale Aplcaț în Ingnera Elecrcă As. Dr. ng. Levene CZUMBIL Laboraorul de Cerceare în Meode Numerce Deparamenul de Elecroencă Ingnere Elecrcă E-mal: Levene.Czumbl@em.ucluj.ro

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Fiabilitatea şi indicatori pentru măsurarea nivelului acesteia. Suport de curs master MANAGEMENTUL CALITATII 17 XI 2008

Fiabilitatea şi indicatori pentru măsurarea nivelului acesteia. Suport de curs master MANAGEMENTUL CALITATII 17 XI 2008 Fablaea ş ndcaor penru măsurarea nvelulu acesea Supor de curs maser MANAGEMENTUL CALITATII 17 XI 2008 Fablaea repreznă o caracerscă calavă a produselor, fnd asocaă, în general, produselor de naura mjloacelor

Διαβάστε περισσότερα

SEMNALE ALEATOARE Definirea semnalului aleator, a variabilei aleatoare, a funcţiei şi a densităţii de repartiţie

SEMNALE ALEATOARE Definirea semnalului aleator, a variabilei aleatoare, a funcţiei şi a densităţii de repartiţie CAPIOLUL SEMNALE ALEAOARE Un proces sau semnal aleator, numt ş stochastc, este un proces care se desfăşoară în tmp ş este guvernat, cel puţn în parte, de leg probablstce. Importanţa teoretcă ş practcă

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

8. Alegerea si acordarea regulatoarelor

8. Alegerea si acordarea regulatoarelor 8. Alegerea s acordarea regulaoarelor Elemenele care caracerzează un regulaor auoma ş pe baza cărora se po compara înre ele dferele regulaoare, în scopul aleger celu ma adecva p, sun urmăoarele: naura

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Program: Statistică descriptivă

Program: Statistică descriptivă nveseşe în oamen! Proec cofnanţa dn Fondul Socal European prn Programul Operaţonal Secoral Dezvolarea Resurselor Umane 7 3 Axa prorară Educaţa ş formarea profesonală în sprjnul creşer economce ş dezvolăr

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.

Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte. Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor

Διαβάστε περισσότερα

tensiunii de intrare. Revãzând rãspunsul circuitului RC trece-sus la semnal sinusoidal se

tensiunii de intrare. Revãzând rãspunsul circuitului RC trece-sus la semnal sinusoidal se vqãiljãìqãfqgl LLOHÃvQÃFDHÃ >> ω aunc >> ÃÃúLÃVHÃSDWHÃVFLHÃFm () () () () c Fg..9. Dar cele douã elemene fnd înserae vqvhdpqmãfmãvxqwãsdfxvhãghãdfhodúlãfxhqw () () de unde rezulã urmãoarea rela LH () o

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

1. INTRODUCERE. SEMNALE ŞI SISTEME DISCRETE ÎN TIMP

1. INTRODUCERE. SEMNALE ŞI SISTEME DISCRETE ÎN TIMP . ITRODUCERE. SEMALE ŞI SISTEME DISCRETE Î TIMP. Semnale dscrete în tmp Prelucrarea numercă a semnalelor analogce a devent o practcă frecvent întâlntă. Aceasta presupune două operaţ: - eşantonarea la anumte

Διαβάστε περισσότερα

Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire

Amplificatoare. A v. Simbolul unui amplificator cu terminale distincte pentru porturile de intrare si de iesire mplfcatare Smblul unu amplfcatr cu termnale dstncte pentru prturle de ntrare s de esre mplfcatr cu un termnal cmun (masa) pentru prturle de ntrare s de esre (CZU UZU) Cnectarea unu amplfcatr ntre sursa

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE Diferenţiabilitatea funcţiilor reale de o variabilă reală.

4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE Diferenţiabilitatea funcţiilor reale de o variabilă reală. 4. FUNCŢII DIFERENŢIABILE. EXTREME LOCALE. 4.. Noţun teoretce ş rezultate fundamentale. 4... Dferenţabltatea funcţlor reale de o varablă reală. Multe robleme concrete conduc la evaluarea aromatvă a creşter

Διαβάστε περισσότερα

Transformarea Fourier a semnalelor analogice

Transformarea Fourier a semnalelor analogice ransformarea Fourier a semnalelor analogice O reprezenare specrala aplicabila semnalelor neperiodice hp://shannon.ec.up.ro/eaching/ssis/cap5.pdf ransformarea Fourier penru semnale aperiodice Semnalul ()

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Sondajul statistic- II

Sondajul statistic- II 08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

VII.3.5. Metode Newton modificate

VII.3.5. Metode Newton modificate Meode de Opmzare Curs 4 VII.3.5. Meode Newon modfcae În ulmul algorm prezena în cursul recu în suaţa în care hessana Hf(x ) nu era pozv defnă se folosea drep drecţe de deplasare v = - f(x ) specfcă meode

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Tehnica producerii semnalelor cu modulaţie liniară

Tehnica producerii semnalelor cu modulaţie liniară ehna proder semnalelor modlaţe lnară Performanţele ehpamenelor folose penr proderea semnalelor ML, denme pe sr modlaoare, sn deermnae în mare măsră de operaorl de prods; ma ml, paramer realzaţ de aes blo

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Lucrarea Nr. 6 Reacţia negativă paralel-paralel

Lucrarea Nr. 6 Reacţia negativă paralel-paralel Lucrre Nr. 6 ecţ netă prlel-prlel Crcutul electrc pentru studul AN pp: Schem de semnl mc AN pp: Fur. Schem electrcă pentru studul AN pp Fur 2. Schem de semnl mc crcutulu pentru studul AN pp Intern cudrpl:

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

CAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE

CAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE 32 Prelucrarea numercă nelnară a semnalelor Captolul 3 - Fltre de medere modfcate 33 CAPITOLUL 3 FILTRE DE MEDIERE MODIFICATE Ieşrea fltrulu de medere cu prag (r,s) este: s TrMean ( X, X2, K, X ; r, s)

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

TEORIA GRAFURILOR ÎN PROBLEME SI APLICATII

TEORIA GRAFURILOR ÎN PROBLEME SI APLICATII UNIVERSITATEA DE STAT DIN MOLDOVA Facultatea de Matematca s Informatca Sergu CATARANCIUC TEORIA RAFURILOR ÎN PROBLEME SI APLICATII Chsnau 004 UNIVERSITATEA DE STAT DIN MOLDOVA Facultatea de Matematca s

Διαβάστε περισσότερα

I X A B e ic rm te e m te is S

I X A B e ic rm te e m te is S Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Mădălina Roxana Buneci. Optimizări

Mădălina Roxana Buneci. Optimizări Mădălna Roxana Bunec Optmzăr Edtura Academca Brâncuş Târgu-Ju, 8 Mădălna Roxana Bunec ISBN 978-973-44-87- Optmzăr CUPRINS Prefaţă...5 I. Modelul matematc al problemelor de optmzare...7 II. Optmzăr pe mulţm

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

5.2 Structuri pentru filtre cu răspuns infinit la. impuls. Fie funcţia de transfer: 5. STRUCTURI DE FILTRE NUMERICE

5.2 Structuri pentru filtre cu răspuns infinit la. impuls. Fie funcţia de transfer: 5. STRUCTURI DE FILTRE NUMERICE 5. STRUCTURI DE FILTRE UERICE 5. Structur pentru ltre cu răspuns nnt la mpuls B Fe uncţa de transer: ( ) A ( + a ) Vom nota cu x( ş y( secvenţele de la ntrarea ş eşrea ltrulu. Reultă: Y X( ) Z{ x( n )},

Διαβάστε περισσότερα

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare: Pobleme P Pentu cicuitul din fig P, ealizat cu amplificatoae opeaţionale ideale, alimentate cu ±5V, să se detemine: a) elaţia analitică a tensiunii de ieşie valoile tensiunii de ieşie dacă -V 0V +,8V -V

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Seminar 6.Integrarea ecuațiilor diferențiale

Seminar 6.Integrarea ecuațiilor diferențiale Sema.Iegaea ecațlo deețale Resosabl: Maela Vasle maela.a.vasle@gmal.com Cosm-Șea Soca cosm.soca9@gmal.com Obecve Î ma acge aces laboao sdel va caabl să: ezolve ssem de eca deeale dee meode. să ezolve obleme

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

UNIVERSITATEA TEHNICĂ DE CONSTRUCŢII BUCUREŞTI. Facultatea de Inginerie a Instalaţiilor. Specializarea: Inginerie termică - Doctorat TEZĂ DE DOCTORAT

UNIVERSITATEA TEHNICĂ DE CONSTRUCŢII BUCUREŞTI. Facultatea de Inginerie a Instalaţiilor. Specializarea: Inginerie termică - Doctorat TEZĂ DE DOCTORAT UNIVERITATEA TEHNICĂ DE CONTRUCŢII BUCUREŞTI Faculaea de Ingnere a Insalaţlor pecalzarea: Ingnere ermcă - Docora TEZĂ DE DOCTORAT COORDONATOR ŞTIINŢIFIC: Prof. unv. dr. ng. Iordache Florn DOCTORAND: Ing.

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE

Curs 10 TRANZISTOARE. TRANZISTOARE BIPOLARE Curs 10 TRANZISTOARE. TRANZISTOARE IPOLARE CUPRINS Tranzstoare Clasfcare Prncpu de funcțonare ș regun de funcțonare Utlzarea tranzstorulu de tp n. Caracterstc de transfer Utlzarea tranzstorulu de tp p.

Διαβάστε περισσότερα

STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG

STUDIUL INTERFERENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG UNIVESITATEA "POLITEHNICA" DIN BUCUEŞTI DEPATAMENTUL DE FIZICĂ LABOATOUL DE OPTICĂ BN - 10 A STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI YOUNG 004-005 STUDIUL INTEFEENŢEI LUMINII CU DISPOZITIVUL LUI

Διαβάστε περισσότερα

LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV

LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV LUCRAREA 1 AMPLIFICATORUL DIFERENȚIAL MODULUL MCM5/EV 1.1 INTRODUCERE Amplfcatorul dferențal (AD) este întâlnt ca bloc de ntrare într-o mare aretate de crcute analogce: amplfcatoare operațonale, comparatoare,

Διαβάστε περισσότερα

CONEXIUNILE FUNDAMENTALE ALE TRANZISTORULUI BIPOLAR

CONEXIUNILE FUNDAMENTALE ALE TRANZISTORULUI BIPOLAR LCAEA N.4 CONEXINILE FNDAMENTALE ALE TANISTOLI BIPOLA Scpul lucrăr măurarea perrmanțelr amplcatarelr elementare realzate cu tranztare bplare în cele tre cnexun undamentale (bază la maă, emtr la maă, clectr

Διαβάστε περισσότερα

4. Criterii de stabilitate

4. Criterii de stabilitate Dragomr T.L. Teora sstemelor Curs anul II CTI 04/05 4 4. Crter de stabltate După cum s-a preczat metodele numerce de analză a stabltăţ se bazează pe crterul rădăcnlor. In ngnera reglăr se folosesc o sere

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Lucrarea nr.6 - Teoria sistemelor auomate CONTROLERUL

Lucrarea nr.6 - Teoria sistemelor auomate CONTROLERUL Lcrarea nr.6 eora emelor aomae ONOLEUL. Inrodcere Lcrarea are drep cop prezenarea nońn de conroler în conexl reglăr n em, a modalăńlor de realzare eorecă ş fzcă, a poblăńlor de modelare ş mlare.. onderań

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

PRELUCRAREA DATELOR EXPERIMENTALE

PRELUCRAREA DATELOR EXPERIMENTALE PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β

SERII RADIOACTIVE. CINETICA DEZINTEGRĂRILOR Serie radioactivă- ansamblu de elemente radioactive care derivă unele din altele prin dezintegrări α şi β SERII RDIOTIVE. IETI DEZITEGRĂRILOR Sr radoacvă- ansamblu d lmn radoacv car drvă unl dn all prn dzngrăr α ş β ca rzula al lg ransmuaţ radoacv -prn dzngrar α, numărul d masă scad cu 4 unăţ ş numărul aomc

Διαβάστε περισσότερα

Universitatea POLITEHNICA din Bucureş ti FIABILITATEA, MENTENABILITATEA Ş I DISPONIBILITATEA PRODUSELOR MATERIALE MANAGEMENTUL CALITĂŢII.

Universitatea POLITEHNICA din Bucureş ti FIABILITATEA, MENTENABILITATEA Ş I DISPONIBILITATEA PRODUSELOR MATERIALE MANAGEMENTUL CALITĂŢII. Uversaea POLITEHNICA d Bucureş Capolul 4 FIABILITATEA, MENTENABILITATEA Ş I DISPONIBILITATEA PRODUSELOR MATERIALE 4.. NOŢ IUNI PRIVIND DEPENDABILITATEA PRODUSELOR Cocepul de depedablae. Coform sadardulu

Διαβάστε περισσότερα

SISTEME DE COMUNICAŢII

SISTEME DE COMUNICAŢII Cap. Siseme de comunicaţii SISTEME DE COMUNICŢII.1 Inroducere Dezvolarea ehnologicǎ în domeniul elecronicii digiale a dus, prinre alele, la dezvolarea unor ehnici avansae de comunicaţii, bazae pe semnale

Διαβάστε περισσότερα

Instrumentație electronică de măsură - Laborator 1 rev 8.1 2

Instrumentație electronică de măsură - Laborator 1 rev 8.1 2 Insrumențe elecroncă de măsură - Lboror rev 8. Lucrre de lboror nr. Măsurăr în regm permnen snusodl. Măsurre defzjelor Rev. 8. Scop: Fmlrzre cu meode de măsurre părţlor funcţe de rnsfer ş reprezenre crcersclor

Διαβάστε περισσότερα

3.5. Forţe hidrostatice

3.5. Forţe hidrostatice 35 oţe hidostatice 351 Elemente geneale lasificaea foţelo hidostatice: foţe hidostatice e suafeţe lane Duă foma eeţilo vasului: foţe hidostatice e suafeţe cube deschise foţe hidostatice e suafeţe cube

Διαβάστε περισσότερα

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,, Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:

Διαβάστε περισσότερα

Capitolul 4 Amplificatoare elementare

Capitolul 4 Amplificatoare elementare Captolul 4 mplfcatoare elementare 4.. Etaje de amplfcare cu un tranzstor 4... Etajul sursa comuna L g m ( GS GS L // r ds ) m ( r ) g // L ds // r o L ds 4... Etajul drena comuna g g s m s m s m o g //

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui

Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui - Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex

Διαβάστε περισσότερα

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE) EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

PRELEGEREA IV STATISTICĂ MATEMATICĂ

PRELEGEREA IV STATISTICĂ MATEMATICĂ PRELEGEREA IV STATISTICĂ MATEMATICĂ I. Indcator de măsură a împrăşter Dstrbuţa une varable nu poate f descrsă complet numa prn cunoaşterea mede, c este necesar să avem nformaţ ş despre gradul der împrăştere

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

CURS 6 METODE NUMERICE PENTRU ECUAŢII DIFERENŢIALE ORDINARE. Partea I (Rezumat) 6-I METODE NUMERICE PENTRU ECUAŢII DIFERENŢIALE DE ORDINUL ÎNTÂI

CURS 6 METODE NUMERICE PENTRU ECUAŢII DIFERENŢIALE ORDINARE. Partea I (Rezumat) 6-I METODE NUMERICE PENTRU ECUAŢII DIFERENŢIALE DE ORDINUL ÎNTÂI CURS 6 METODE NUMERICE PENTRU ECUAŢII DIFERENŢIALE ORDINARE Parea I Rezua 6-I METODE NUMERICE PENTRU ECUAŢII DIFERENŢIALE DE ORDINUL ÎNTÂI În aceasă secţune se vor rezena eode nuerce enru ecuaţ ş ssee

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Circuitul integrat A 3900-aplicaţii

Circuitul integrat A 3900-aplicaţii Îndrumar de laborator Crcute ntegrate Analogce olumul Lucrarea 12 AMPLFCATOAE DE CENT (NOTON) Crcutul ntegrat A 3900-alcaţ 1 Descrerea crcutulu În unele alcaţ este necesară utlzarea unu amlcator cu ntrarea

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα