Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr



Σχετικά έγγραφα
ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ

V. Διαφορικός Λογισμός. math-gr

ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΚΕΦΑΛΑΙΟ 4 Ο ΣΤΟΙΧΕΙΑ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

Πες το με μία γραφική παράσταση

II. Συναρτήσεις. math-gr

Ολοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

x R, να δείξετε ότι: i)

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση

Κεφάλαιο 4: Διαφορικός Λογισμός

Θεώρημα Βolzano. Κατηγορία 1 η Δίνεται η συνάρτηση:

5o Επαναληπτικό Διαγώνισμα 2016

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

IV. Συνέχεια Συνάρτησης. math-gr

f ( x) f ( x ) για κάθε x A

[ α π ο δ ε ί ξ ε ι ς ]

1ο Κεφάλαιο: Συστήματα

3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ

Ασκήσεις Επανάληψης Γ Λυκείου

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

3o Επαναληπτικό Διαγώνισμα 2016

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 28 (με Δημητριάδος) Βόλος τηλ.

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Ερωτήσεις-Απαντήσεις Θεωρίας

Συνθήκες Θ.Μ.Τ. Τρόπος αντιμετώπισης: 1. Για να ισχύει το Θ.Μ.Τ. για μια συνάρτηση f σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, )

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

Ασκήσεις Επανάληψης Γ Λυκείου

f(x) x 3x 2, όπου R, y 2x 2

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο 4 83 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

f(x) = και στην συνέχεια

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

Ολοκλήρωμα πραγματικής συνάρτησης

Λύσεις του διαγωνίσματος στις παραγώγους

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

20 επαναληπτικά θέματα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

Transcript:

VI Ολοκληρώματα

Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζεται κάθε συνάρτηση F που είναι παραγωγίσιμη στο Δ και για την οποία ισχύει F ( ) f ( ) για κάθε f Θεώρημα Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Αν η F είναι μια παράγουσα της f στο Δ, τότε όλες οι συναρτήσεις της μορφής G( ) F( ) c είναι παράγουσες της f στο Δ Επιπλέον, κάθε άλλη παράγουσα της f στο Δ παίρνει τη μορφή F( ) c, για κάποιο c R Συνάρτηση f ( ) f ( ) Πίνακας Αρχικών Συναρτήσεων Αρχική Συνάρτηση F( ) d c F ( ) d c r r f ( ), r r F( ) d c, r r 4 f ( ) F( ) d ln c 5 f ( ) ( ) F ( ) ( ) d ( ) c 6 f ( ) ( ) F ( ) ( ) d ( ) c 7 f ) ( F ( ) ) d ( ) c ( ) 8 f ) ( F ( ) ) d ( ) c ( ) 9 f ( ) F( ) d c f ( ) F( ) d c ln Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

ΜΕΡΟΣ Ορισμένο Ολοκλήρωμα Μέθοδοι Ολοκλήρωσης Έστω μια συνάρτηση f συνεχής στο [α, β] Με τα σημεία n, χωρίζουμε το διάστημα [α,β] σε n ισομήκη υποδιαστήματα μήκους (β-α)/n Στη συνέχεια επιλέγουμε αυθαίρετα σημεία i [ i, i ] σε κάθε υποδιάστημα και σχηματίζουμε το άθροισμα: S n f ( ) f ( ) f ( n ), β - α όπου το Δ, το οποίο εκφράζει το εμβαδόν των πολυγώνων (σχήμα ) Το άθροισμα αυτό n συμβολίζεται πιο σύντομα ως δηλαδή το σημείων i lim n n i n S n f ( ) Μπορεί να αποδειχθεί ότι το όριο του αθροίσματος, i i f ( ), υπάρχει και μάλιστα είναι ανεξάρτητο από την επιλογή των ενδιάμεσων i Σχήμα Το πολυγωνικό χωρίο που αντιστοιχεί στο άθροισμα Το παραπάνω όριο ονομάζεται ορισμένο ολοκλήρωμα της συνεχούς συνάρτησης συμβολίζεται με f ( ) d Ιδιότητες του Ορισμένου Ολοκληρώματος f ( ) d f ( ) d f ( ) d f από το α στο β και Παντελής Μπουμπούλης, MSc, PhD σελ 4 mth-grlogspotcom, ououlismyschgr

Αν f ( ), τότε f ( ) d 4 f ( ) d f ( ) d f ( ) d 5 f ( ) d f ( ) d 6 ( ) g( ) d f ( ) d f g( ) d 7 f ( )d f ( ) f ( ) f ( ) 8 Ολοκλήρωση κατά Παράγοντες: f ( ) g( )d f ( ) g( ) - u f ( ) g( ) d 9 Ολοκλήρωση με αντικατάσταση: f ( g( )) g( )d f ( u)du, όπου u g(), du g ( ) d, u g ( ) και u g( ) u Θεώρημα Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α,β] Αν f ( ) για κάθε [, ] και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα αυτό, τότε f ( ) d Θεώρημα Αν f είναι μια συνεχής συνάρτηση σε ένα διάστημα Δ και α είναι ένα σημείο του Δ, τότε η συνάρτηση F ( ) f ( t) dt,, είναι μια παράγουσα της f στο Δ Δηλαδή ισχύει F ( ) f ( t) dt f ( ) Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού Έστω f μια συνεχής συνάρτηση σε ένα διάστημα [α,β] Αν η G είναι μια παράγουσα της f στο [α,β], τότε f ( t) dt G(β) - G(α) Παντελής Μπουμπούλης, MSc, PhD σελ 5 mth-grlogspotcom, ououlismyschgr

Δ Μεθοδολογία Ασκήσεων Υπολογισμός απλών Ολοκληρωμάτων Στην περίπτωση που μπορούμε κατευθείαν να βρούμε την παράγουσα της συνάρτησης που βρίσκεται μέσα στο ολοκλήρωμα, το ολοκλήρωμα υπολογίζεται σύμφωνα με το θεμελιώδες θεώρημα του Ολοκληρωτικού ) λογισμού: f ( )d f ( ) f ( ) f ( Παραδείγματα: d, d, ( ) d, ()d, κλπ Ολοκλήρωση κατά παράγοντες Στην περίπτωση γινομένων f ( ) g( ) πολλές φορές καταφεύγουμε στην ιδιότητα ολοκλήρωσης κατά παράγοντες Προσπαθούμε να βρούμε μια αρχική συνάρτησης ή της f, ή της g Αν μπορούμε να βρούμε αρχική συνάρτηση και για την f και για την g, διαλέγουμε συνήθως την πιο απλή Ο κανόνας είναι ότι αν για παράδειγμα η παράγωγος της f είναι πιο απλή από την ίδια την f, τότε χρησιμοποιούμε την αρχική της g Ολοκλήρωση κατά παράγοντες χρησιμοποιούμε σε ολοκληρώματα της μορφής: P( ) d P ( )ln( ) d P ( ) ( ) d () d P ( ) ( ) d () d Ιδιαίτερη προσοχή θέλουν ολοκληρώματα της μορφής πχ () d, τα οποία μετά το ένα ή δύο βήμα ολοκλήρωσης μας δίνουν το ίδιο ολοκλήρωμα ξανά Σε αυτή την περίπτωση θέτουμε το ζητουμενο ολοκλήρωμα ίσο με Ι και λύνουμε μια πρωτοβάθμια εξίσωση της μορφής I c I Ρητές Συναρτήσεις P()/Q() η Περίπτωση dg( P( )) dg( Q( )) Βήμα Παραγοντοποιούμε τα δύο πολυώνυμα και κάνουμε τις πιθανές διαγραφές Βήμα Ανάλογα με τους παράγοντες που θα προκύψουν ακολουθούμε διαφορετική μεθοδολογία Αν το Q() έχει μόνο απλές ρίζες, δηλαδή Q( ) ( )( )( n ), τότε αναλύουμε το πηλίκο ως εξής P( ) A A An Q( ) n Στη συνέχεια υπολογίζουμε το ολοκλήρωμα του κάθε όρου ξεχωριστά Αν υπάρχει κάποια διπλή ρίζα στον παρονομαστή, τότε ο αντίστοιχος όρος στο παραπάνω άθροισμα Ak Bk θα είναι της μορφής ) ( k Παντελής Μπουμπούλης, MSc, PhD σελ 6 mth-grlogspotcom, ououlismyschgr

Αν υπάρχει κάποιος όρος δευτέρου βαθμού με αρνητική διακρίνουσα ακολουθούμε τη μέθοδο υπολογισμού του d Δηλαδή δουλεύουμε με τη μέθοδο της αντικατάστασης θέτοντας /4 /4 /4 (u) Για παράδειγμα d [ ] du du u u 4 Αν έχουμε όρο της μορφής, τότε τον μετατρέπουμε ως εξής: 4 και εφαρμόζουμε τα προηγούμενα (διπλή αντικατάσταση) η Περίπτωση dg( P( )) dg( Q( )) Εκτελούμε τη διαίρεση μεταξύ των πολυωνύμων Από την ταυτότητα της διαίρεσης θα έχουμε ότι P( ) ( ) P( ) Q( ) ( ) ( ) Επομένως ( ) Για το ολοκλήρωμα του πολυωνύμου () Q( ) Q( ) P( ) βρίσκουμε κατευθείαν την παράγουσα, ενώ για το ολοκλήρωμα της ρητής συνάρτησης εφαρμόζουμε Q( ) τη μεθοδολογία της πρώτης περίπτωσης 4 Ολοκλήρωση με αντικατάσταση Σε ολοκληρώματα τα οποία δεν ανήκουν σε κάποια από τις παραπάνω κατηγορίες και στα οποία υπάρχει μια συνάρτηση που επαναλαμβάνεται, ή μια μεγάλη «περίεργη» συνάρτηση, δουλεύουμε με τη μέθοδο της αντικατάστασης, θέτοντας με u τη συνάρτηση αυτή και αλλάζοντας κατάλληλα τα όρια ολοκλήρωσης Παραδείγματα d, θέτουμε u, ( )ln( ) d, θέτουμε u ln ln Προσοχή! Ολοκλήρωση με αντικατάσταση μπορούμε να χρησιμοποιήσουμε και στην περίπτωση ολοκληρωμάτων της μορφής f ( g( )) g( ) d, θέτοντας u g() Τέτοιες ασκήσεις όμως μπορούν να λυθούν πιο εύκολα αν παρατηρήσουμε ότι f ( g( )) g( ) d f ( g( )) d 5 Ολοκληρώματα με απόλυτες τιμές Βρίσκουμε το πρόσημο της παράστασης που βρίσκεται μέσα στην απόλυτη τιμή (κάνοντας πίνακα προσήμων) και στη συνέχεια σπάμε το ολοκλήρωμα σε διαστήματα στα οποία η παράσταση διατηρεί σταθερό το πρόσημό της (βάζοντας μπροστά το πρόσημο +, αν είναι θετική στο συγκεκριμένο διάστημα, ή το πρόσημο αν είναι αρνητική) Ακολούθως δουλεύουμε κανονικά Πχ d ( ) d ( ) d 6 5 6 d ( 5 6) d ( 5 6) d ( 5 6) d 6 Παντελής Μπουμπούλης, MSc, PhD σελ 7 mth-grlogspotcom, ououlismyschgr

6 Θεωρητικές Ασκήσεις Η στενή σχέση της παραγώγου με την έννοια του ολοκληρώματος φαίνεται από το θεμελιώδες θεώρημα του ολοκληρωτικού λογισμού Σε ασκήσεις αυτής της κατηγορίας μπορούμε να χρησιμοποιήσουμε και μεθοδολογία του προηγούμενου κεφαλαίου (ΘΜΤ, θεωρήματα Roll, Bolzno, Frmt, Μέγιστης Ελάχιστης τιμής, ενδιάμεσης τιμής) Ιδιαίτερη προσοχή θέλει η παραγώγιση ολοκληρωμάτων Για παράδειγμα Αν F ( ) f ( t) dt, τότε F( ) Αν F ( ) f ( t) dt, τότε F() f ( ) g ( ) Αν F( ) f ( t) dt, τότε F( ) f ( g( )) g( ) g ( ) g ( ) Αν F( ) f ( t) dt f ( t) dt f ( t) dt, τότε F ( ) f ( h( )) h( ) f ( g( )) g( ) h( ) h( ) Αν F ( ) f (, t) dt, τότε για να παραγωγίσουμε πρέπει να «βγάλουμε» την μεταβλητή έξω από το ολοκλήρωμα Αυτό μπορεί να γίνει είτε με απλές αλγεβρικές πράξεις, είτε με τη βοήθεια της μεθόδου της ολοκλήρωσης με αντικατάσταση Παντελής Μπουμπούλης, MSc, PhD σελ 8 mth-grlogspotcom, ououlismyschgr

Ασκήσεις Να αποδειχθεί ότι: Α) ( ) d Δ) Β) 4 ( ) d Ε) 5 4 ( ) d Γ) d 8 5 ( ) d 8 5 Να αποδειχθεί ότι: Α) ( ( ) ()) d Β) / / 6 ( ) d Να αποδειχθεί ότι: Α) d Β) 5 d ln(64) 7 Γ) d ln(4) 4 Να αποδειχθεί ότι: Α) d Β) d 4 ( Γ) ) d 5 Να αποδειχθεί ότι: Α) ln( ) d Β) ln( ) d (5 ) 9 Γ) ln( ) d - 6 Να αποδειχθεί ότι: Α) ( ) d, Β) ( ) d Γ) ( ) ( ) d 7 Να αποδειχθεί ότι: Α) ( ) d, Β) Δ) d ( Ε) 4 ) d Γ) 4 64 d 5 Η) ( )( ) d 4 Θ) d 9 ( ) d / ΣΤ) ( ) ( ) d 9 4 Ι) d ln 6 8 Να αποδειχθεί ότι: Α) ( ) d () ( ), Β) ln( ) Δ) d ln ln ln() d ln Γ) d ln 9 Να αποδειχθεί ότι: / 4 ln ( ) Α) ( )ln ( ) d Β) ( ) 8 d Παντελής Μπουμπούλης, MSc, PhD σελ 9 mth-grlogspotcom, ououlismyschgr

Να αποδειχθεί ότι: 7 Α) d 4 7 Β) d Γ) ln( ) d ln Να αποδειχθεί ότι: Α) ln( ) d Β) ln Γ) 9 d ln( / ) ln d Να αποδειχθεί ότι / 4 ln Α) ( ) d Β) / ( ) Δ) d ( ) / 4 / 4 ln 4 d ( ) 4 Ε) 4 d ΣΤ) / ( ) Γ) d ( ) / 4 / d Να αποδειχθεί ότι Α) d ln Δ) / d ln 89 Β) d ln 656 Γ) 8 d ln 8 5 4 Να αποδειχθεί ότι 4 7 8 Α) 5 6 d Β) d Γ) / ln d 5 Να βρείτε τη συνάρτηση f :(,) R της οποίας η γραφική παράσταση διέρχεται από το σημείο Μ(,) και έχει παράγωγο f ( ) 4 6 6 Να βρείτε τη συνάρτηση f, η οποία έχει στο σημείο Ν(-,) εφαπτόμενη παράλληλη στην ευθεία y 8 και ισχύει f ( ) 6 7 Να βρείτε τη συνάρτηση f :(,) R η οποία έχει ασύμπτωτη στο την ευθεία y και ισχύει f ( ) 8 Δίνεται η συνεχής συνάρτηση f, η οποία είναι ορισμένη σε όλο το R και F μια αρχική συνάρτηση της f Αν ισχύουν F ( ), F( ) F( ), για κάθε, να λύσετε την εξίσωση f ( ) 9 Να βρείτε τα α, β έτσι ώστε η συνάρτηση F( ) να είναι αρχική της f ( ) Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

Δίνεται η συνεχής συνάρτηση f, η οποία είναι ορισμένη σε όλο το R και F μια αρχική συνάρτηση της f Αν f ( ), f ( ) F( ), για κάθε, τότε Α) Να βρείτε το F() Β) Να αποδείξετε ότι f ( ) F( ) Γ) Να αποδείξετε ότι η συνάρτηση g( ) F( ) F( ) είναι σταθερή Δ) Να βρείτε τον τύπο της f Να βρείτε τα α,β έτσι ώστε η συνάρτηση F( ) ln να είναι αρχική της f ( ) ln Να βρείτε τα α,β έτσι ώστε η συνάρτηση F( ) ( 4 4) να είναι αρχική της f ( ) 4 Να αποδείξετε ότι για κάθε άρτια συνεχής συνάρτηση ορισμένη στο διάστημα (-α,α) ισχύει η σχέση f ( ) d f ( ) d 4 Να αποδείξετε ότι για κάθε περιττή συνεχής συνάρτηση ορισμένη στο διάστημα (-α,α) ισχύει η σχέση f ( ) d 5 Δίνεται μια συνεχής συνάρτηση f με πεδίο ορισμού το R, για την οποία ισχύει f ( t) dt, για κάθε Να αποδείξετε ότι η f είναι περιττή συνάρτηση 6 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο [α,] Ι) Να αποδείξετε ότι ισχύει f ( ) d f ( ) d ( f ( ) f ( )) d ΙΙ) Να υπολογίσετε το ολοκλήρωμα I d ΙΙΙ) Να υπολογίσετε το ολοκλήρωμα I ln ΙV) Να υπολογίσετε το ολοκλήρωμα I d ln ln( ) 7 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο [α,] Ι) Να αποδείξετε ότι ισχύει f ( ) d f ( ) d ( f ( ) f ( )) d ΙΙ) Να αποδείξετε ότι / n d ( ) d 9 6 n n / n Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

ΙΙΙ) Να αποδείξετε ότι / n ( ) d 5 6 n n / n 8 Δίνεται η συνάρτηση ( ) f ( ) Ι) Να αποδείξετε ότι f ( ) f ( ) ( ) / ΙΙ) Να υπολογίσετε το ολοκλήρωμα f ( ) d 9 Δίνεται το ολοκλήρωμα n I n d / n n Ι) Να αποδείξετε τη σχέση I n I n n 6 ΙΙ) Αν f ( ), να υπολογίσετε το ολοκλήρωμα f ( ) d Να αποδειχθεί η ανισωτική σχέση d 4 Δίνεται η συνάρτηση lnt f ( ) dt, t Α Να υπολογίσετε το ολοκλήρωμα ln d Β) Να βρείτε τον τύπο της συνάρτησης g( ) f ( ) f Δίνεται η συνάρτηση f η οποία είναι συνεχής στο R και η συνάρτηση g, τέτοια ώστε g ( ) f ( t) dt, Α) Να υπολογίσετε την g() Β) Αν f ( ), να λυθεί η εξίσωση g( ) 4 Να λύσετε την εξίσωση t t t dt t dt 4 4 Δίνεται μια συνάρτηση f, η οποία είναι συνεχής στο R Αν ισχύει η σχέση f ( t f ( t) ), να βρείτε τον τύπο της συνάρτησης f t dt Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

5 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο διάστημα (, ) και για την οποία ισχύει f ( ) f ( t) dt Να υπολογίσετε τον τύπο της συνάρτησης f 6 Αν η συνάρτηση f είναι συνεχής στο διάστημα [α,] και ισχύει f ( ) για κάθε [, ], να αποδείξετε ότι για κάθε c, d τέτοια ώστε c d, ισχύει f ( ) d f ( ) d d c 7 Θεώρημα Μέσης Τιμής Ολοκληρωτικού Λογισμού Για μια συνεχή συνάρτηση στο [α,] ισχύουν: Α) Υπάρχουν αριθμοί m,m τέτοιοι ώστε m( ) f ( ) d M ( ) Β) Υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε f ( ) d f ( )( ) 8 Δίνεται η συνάρτηση t t f ( ) dt, για κάθε R Να αποδείξετε ότι η f είναι πολυωνυμική t 9 Δίνεται μια συνάρτηση f η οποία είναι συνεχής στο R και για την οποία ισχύει η σχέση t f ( ) f ( t) dt, για κάθε Να υπολογίσετε τη συνάρτηση f 4 Αν η συνάρτηση f είναι συνεχής στο [,] και f ( ), για κάθε [,] Να γνωρίζουμε ότι f ( ) d 5, να υπολογίσετε το σύνολο τιμών της συνάρτησης 4 Να βρεθεί παραγωγίσιμη συνάρτηση f για την οποία ισχύει f ( ) f ( t) dt, για κάθε R 4 Δίνεται η συνάρτηση f ( ) dt, R t Α) Να αποδείξετε ότι ( ) f ( ), για κάθε, Β) Να υπολογίσετε το ολοκλήρωμα t dt g ( ) f ( t) dt Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

4 Δίνεται η συνάρτηση f, η οποία είναι συνεχής στο R και η συνάρτηση g ( ) f ( t) dt, Α) Να υπολογίσετε την παράγωγο g () Β) Αν γνωρίζετε ότι f ( ), να λυθεί η εξίσωση g( ) 4 44 Η συνάρτηση f είναι συνεχής στο [α,], όπου α> και f ( ) d Αν γνωρίζουμε ότι f ( ), για κάθε (, ), να αποδείξετε ότι η εξίσωση f ( t) dt, έχει ακριβώς μια λύση στο (α, ) 45 Δίνεται η συνάρτηση F, τέτοια ώστε F ( ) ln t dt, για κάθε Να βρεθεί η παράγωγος της F 46 Η συνάρτηση f είναι συνεχής για κάθε και ισχύει f ( ) για κάθε Να αποδείξετε ότι υπάρχει κάποιο, τέτοιο ώστε f ( ) d f ( ) d 47 Δίνεται η συνάρτηση f η οποία είναι παραγωγίσιμη στο διάστημα [-,] και η f είναι γνησίως αύξουσα Να αποδειχθεί ότι Α) Υπάρχει (, ) τέτοιο ώστε για κάθε [, ] να ισχύει f ( ) ( ) f ( ) f ( ) Β) f ( ) d f ( ) f () 48 Δίνεται η συνεχής συνάρτηση f ορισμένη στο [α,] Να αποδείξετε ότι υπάρχει τουλάχιστον ένα (, ), τέτοιο ώστε f ( ) d ( ) f ( ) 4 49 Έστω f : R R συνεχής και f ( t) dt 9, για κάθε R Να υπολογίσετε την τιμή f () 5 Δίνεται η συνάρτηση f, η οποία είναι συνεχής και γνησίως αύξουσα για κάθε, για την οποία ισχύει f ( ) d και f ( ) d 4 Θεωρούμε τη συνάρτηση F( ) f ( t) dt, ορισμένη για 5 Α) Να μελετήσετε την F ως προς τη μονοτονία Β) Να αποδείξετε ότι υπάρχει τουλάχιστον ένα (, ) ώστε f ( ) f ( ) 5 Η f είναι συνεχής στο R και γνωρίζουμε ότι f ( t) dt 4, για κάθε R Α) Να υπολογίσετε μια συνάρτηση f, η οποία ικανοποιεί την παραπάνω σχέση Β) Για τη συνάρτηση f που βρήκατε στο προηγούμενο ερώτημα, να υπολογίσετε την παράμετρο α Παντελής Μπουμπούλης, MSc, PhD σελ 4 mth-grlogspotcom, ououlismyschgr

5 Η συνάρτηση f είναι δύο φορές παραγωγίσιμη στο [α,] και για κάθε [, ] ισχύει f ( ) Να αποδείξετε ότι ( ) f f ( t) dt 5 Δίνεται η σχέση f ( ) f ( ) d, όπου η f είναι μια δυο φορές παραγωγίσιμη συνάρτηση στο [,] Επιπλέον, γνωρίζουμε ότι f ( ) f () Να βρεθεί ο τύπος της εφαπτομένης της γραφικής παράστασης της f στο σημείο Παντελής Μπουμπούλης, MSc, PhD σελ 5 mth-grlogspotcom, ououlismyschgr

ΜΕΡΟΣ Εμβαδόν Επίπεδου Χωρίου Α Το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση μιας συνάρτησης f και τις κατακόρυφες ευθείες,,( ) και τον άξονα είναι ίσο με E f ( ) d Β Το εμβαδόν του χωρίου Ω που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f, g και τις κατακόρυφες ευθείες,, ( ) είναι ίσο με E f ( ) g( ) d Παντελής Μπουμπούλης, MSc, PhD σελ 6 mth-grlogspotcom, ououlismyschgr

Γ Το εμβαδόν του χωρίου Ω που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f, g είναι ίσο με E f ( ) g( ) d, όπου οι τιμές και είναι αντίστοιχα η μικρότερη και η μεγαλύτερη τιμή των για τα οποία ισχύει η σχέση f () g() Πολλές φορές ζητείται το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της f και από τον άξονα Σε αυτή την περίπτωση g( ) και οι τιμές και είναι αντίστοιχα η μικρότερη και η μεγαλύτερη τιμή των για τα οποία ισχύει η σχέση f ( ) Το αντίστοιχο ολοκλήρωμα είναι f ( ) d Σχήμα Ένα χωρίο που ορίζεται από τη γραφική παράσταση δύο συναρτήσεων f, g Σχήμα Ένα χωρίο που ορίζεται από τη γραφική παράσταση της συνάρτησης f και τον άξονα Δ Το εμβαδόν του χωρίου που περικλείεται μεταξύ τριών συναρτήσεων, f, g, h, μπορεί να υπολογιστεί υπό ειδικές συνθήκες (αν πχ ανά ζεύγος οι συναρτήσεις έχουν από ένα κοινό σημείο) Συνήθως η τρίτη συνάρτηση μπορεί να είναι ο άξονας Σχήμα Το χωρίο που ορίζεται από τις συναρτήσεις f ( ) g( ) ( ) και h( ) ( ), Σχήμα 4 Το χωρίο που ορίζεται από τις συναρτήσεις f ( ) ln( ), g( ) log( ) και τον άξονα Παντελής Μπουμπούλης, MSc, PhD σελ 7 mth-grlogspotcom, ououlismyschgr

Στις ασκήσεις που μας ζητάνε να υπολογίσουμε εμβαδά πρέπει να κάνουμε τα εξής: Αν η άσκηση ζητάει τον υπολογισμό ενός χωρίου της μορφής (Α) ή της μορφής (Β), τότε πρέπει απλά να κάνουμε πίνακα προσήμων για την παράσταση που βρίσκεται μέσα στην απόλυτη τιμή Στη συνέχεια σπάμε το ολοκλήρωμα σε διαστήματα στα οποία η παράσταση διατηρεί σταθερό το πρόσημό της βάζοντας μπροστά το πρόσημο +, αν είναι θετική στο συγκεκριμένο διάστημα, ή το πρόσημο αν είναι αρνητική Σε δύσκολες ασκήσεις ίσως χρειαστεί να κάνουμε μελέτη της παράστασης για να βρούμε το πρόσημό της Αν η άσκηση ζητάει τον υπολογισμό ενός χωρίου της μορφής (Γ), τότε πρέπει να βρούμε τα σημεία τομής των γραφικών παραστάσεων f ( ), g( ), λύνοντας την εξίσωση f ( ) g( ), ώστε να βρούμε τα όρια του ολοκληρώματος (το θα είναι η μικρότερη λύση και το η μεγαλύτερη) Στη συνέχεια κάνουμε πίνακα προσήμων για την παράσταση που βρίσκεται μέσα στην απόλυτη τιμή και ακολουθούμε την γνωστή μεθοδολογία Αν η άσκηση ζητάει τον υπολογισμό ενός χωρίου της μορφής (Δ), τότε πιθανότατα θα πρέπει να σχεδιάσετε ένα πρόχειρο σχήμα για να δείτε πως πρέπει να υπολογίσετε το εμβαδόν Για παράδειγμα το χωρίο του σχήματος θα σπάσει σε δύο ολοκληρώματα (της μορφής Γ) Για να βρούμε τα όρια θα πρέπει να λύσουμε τις εξισώσεις f ( ) h( ), f ( ) g( ) και h( ) g( ) Λύσεις είναι οι αριθμοί,, αντίστοιχα Επομένως, το χωρίο θα είναι ίσο με E f ( ) h( ) d εξής: E f ( ) d g ( ) d f ( ) g( ) d Ομοίως το χωρίο του σχήματος 4, θα υπολογιστεί ως Μην ξεχνάτε να χρησιμοποιείται τύπους εμβαδών που ήδη ξέρετε Για παράδειγμα το ολοκλήρωμα d εκφράζει το εμβαδόν ημικυκλίου με κέντρο το Ο και ακτίνα, επομένως είναι γνωστό από τύπους γεωμετρίας: d Επιπλέον για πολυγωνικά χωρία, μπορούμε να χρησιμοποιήσουμε τύπους παραλληλογράμμων και τριγώνων, οι οποίοι είναι γνωστοί από τη Β Λυκείου Παντελής Μπουμπούλης, MSc, PhD σελ 8 mth-grlogspotcom, ououlismyschgr

Ασκήσεις Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) ln( ), τον άξονα και τις κατακόρυφες ευθείες, Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τον άξονα Αποδείξτε ότι δεν υπάρχει ακέραιος αριθμός, τέτοιος ώστε η ευθεία να διαιρεί το χωρίο σε δύο ίσα μέρη Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις ευθείες y, και 4 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τις κατακόρυφες ευθείες, 5 Δίνεται η συνάρτηση f ( ) Α) Να βρεθούν τα τοπικά ακρότατα της f Β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f και τον άξονα 6 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τον άξονα 7 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ), τον άξονα και τις ευθείες, 8 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ), y, y 9 Να υπολογιστεί το εμβαδόν του χωρίου που ορίζεται από τα σημεία (, y) του επιπέδου για τα οποία είναι και y y Να αποδείξετε ότι το εμβαδόν του χωρίου που περικλείεται από την έλλειψη με E είναι ίσο Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων Α) f ( ) και g( ) Β) f ( ) και g( ) Γ) f ( ) και g ( ) Δ) f ( ) και g( ) f ( ) Παντελής Μπουμπούλης, MSc, PhD σελ 9 mth-grlogspotcom, ououlismyschgr

Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ) ( ) και g( ) ( ) και τις ευθείες, Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των 7 5 συναρτήσεων f ( ) και g ( ) 9 9 4 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ), g( ) και την ευθεία 5 Να υπολογιστεί το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των συναρτήσεων f ( ), g( ) και την ευθεία y 6 Να αποδείξετε ότι το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των 4 παραβολών y p και py είναι ίσο με p 7 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της παραβολής y και του κύκλου y 8 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση των παραβολών y, y και την ευθεία y 9 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της παραβολής y 4 και την ευθεία y Δίνεται η παραβολή y 4 Α) Να υπολογίσετε τις εξισώσεις των εφαπτόμενων της παραβολής, οι οποίες διέρχονται από την αρχή των αξόνων Β) Να υπολογίσετε το εμβαδόν του χωρίου που περιέχεται από την παραβολή και τις παραπάνω εφαπτόμενες Δίνεται η συνάρτηση f ( ) ln( ) Α) Αποδείξτε ότι η f είναι κοίλη Β) Ποιά είναι η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο με ; Γ) Να αποδείξετε ότι ln( ) για κάθε Δ) Να υπολογίσετε το εμβαδόν E(t) του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f, της ευθείας y, της ευθείας και της ευθείας t, για t (,) Ε) Να βρείτε το όριο lim E( t) και το εμβαδόν Ε() t Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις παραβολές y 4 και y 6 4 Έστω παραγωγίσιμη συνάρτηση f για την οποία ισχύει f ( ) και f ( ) Α) Να βρείτε τον τύπο της f Β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr

συναρτήσεων f, g με f ( ) g ( ), τον άξονα y y και την ευθεία 4 Δίνονται οι συναρτήσεις f ( ) d, και g( ) t t dt Α) Να βρεθούν οι τύποι των δύο συναρτήσεων Β) Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f, g 5 Να προσδιοριστεί ο αριθμός ώστε το εμβαδόν του χωρίου που περικλείεται από τις γραφικές παραστάσεις των συναρτήσεων f ( ) και g ( ) να είναι ίσο με 9 / 6 Α) Να υπολογιστεί το εμβαδόν E() του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τις ευθείες, ως συνάρτηση του Β) Να υπολογιστεί το όριο lim E( ) 7 Α) Να υπολογιστεί το εμβαδόν E() του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης f ( ) και τις ευθείες, ως συνάρτηση του Β) Να υπολογιστούν τα όρια lim E( ), lim E( ) Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr