ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004



Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

( 0) = lim. g x - 1 -

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

4o Επαναληπτικό Διαγώνισμα 2016

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΕΠΑ.Λ. Α ΟΜΑ ΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

είναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ.

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

) f (x) = e x - f(x) ΜΑΘΗΜΑ Η ΣΥΝΑΡΤΗΣΗ F(x) = ΑΣΚΗΣΕΙΣ. Ασκήσεις Εύρεση συνάρτησης Ύπαρξη ρίζας. f (t)dt

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

Επανάληψη Τελευταίας Στιγμής. για εξάσκηση

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

άρα ο μετασχηματισμός Τ είναι κανονικός 1 1 (ε) : 2x - y + 5 = y - - x + 5 =

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

just ( u) Πατρόκλου 66 Ίλιον

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑ.Λ (ΟΜΑ Α Β ) 2009 ΕΚΦΩΝΗΣΕΙΣ

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

ΘΕΜΑ Α Α1. Έστω συνεχής συνάρτηση f:[ α, β ] με παράγουσα συνάρτηση F. Τι ονομάζεται ορισμένο ολοκλήρωμα της συνάρτησης f από το α έως το β;

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

µε Horner 3 + x 2 = 0 (x 1)(x

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 24 / 5 / 08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γεωμετρικός τόπος του z είναι κύκλος με κέντρο Κ(0, 0) και ακτίνα ρ = 2

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1ο Α. Θεωρία - Θεώρηµα σελίδα 251 σχολ. βιβλίου. Β. Θεωρία - Ορισµός σελίδα 213 σχολ. βιβλίου.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

Σ ΣΤΑ ΘΕΜΑ. f x0. x x. x x. lim. lim f. lim x. lim f x. lim. lim f x f x 0. lim. σχήμα. 7 μ Α1. ,οπότε. 4 μ. f x0 0 0 αφού η f είναι.

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΑΠΟ ΟΛΟΚΛΗΡΩΜΑΤΑ. ΣΧΕΤΙΚΑ ΘΕΜΑΤΑ

ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. Α. Έστω συνάρτηση f παραγωγίσιµη δύο φορές στο [, ] f''! 0 για κάθε χ [ a, β ] και έστω η

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 2

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ. Ηµεροµηνία: Σάββατο 7 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Ένα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

Θεωρήματα, Προτάσεις, Εφαρμογές

[ α π ο δ ε ί ξ ε ι ς ]

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

Τάξη Γ. Κεφάλαιο. Εμβαδόν Επιπέδου Χωρίου Θεωρία-Μεθοδολογία-Ασκήσεις. Ολοκληρωτικός Λογισμός

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Transcript:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο υτό, ν ποδείξετε ότι f ( ) Μονάδες Β Πότε µι συνάρτηση f λέµε ότι είνι πργωγίσιµη σε έν σηµείο του πεδίου ορισµού της; Μονάδες 5 Γ Ν χρκτηρίσετε τις προτάσεις που κολουθούν γράφοντς στο τετράδιό σς τη λέξη Σωστό ή Λάθος δίπλ στο γράµµ που ντιστοιχεί σε κάθε πρότση Η δινυσµτική κτίν του θροίσµτος δύο µιγδικών ριθµών είνι το άθροισµ των δινυσµτικών κτίνων τους Μονάδες β f() l, ν κι µόνο ν lim f() lim f() l lim Μονάδες γ Αν οι συνρτήσεις f, g είνι πργωγίσιµες στο, τότε η συνάρτηση f g είνι πργωγίσιµη στο κι ισχύει: (f g) ( ) f'( ) g ( ) Μονάδες δ Έστω µι συνάρτηση f, η οποί είνι συνεχής σε έν διάστηµ Αν f ()> σε κάθε εσωτερικό σηµείο του, τότε η f είνι γνησίως φθίνουσ σε όλο το Μονάδες ε Έστω f µι συνεχής συνάρτηση σ' έν διάστην [, β] Αν G είνι µι πράγουσ της f στο [, β], τότε β f(t)dt G(β) G() Α Θεώρηµ (Fermat) σελ 6 σχολ βιβλίου Β Ορισµός σελ σχολ βιβλίου Γ β γ δ ε Μονάδες Σ * Λ Λ Σ (*) Η πάντηση στο ερώτηµ Γ β µπορεί ν χρκτηρισθεί Σωστό µόνο εφ όσον η συνάρτηση f είνι ορισµένη σε σύνολο της µορφής a, ) (, ) Όπως είνι ( β Τεχνική Επεξεργσί: Keystone

διτυπωµένη, σωστό είνι µόνο το ντίστροφο ηλδή ν lim f ( ) lim f ( ) l lim f ( ) l, φού γι την περίπτωση του ευθέως µπορεί ν θεωρηθούν ως σύνολ ορισµού της f κι τ µεµονωµέν σύνολ a, ) ( ή (, β ) Εποµένως πό υστηρή µθηµτική άποψη, η πάντηση είνι Λάθος ΘΕΜΑο ίνετι η συνάρτηση f µε τύπο f() ln Ν βρείτε το πεδίο ορισµού της συνάρτησης f, ν µελετήσετε την µονοτονί της κι ν βρείτε τ κρόττ Μονάδες β Ν µελετήσετε την f ως προς την κυρτότητ κι ν βρείτε τ σηµεί κµπής γ Ν βρείτε το σύνολο τιµών της f Μονάδες 7 Πρέπει > Άρ A f (, ) H f είνι πργωγίσιµη στο διάστηµ (, ) συνρτήσεων σ υτό µε ( ln ) f '( ) ( ln ) ' ( ) ' ln ' ln ln (ln ) Έχουµε: f '() ( ln ) Οπότε: A, πορρίπτετι φού ( ) ή ln ln e Εποµένως η συνάρτηση f είνι: f ως γινόµενο πργωγίσιµων Γνησίως φθίνουσ στο (, e ], φού είνι συνεχής στο (, e ] κι ισχύει ότι f () < στο (, e ) Τεχνική Επεξεργσί: Keystone

Γνησίως ύξουσ στο [ e, ), φού είνι συνεχής στο [ e, ) κι ισχύει ότι f () > στο ( e, ) Άρ προυσιάζει ολικό ελάχιστο γι e f ( e ) ( e ) ln e e το e β Η f είνι κι η φορά πργωγίσιµη στο (, ) ως γινόµενο δις πργωγίσιµων συνρτήσεων σε υτό µέ f ''( ) ( ln ) ' ln ln Έχουµε: f ''() ln ln e f ( e ) ( e ) ln( e ) e Εποµένως η συνάρτηση f είνι: κοίλη στο (, e ] e κυρτή στο [ e, ) Άρ προυσιάζει σηµείο κµπής το Μ ( e, ) e γ Είνι: ln lim o 4 lim lim lim o o o 4 ( De L' Hospital) f ( ) lim ln lim o o lim f ( ) lim ( ln ) Τεχνική Επεξεργσί: Keystone

Επειδή η f είνι γνησίως φθίνουσ κι συνεχής στο διάστηµ (, e ], είνι f (, e ] [,) e Επειδή η f είνι γνησίως ύξουσ κι συνεχής στο διάστηµ [ e, ) είνι f [, ) e [, ) e Άρ το σύνολο τιµών της f είνι f ((, ) ) [,) [, ) [, ) e e e Έτσι, το τοπικό κρόττο πο το ερώτηµ, µπορεί ν χρκτηριστει κι ως ολικό ελάχιστο ΘΕΜΑ ο ίνετι η συνάρτηση g()e f(), όπου f συνάρτηση πργωγίσιµη στο R κι f () f Ν ποδείξετε ότι υπάρχει έν τουλάχιστο ξ, τέτοιο ώστε f (ξ)-f(ξ) β Εάν f() -, ν υπολογίσετε το ολοκλήρωµ I() g()d, R γ Ν βρείτε το όριο lim Ι() Μονάδες 9 Αφού f πργωγίσιµη στο R, τότε κι η g είνι πργωγίσιµη στο R ως γινόµενο πργωγίσιµων συνρτήσεων σε υτό Άρ η g είνι κι συνεχής στο R Έτσι η g είνι συνεχής στο, R κι πργωγίσιµη στο g'() e f() e f '() ( ), R µε g() e f() Επίσης είνι άρ g() g g e f Οπότε πό θεώρηµ Rolle υπάρχει έν τουλάχιστον ξ, ώστε Τεχνική Επεξεργσί: Keystone 4

Όµως e ξ άρ προκύπτει ότι υπάρχει τουλάχιστον έν f (ξ) -f(ξ) β Αφού f() - είνι Ι() g()d e ( ) d ( e ) ( ) d [ e ( ) ] e ( ) ' d [ e ( ) ] e (4 )d [ e ( ) ] ( e ) ξ, ώστε (4 )d [ e ( ) ] [ e ( 4 ) ] e (4 ) ' d [ e ( ) ] [ e ( 4 ) ] e 4d [ e ( ) ] [ e ( 4 ) ] 4[ e ] e ( ) e ( ) e (4 ) 4e 4e e ( ) e (4 ) 4 4e 7 e ( 4 - - 4) e (- 7 7) 7 Άρ Ι() 7 e (- 7 7), R 7 7 γ Είνι γι <, Ι() 7 e a a a e 7 7 κι lim Άρ lim Ι() 7 ( ) 7 Έχουµε lim ( e ) lim lim lim ΘΕΜΑ 4ο e Έστω η συνεχής συνάρτηση f: R R τέτοι ώστε f() Αν γι κάθε R, ισχύει g() f (t)dt ( ), e Τεχνική Επεξεργσί: Keystone 5

όπου βi C, µε, β R*, τότε: Ν ποδείξετε ότι η συνάρτηση g είνι πργωγίσιµη στο R κι ν βρείτε τη g Μονάδες 5 β Ν ποδείξετε ότι γ Με δεδοµένη τη σχέση του ερωτήµτος β ν ποδείξετε ότι Re( ) Μονάδες 6 δ Αν επιπλέον f()>, f()β κι >β, ν ποδείξετε ότι υπάρχει (, ) τέτοιο ώστε f( ) Μονάδες 6 Η συνάρτηση g() γράφετι: g( ) f ( t) dt ( ) Επειδή η f είνι συνεχής στο R, η συνάρτηση φ() σ υτό Ακόµ, η συνάρτηση συνάρτηση F ) f ( t) dt φ( h( ) ) f ( t) dt είνι πργωγίσιµη h ( ) είνι πργωγίσιµη στο R ως πολυωνυµική Έτσι η ( είνι πργωγίσιµη στο R ως σύνθεση των πργωγίσιµων συνρτήσεων h κι φ στο R, µε F' ( ) f ( ) f ( ) Ακόµ η συνάρτηση l ( ) ( ) είνι πργωγίσιµη στο R µε l' ( ) Εποµένως η συνάρτηση g είνι πργωγίσιµη στο R ως διφορά πργωγίσιµων συνρτήσεων µε g' ( ) f ( ) β Αφού g ( ) γι κάθε R κι g(), η δοσµένη νισότητ γράφετι: g( ) g() γι κάθε R Έτσι όµως η g στο προυσιάζει ελάχιστο κι επειδή είνι πργωγίσιµη σε υτό συνεπάγετι πο θ Fermat ότι g () Τεχνική Επεξεργσί: Keystone 6

Όµως g () f () κι επειδή f() βρίσκουµε ότι g () Αφού g (), έπετι γ Επειδή είνι, προκύπτει ότι ( ) ( ) _ Re( ) Re( ) δ Είνι ( a β i) β β i οπότε Re( ) a β κι λόγω του ερωτήµτος γ έχουµε: a β ή ( β ) ( β ) Επειδή >β προκύπτει ότι β <, οπότε β < < Έτσι γι την συνάρτηση f η οποί είνι συνεχής στο R άρ κι στο [,] είνι: f()> κι f()β<, οπότε f() f() < Συνεπώς, εφρµόζοντς το θεώρηµ Bolano γι την f στο διάστηµ [,], συµπερίνουµε ότι υπάρχει ( a, ) τέτοιο ώστε f ( ) β Τεχνική Επεξεργσί: Keystone 7