ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008)

Σχετικά έγγραφα
Στα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop

10 2a 1 0 x. 1) Να εξεταστεί η ελεγξιμότητα και η παρατηρησιμότητα του συστήματος για τις διάφορες

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΗΣ. ΘΕΜΑ Βαθμολογία Βαθμός Σπουδαστή ΘΕΜΑ ΘΕΜΑ

ΤΟ ΠΑΡΟΝ ΕΠΙΣΤΡΕΦΕΤΑΙ. ΘΕΜΑ Βαθμολογία Βαθμός Σπουδαστή ΘΕΜΑ ΘΕΜΑ

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

(είσοδος) (έξοδος) καθώς το τείνει στο.

ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS

Συστήματα Αυτομάτου Ελέγχου

Υποθέστε ότι ο ρυθμός ροής από ένα ακροφύσιο είναι γραμμική συνάρτηση της διαφοράς στάθμης στα δύο άκρα του ακροφυσίου.

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Ευστάθεια συστημάτων

ΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ

Συστήματα Αυτόματου Ελέγχου

Ευστάθεια, Τύποι συστημάτων και Σφάλματα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτόματου Ελέγχου

Ερωτήσεις 1 ου Θέματος [8 Χ 0.25= 2.0 β.] Οι απαντήσεις πρέπει υποχρεωτικά νε βρίσκονται εντός του περιγεγραμμένου χώρου G()

Βαθμολογία Προβλημάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2

Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab

Μετασχηματισμοί Laplace

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΑΣΚΗΣΕΙΣ. Τρύφων Κουσιουρής

Κλασσική Θεωρία Ελέγχου

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID

Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)

Λύσεις θεμάτων Εξεταστικής Περιόδου Σεπτεμβρίου 2014

ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ

x R, να δείξετε ότι: i)

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Κλασσική Θεωρία Ελέγχου

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. Τρύφων Κουσιουρής

Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο

ΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις:

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

Αριθμητική Ανάλυση και Εφαρμογές

Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

Μάθημα: Θεωρία Δικτύων

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Συστήματα Αυτομάτου Ελέγχου

website:

ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ

Κλασσική Θεωρία Ελέγχου

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Συστήματα Αυτομάτου Ελέγχου ΙΙ

Κανονική Εξέταση στο Mάθημα: "ΘΕΩΡΙΑ ΔΙΚΤΥΩΝ" (5 ο εξάμηνο) ΟΜΑΔΑ A ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

Συστήματα Αυτομάτου Ελέγχου

2.1 Αριθμητική επίλυση εξισώσεων

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

Βαθµολογία Προβληµάτων ΘΕΜΑ 1 ΘΕΜΑ 2.1 ΘΕΜΑ 2.2 ΘΕΜΑ 2.3 ΘΕΜΑ 3.1 ΘΕΜΑ 3.2 ΘΕΜΑ 4 ΘΕΜΑ 5.1 ΘΕΜΑ 5.2. G(s)

Βαθμολογία Προβλημάτων Θέμα (μέγιστος βαθμός) (βαθμός εξέτασης)

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Συστήματα Αυτομάτου Ελέγχου

Επαναληπτικά Θέματα Μαθηματικών Γ Λυκείου Κατεύθυνσης

Το ελαστικο κωνικο εκκρεμε ς

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. 1. Δ 2. Α 3. Β 4. Α 5. Α Β. 1.Λ 2.Λ 3.Λ 4.Σ 5.Λ Ν 1 Ν 2

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΑΣΚΗΣΗ Για τα µαθήµατα: Εισαγωγή στον Αυτόµατο Έλεγχο (5 ο Εξάµηνο ΣΗΜΜΥ) Σχεδίαση Συστηµάτων Αυτοµάτου Ελέγχου (6 ο Εξάµηνο ΣΗΜΜΥ)

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Συστήματα Αυτομάτου Ελέγχου

V. Διαφορικός Λογισμός. math-gr

Transcript:

ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για τον Γεωμετρικό Τόπο των Ριζών της συνάρτησης μεταφοράς as + s + 9 G(s) s(s 5)(s + b) με Κ>0 δίδεται ότι η τομή των ασυμπτώτων είναι το σημείο σ -(0+Ν 0 ) όπου Ν 0 το τελευταίο ψηφίο του Αριθμού Μητρώου σας.. Να ευρεθούν οι παράμετροι a,b της G(s).. Να ευρεθούν τα τμήματα του πραγματικού άξονα που ανήκουν στον Γεωμετρικό Τόπο των Ριζών της G(s). 3. Να προσδιοριστούν τα σημεία τομής του Γεωμετρικού τόπου των Ριζών με τον φανταστικό άξονα. (Να σημειώσετε με Χ τα σωστά τετράγωνα) ±j7.697 ±j7.738 ±j7.786 ±j7.847 ±j7.87 ±j7.906 ±j7.934 ±j7.97 ±j8.0 ±j8.043 ±j8.4 ±j8.87 ±j8.6 ±j8.3 ±j8.369 ±j8.44 ±j8.58 ±j8.746 4. Να ευρεθούν τα σημεία θλάσης του Γεωμετρικού Τόπου των Ριζών. (Να σημειώσετε με Χ τα σωστά τετράγωνα).775.789.80.83.83.845.868.88.894.9.937.953.986.998.303.3064.309.387 Λύση 5. Να σχεδιαστεί ο Γεωμετρικός Τόπος των Ριζών 6. Είναι επιθυμητό να ευρεθεί η γωνία υπό την οποία τέμνεται ο φανταστικός άξονας από τον Γεωμετρικό Τόπο των Ριζών. Να προτείνετε μέθοδο για τον προσδιορισμό της γωνίας και να την εφαρμόσετε στον ζητούμενο Γεωμετρικό Τόπο των Ριζών.. Η τομή των ασυμπτώτων με τον πραγματικό άξονα δίδεται από τον τύπο σ n p m i i j n m Για να υπάρχει η τομή απαιτείται να υπάρχουν τουλάχιστον δύο ασύμπτωτοι. Καθώς ο αριθμός των ασυμπτώτων είναι ίσος με το βαθμό του παρονομαστή μείον το βαθμό του αριθμητή, πρέπει να είναι a0 διαφορετικά θα υπάρχει μία μόνον ασύμπτωτος. Από τον τύπο λαμβάνεται n pi zj i j 0+ 5 b ( 9) σ 0 N0 n m m z j

ή ισοδύναμα Για τα διάφορα Ν 0 θα είναι b 34 + N 0 Ν 0 0 3 4 5 6 7 8 9 b 34 36 38 40 4 44 46 48 50 5. Τα τμήματα του πραγματικού άξονα που είναι σημεία του Γεωμετρικού τόπου είναι τα διαστήματα [-b,-9] [0,5] 3. Το χαρακτηριστικό πολυώνυμο του αντισταθμισμένου συστήματος θα είναι 3 ψ (s) s(s 5)(s + b) +Κ (s + 9) s + (b 5)s + (K 5b)s + 9K Εφαρμόζεται η διάταξη Routh ως ακολούθως s 3 K-5b s b-5 9K s (b 5)(K 5b) 9K b 5 s 0 9K Για να έχει το χαρακτηριστικό πολυώνυμο ρίζες επάνω στο φανταστικό άξονα πρέπει ή ισοδύναμα (b 5)(K 5b) 9K 0 b 5 5b(b 5) K b 4 Τα σημεία τομής βρίσκονται από τις ρίζες της βοηθητικής εξίσωσης Β(s)(b-5)s +9K οι οποίες είναι 9K 45b ρ, ± j ± j b 5 b 4 Οι τιμές του Κ και των σημείων τομής για τα διάφορα Ν 0 είναι ως εξής: Ν 0 0 3 4 5 6 7 8 9 b 34 36 38 40 4 44 46 48 50 5

Κ 46.5 53.6 6. 69. 77.5 86 94.7 303.5 3.5 3.6 ρ, ±j8.746 ±j8.58 ±j8.44 ±j8.3 ±j8.6 ±j8.4 ±j8.043 ±j7.97 ±j7.906 ±j7.847 4. Τα σημεία θλάσης προσδιορίζονται από τις ρίζες s b της εξίσωσης ds ds s + (b 5)s 5bs s + (b 5)s 5bs 3 dg(s) d s + 9 s + (b 5)s 5bs (s + 9)[3s + (b 5)s 5b] 3 3 3 s + (b + )s + 8s(b 5) 45b 3 0 s + (b 5)s 5bs οι οποίες δίδουν Για η εξίσωση γίνεται G(s b ) < 0 K b40 3 f (s) s + 6s + 630s 800 0 Για την εύρεση των ριζών της εξίσωσης μπορούν να δοκιμαστούν οι τιμές που δίδονται. Για τη μείωση των πράξεων μπορεί να ακολουθηθεί ο τρόπος εύρεσης της ρίζας συνάρτησης ως εξής Για s.83 προκύπτει f(s ) -5.43 Για s.303 προκύπτει f(s ) 3.494 Το νέο σημείο δοκιμής προκύπτει από τη σχέση Είναι f (s ) 5.43 s s + (s s ).83 + * 0.0.986 f (s ) f (s ) 8.955 3 Για s 3.986 προκύπτει f(s 3 ) -0.06 s+ 9 G(s) s.986 s.986 0.0430 < 0 s(s 5)(s + 40) και συνεπώς το σημείο θλάσης αντιστοιχεί σε Κ>0 και είναι σημείο του προς κατασκευή γεωμετρικού τόπου Οι τιμές του σημείου θλάσης για τα διάφορα Ν 0 είναι ως εξής: 3

Ν 0 0 3 4 5 6 7 8 9 b 34 36 38 40 4 44 46 48 50 5 s b.309.3064.303.986.953.9.894.868.845.83 Ο Γεωμετρικός Τόπος των Ριζών της G(s) για b40 δίδεται στο ακόλουθο Σχήμα. 80 Root Locus 60 40 0 Imaginary Axis 0-0 -40-60 -80-50 -40-30 -0-0 0 0 Real Axis 6. Για b40 τα σημεία τομής με το φανταστικό άξονα είναι ±j8.3 και συμβαίνουν για Κ69.. Η Τρίτη ρίζα του χαρακτηριστικού πολυωνύμου για την τιμή αυτή του Κ προκύπτει από την παραγοντοποίηση του ψ(s) οπότε θα είναι Ας θεωρηθεί ψ + + + + + 3 (s) K69. s 35s 69.s 4.8 (s 8.3 )(s 35) s -35 K 69. + Kˆ Το χαρακτηριστικό πολυώνυμο του αντισταθμισμένου συστήματος λαμβάνει τη μορφή 3 ψ (s) s(s 5)(s + b) +Κ (s + 9) s + 35s + (Kˆ + 69.)s + 9(Kˆ + 69.) (s + 35)(s + 8.3 ) + K(s ˆ + 9) 4

Αν σχεδιαστεί ο γεωμετρικός τόπος των ριζών ως προς τη μεταβλητή ˆK θα είναι τμήμα του γεωμετρικού τόπου που έχει σχεδιαστεί και θα αναχωρεί από τα σημεία τομής με το φανταστικό άξονα. Η ζητούμενη γωνία μπορεί να προσδιοριστεί από τη γωνία αναχώρησης του γεωμετρικού τόπου από το φανταστικό πόλο. Θα είναι { } { } { } { } { } { } Arg j8.3 ( 9) Arg j8.3 ( 35) Arg j8.3 ( j8.3) θ Arg j8.3+ 9 Arg j8.3+ 35 Arg j*8.3 θ αν 0.746 0.334 π/ θ π Η γωνία αναχώρησης θα είναι αν θ ( π.058)rad 9.38 αν Επομένως η γωνία που σχηματίζει ο γεωμετρικός τόπος με το φανταστικό άξονα θα είναι ο φθ 90 9.38 αν ος Τρόπος Από το χαρακτηριστικό πολυώνυμο ψ (s) D(s) + KN(s) 0 () όπου N(s), D(s) είναι αντίστοιχα ο αριθμητής και ο παρονομαστής της G(s) προκύπτει η συνάρτηση s f(k) και ενδιαφέρει να προσδιοριστεί η συνάρτηση ds/dk. Παραγωγίζοντας την () ως προς Κ λαμβάνεται ή ισοδύναμα Καθώς dd(s) ds dn(s) ds + K + N( s) 0 ds dk ds dk ds N(s) (s + 9) dk + K + K ds ds ds ds (s + 9) 0.0+ j0.078 3 dd(s) dn(s) d(s + 35s 00s) d(s + 9) K 69. 3s + 70s 00 + K s j8.3 η γωνία φ προκύπτει όπως παραπάνω ds Arg Arg 0.0 + j0.078 9.38 dk { } o ο φ 9.38 90 9.38 o o o αν 5

ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για το σύστημα κλειστού βρόχου του σχήματος δίδεται ότι R(s) Σ + _ Κ U(s) G(s) Y( s) s 0.05(+ N ) G(s) s s+ όπου Ν είναι το προτελευταίο ψηφίο του Αριθμού Μητρώου σας.. Να προσδιοριστούν τα σημεία τομής της G(jω) με τον πραγματικό άξονα (Να σημειώσετε με Χ τα σωστά τετράγωνα) - -.5 - -0.75-0.5-0.45-0.4-0.35-0.3-0.5-0. -0.5-0. -0.05 0 0.5 0.5 0.75.5. Να προσδιοριστούν τα σημεία τομής της G(jω) με το φανταστικό άξονα (Να σημειώσετε με Χ τα σωστά τετράγωνα) 0 ±j0.05 ±j0. ±j0.5 ±j0. ±j0.5 ±j0.3 ±j0.35 ±j0.4 ±j0.5 3. Να σχεδιαστεί το διάγραμμα Nyquist της G(s). 4. Εάν εφαρμοστεί ο έλεγχος του Σχήματος, χρησιμοποιώντας το θεώρημα του Nyquist να ευρεθεί για ποιές τιμές του Κ το αντισταθμισμένο σύστημα είναι ασυμπτωτικά ευσταθές (Να εκφράσετε τις συνθήκες σημειώνοντας με Χ τα κατάλληλα τετράγωνα) Το Κ είναι μεγαλύτερο του 0 0.05 0. 0.5 0. 0.5 0.3 0.4 0.5 0.6 0.7 0.8 0.9.5.5.5 3 4 Το Κ είναι μικρότερο του 0.6667.0.667.0..5.857 3.3333 4.0 4.6667 5.0 6.0 6.6667 8.0 0.0.6667 5.0 0.0 33.333 50 5. Εάν έχει ληφθεί ονομαστική τιμή του κέρδους Κ.5 να προσδιοριστούν τα όρια μεταβολής του περιθωρίου κέρδους. Λύση 6

Εάν τεθεί η G(jω) θα είναι a 0.05(+ N ) s+ a a+ jω a+ jω ω + jω G(jω) sω j s s+ ω jω ω jω ω + jω a( ω ) ω j ω [a + ω ] + Χ+ jy ω +ω ω +ω ( ) ( ). Για την εύρεση των σημείων τομής με τον πραγματικό άξονα τίθεται Υ0 και προσδιορίζονται τα ω τα οποία ικανοποιούν τη σχέση. Αυτά είναι τα ακόλουθα Για ω0 προκύπτει Για ω a+ προκύπτει Για ω προκύπτει X ω0 ω a+ ω a( ω ) ω a ω +ω ( ) ω 0 a( ω ) ω a( a) (+ a) a a X a + (+ a) a + a+ ω a+ ( ω ) +ω ( ) a( ω ) ω X3 0 ω ω +ω ( ) Συνεπώς τα σημεία τομής με τον πραγματικό άξονα είναι τα σημεία -, 0 και ανάλογα με το Ν τα ακόλουθα Ν 0 3 4 5 6 7 8 9 Χ 3-0.05-0. -0.5-0. -0.5-0.3-0.35-0.4-0.45-0.5. Για τον προσδιορισμό των σημείων τομής με το φανταστικό άξονα τίθεται 7

Χ0 και προσδιορίζονται τα ω τα οποία ικανοποιούν τη σχέση. Αυτά είναι α) Τα ω τα οποία ικανοποιούν τη σχέση ή ισοδύναμα a( ω ) ω 0 a ω + a Δεδομένου ότι το a είναι στο διάστημα (-,0), δεν υπάρχουν ω τα οποία ικανοποιούν τη σχέση. β) ω Για ω το σημείο τομής με το φανταστικό άξονα προκύπτει ω [a + ω ] Y ω 0 ω +ω ( ) 3. Το διάγραμμα Nyquist της G(s) φαίνεται στο ακόλουθο σχήμα για a -0.3 0.8 Nyquist Diagram 0.6 0.4 0. Imaginary Axis 0-0. -0.4-0.6-0.8 -. - -0.8-0.6-0.4-0. 0 0. Real Axis 4. Το προς έλεγχο σύστημα είναι ασταθές καθώς έχει δύο πόλους, τους 8

p, ± j 3 στο δεξιό ημιεπίπεδο. Για να είναι ευσταθές το σύστημα κλειστού βρόχου πρέπει το σημείο -/Κ να περιτριγυρίζεται δύο φορές ανθωρολογιακά από το διάγραμμα Nyquist της G(s). Αυτό σημαίνει ότι πρέπει ή ισοδύναμα < < a K 0 < K< a N + Συνεπώς το Κ πρέπει να είναι μεγαλύτερο της μονάδας ανεξάρτητα του Αριθμού Μητρώου και μικρότερο του Κ max το οποίο ανάλογα με το Ν είναι Ν 0 3 4 5 6 7 8 9 Κ max 0 0 6.6667 5 4 3.3333.857.5. 5. Για το περιθώριο κέρδους Κ c θα ισχύει οπότε 0 < K KNKc < a N + 0 40 0.6667 < K < K (N + )K ( N + )3 c N N ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για το σύστημα κλειστού βρόχου του σχήματος δίδεται ότι R(z) Σ + _ K U(z) G(z) Y(z) G(z) z(z + 0.)(z + 0.* N ) όπου Ν είναι το τρίτο από το τέλος ψηφίο του Αριθμού Μητρώου σας. 9

. Να προσδιοριστεί η τιμή του Κ ώστε να ελαχιστοποιείται το σφάλμα lim r(k) y(k) k { } (Να σημειώσετε με Χ το σωστό τετράγωνο) 0.05 0.08 0.3 0.6 0. 0.4 0.3 0.3 0.35 0.4 0.45 0.48 0.5 0.56 0.6 0.64 0.7 0.7 0.8 Κανένα. Για την επιλογή του ερωτήματος να ευρεθεί το lim y(k) / K k { } (Να σημειώσετε με Χ το σωστό τετράγωνο) 0.6 0.55 0.5 0.490 0.4885 0.4808 0.475 0.477 0.4683 0.4630 0.460 0.4545 0.45 0.4464 0.445 0.4386 0.430 0.450 0.437 0.489 Λύση Εάν τεθεί b0.*n >0 η συνάρτηση μεταφοράς του αντισταθμισμένου συστήματος θα είναι Ο μετασχηματισμός Ζ του σφάλματος θα είναι Εάν η συνάρτηση KG(z) K H(z) + KG(z) z(z+ 0.)(z+ b) + K e(k)r(k)-y(k) E(z) R(z) Y(z) [ H(z)]R(z) R(z) + KG(z) ( z )E(z) [ H(z)]( z )R(z) έχει όλους τους πόλους της εντός του μοναδιαίου κύκλου, θα ισχύει το θεώρημα της τελικής τιμής και { } { } { } lim e(k) lim ( z )E(z) lim ( z )[ H(z)]R(z) k z z Καθώς η -H(z) δεν έχει μηδενικό στο και η R(z) έχει πολλαπλούς πόλους στο εάν η r(k) είναι η συνάρτηση αναρριχήσεως ή η παραβολική συνάρτηση, το πρόβλημα έχει νόημα (το σφάλμα δεν απειρίζεται) μόνο για τη μοναδιαία βηματική συνάρτηση για την οποία Συνεπώς z R(z) z 0

.*( + b) ess lim{ e(k) } lim {( z )[ H(z)]R(z) } lim{ H(z) } k z z.*( + b) + K Καθώς dess.*( + b) < 0 dk [.*( + b) + K] η ελαχιστοποίηση του σφάλματος θα συμβαίνει για την μέγιστη τιμή του Κ που εξασφαλίζει την ασυμπτωτική ευστάθεια του αντισταθμισμένου συστήματος. Το χαρακτηριστικό πολυώνυμο του αντισταθμισμένου συστήματος θα είναι 3 ψ (z) z(z + 0.)(z + b) + K z + (b + 0.)z + 0.bz + K Εφαρμόζεται το κριτήριο ευστάθειας των Jury-Blanchard Γραμμή z 0 z z z 3 K 0.b b+0. b+0. 0.b K 3 K - 0.bK-b-0. Kb+0.K-0.b 4 Kb+0.K-0.b 0.bK-b-0. K - Απαιτείται να ισχύουν οι ανισότητες ψ () z(z + 0.)(z + b) + K.( + b) + K > 0 () z 3 ( ) ψ( ) 0.8(b ) K > 0 () K < (3) K > Kb+ 0.K 0.b (4) Στη συνέχεια επιλύεται το θέμα για b0.5 Από την () προκύπτει -.8 < Κ (5) Από την () προκύπτει Κ<0.4 (6) Από την (3) προκύπτει - < Κ < (7) Από την (4) λαμβάνοντας υπόψη και την (7) λαμβάνονται οι ακόλουθες σχέσεις Εάν Kb + 0.K 0.b 0.7K 0. > 0 ή ισοδύναμα 0.49 < Κ (8.α) θα είναι K > 0.7K 0. ή ισοδύναμα K + 0.7K.< 0

η οποία αληθεύει για -.4557 < Κ < 0.7557 (8.β) Οι σχέσεις (8.α) και (8.β) συναληθεύουν για 0.49 < Κ < 0.7557 (9.α) Εάν Kb + 0.K 0.b 0.7K 0.< 0 ή ισοδύναμα Κ < 0.49 (8.γ) θα είναι K > 0.7K + 0. ή ισοδύναμα K 0.7K 0.9 < 0 η οποία αληθεύει για -0.66 < Κ <.36 (8.δ) Οι σχέσεις (8.γ) και (8.δ) συναληθεύουν για -0.66 < Κ < 0.49 (9.α) Επομένως η σχέση (4) αληθεύει για -0.66 < Κ < 0.7557 (0) Επομένως οι σχέσεις () έως (4) συναληθεύουν για -0.66 < Κ < 0.4 () Η βέλτιστη τιμή του Κ θα είναι K 0.4 ε όπου ε>0 μπορεί να ληφθεί απεριόριστα μικρό. opt ΠΑΡΑΤΗΡΗΣΗ Όπως φαίνεται και από το κατωτέρω σχήμα, η συνάρτηση του σφάλματος εμφανίζει ασυνέχεια για την τιμή Κ-.8 και καθώς είναι παντού φθίνουσα θα ήταν δυνατόν το σφάλμα για αρνητικά Κ να είναι μικρότερο του σφάλματος για θετικά Κ. 40 30 0 0 0-0 -0-30 -40-6 -4-0 4 6

Επειδή το σφάλμα ενδιαφέρει μόνο όταν το σύστημα είναι ευσταθές και στο ακόλουθο σχήμα εξετάζεται η περίπτωση που το Κ οδηγεί σε ευσταθές σύστημα κλειστού βρόχου, εξάγεται το συμπέρασμα ότι το σφάλμα μειώνεται όσο αυξάνει το Κ και συνεπώς η τιμή Κ0.4-ε οδηγεί στο ελάχιστο σφάλμα..6.5.4.3.. 0.9 0.8-0.8-0.6-0.4-0. 0 0. 0.4 0.6 Για τα διάφορα Ν θα είναι Ν 0 3 4 5 6 7 8 9 Κ opt 0.8-ε 0.7- ε 0.64- ε 0.56- ε 0.48- ε 0.4-ε 0.3- ε 0.4- ε 0.6- ε 0.08- ε Για να γίνει κατανοητό τι συμβαίνει στο ακόλουθο σχήμα φαίνεται ο γεωμετρικός τόπος των ριζών της G(z). Για Κ0.4 ο ένας πόλος του αντισταθμισμένου συστήματος βρίσκεται στο σημείο - ενώ οι άλλοι δύο είναι εντός του μοναδιαίου κύκλου, όπως φαίνεται στο Σχήμα. Αυτή είναι και η οριακή τιμή για την ασυμπτωτική ευστάθεια του αντισταθμισμένου συστήματος 3

.5 Root Locus 0.5 Imaginary Axis 0-0.5 - Για το όριο της εξόδου θα ισχύει -.5 - -.5 - -0.5 0 0.5 Real Axis lim{ y(k) / K} lim {( z )Y(z) / K} lim{ H(z) / K} 0.4545.*.5 + K. ε k z z opt Για τα διάφορα Ν θα είναι Ν 0 3 4 5 6 7 8 9 e ss 0.5 0.490 0.4808 0.477 0.4630 0.4545 0.4464 0.4386 0.430 0.437 ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για το σύστημα διακριτού χρόνου 0 0 0 x(k + ) 0 0 0 x(k) u(k) x(0) 0 + 0 0 + N 0 0 όπου Ν 0 είναι το τελευταίο ψηφίο του Αριθμού Μητρώου σας, είναι επιθυμητό x(5) 4. Να εξεταστεί εάν είναι δυνατόν να επιτευχθεί αυτή η κατάσταση με u()u(0)0.. Να προσδιοριστεί η τιμή της u() (Να σημειώσετε με Χ τo σωστό τετράγωνο) Κανένα 0. 0. 0.3 0.3333 0.35 0.375 0.4 0.486 0.45 4

0.5 0.6 0.75 0.8 0.9.5 3 5 Λύση Εάν θεωρηθεί b+n 0 και λαμβάνοντας υπόψη ότι η αρχική συνθήκη είναι μηδενική, θα είναι + + + + + 5 4 3 x(5) A x(0) A Bu(0) A Bu() A Bu() ABu(3) Bu(4) u(4) u(4) u(3) 0 0 0 u(3) 3 4 B AB A B A B A B u() 0 0 0 0 u() 3 4 u() b b b b b u() u(0) u(0) Καθώς απαιτείται u()u(0)0, το δεδομένο διάνυσμα θα επιτυγχάνεται μόνο εάν το σύστημα 0 u(4) 0 0 u(3) 3 4 b b b u() έχει λύση. Επειδή 0 3 b b b 3 det 0 0 b 0 το ανωτέρω σύστημα έχει ως λύση το διάνυσμα u(4) u(3) - 4 3 u() 3 b + N 0 Κατόπιν τούτου οι σωστές απαντήσεις είναι ως εξής Ν 0 0 3 4 5 6 7 8 9 u() 3.5 0.75 0.6 0.5 0.486 0.375 0.3333 0.3 5

ΠΑΡΑΤΗΡΗΣΗ Αξίζει να προσεχθεί ότι το σύστημα είναι ελέγξιμο επειδή η μήτρα 0 Pc 0 0 b b b είναι ομαλή. Όμως το διάνυσμα x(5) δεν είναι δυνατόν να επιτευχθεί εάν απαιτηθεί η u(4) ή η u(3) να είναι μηδενική. ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Ο θ F F ελ Κθ Μ Μάζα Μ είναι στερεωμένη στο άκρο αβαρούς ράβδου μήκους L και περιστρέφεται ως προς το σταθερό άλλο άκρο Ο της ράβδου επάνω σε οριζόντιο επίπεδο. Ο συντελεστής δυναμικής τριβής μεταξύ της μάζας και του επιπέδου είναι Β. Επι της μάζας δρά δύναμη F η οποία είναι πάντοτε κάθετη στη ράβδο. Σε απόσταση L 0.05*(+ N )*L από το Ο, όπου Ν είναι το προτελευταίο ψηφίο του Αριθμού Μητρώου σας, δρά επί της ράβδου δύναμη από ελατήριο, κάθετη στη ράβδο με μέτρο ίσο προς Κ*θ, όπως στο σχήμα. Η ροπή αδρανείας της μάζας ως προς το σημείο Ο είναι ίση προς J M*L Δίδονται οι τιμές των στοιχείων σε μονάδες του ΜΚSA συστήματος ως εξής: Κ00, Β, L5, J8. Για τις εξισώσεις καταστάσεως του συστήματος ως προς το διάνυσμα θ x θ& η μήτρα έχει τη μορφή a a A a a Να προσδιοριστεί ο λόγος Β a a 6

Λύση Καθώς η γωνία θ λαμβάνεται κατά την ωρολογιακή φορά, θα είναι d θ J M dt όπου Μ i οι ροπές που εφαρμόζονται στο σύστημα και λαμβάνονται σαν θετικές οι ροπές που έχουν ωρολογιακή φορά. Η δύναμη F εφαρμόζει ωρολογιακή ροπή ίση με Μ F*L Η δύναμη του ελατηρίου εφαρμόζει ανθωρολογιακή ροπή με τιμή Μ -F ελ *L -K*θ*0.05*(+Ν )*L Η δύναμη της τριβής εφαρμόζει ανθωρολογιακή ροπή με τιμή Η εξίσωση κινήσεως θα είναι dθ M3 B*v*L B*L * dt d θ dθ J F*L K* θ *0.05*( +Ν )*L B*L dt dt Οι εξισώσεις καταστάσεως ως προς το διάνυσμα x θα είναι Συνεπώς a a 0 x θ& 0 & x x& K *0.05*( L +Ν F )*L B*L + x x & && θ J J J K*0.05*( +Ν)*L J K*0.05*( +Ν ) 00*0.05*( +Ν) +Ν B*L B*L *5 J ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Έστω ότι ένα σύστημα έχει χαρακτηριστικό πολυώνυμο 3 ψ (s) s + (K + 7)s + (4K + 7)s + (3K + 5) i i 7

Να σημειώσετε ποιό από τα παρακάτω διαστήματα αποτελεί το σύνολο των τιμών του Κ για τις οποίες όλες οι ρίζες του πολυωνύμου έχουν πραγματικό μέρος μικρότερο του -. Κανένα από (0,) (,3) (3,4) (,4) (,3) (,5) τα προηγούμενα Χ Λύση Θέτοντας προκύπτει το πολυώνυμο ˆ s s + 3 ˆ ˆ ˆ ˆ ˆ ˆ ψ (s) ψ(s ) (s ) + (K+ 7)(s ) + (4K+ 7)(s ) + (3K+ 5) 3 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ s 6s + s 8+ Ks 4Ks+ 4K+ 7s 8s+ 8+ 4Ks 8K+ 7s 34+ 3K+ 5 3 s ˆ + (K+ )sˆ + sˆ+ K Εάν το ψ(s) ˆ ˆ είναι ασυμπτωτικά ευσταθές, οι ρίζες του ψ(s) θα έχουν πραγματικό μέρος μικρότερο του -. Εφαρμόζεται η διάταξη Routh s 3 s K+ -K s K+ + K K K+ K+ s 0 -K Επεισή το πρώτο στοιχείο της πρώτης στήλης είναι θετικό, πρέπει να ισχύουν οι ακόλουθες ανισότητες Κ+>0 Κ>0 -Κ>0 Οι ανισότητες συναληθεύουν στο διάστημα 0<Κ< (Σημειώνεται το πρώτο τετράγωνο από όλους τους σπουδαστές). 8