ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

Σχετικά έγγραφα
(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

Πανελλαδικές εξετάσεις 2016

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ


ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

lim f x lim g x. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (09/06/2017)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΘΕΜΑ Β. Β1.. Η f παραγωγίσιμη στο πεδίο ορισμού της R (διότι. x άρα. x 1 0 για κάθε x R)

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

{ } { ( ) } ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΑΠΑΝΤΗΣΕΙΣ. και g(x) =, x ΙR * τότε

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

A3. Σχολικό βιβλίο σελίδα 73 Α4. α. Λάθος, β. Σωστό, γ. Λάθος, δ. Σωστό, ε. Σωστό.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

x (x ) (x + 1) - x (x + 1)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

και g(x) =, x ΙR * τότε

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

ΘΕΜΑ Α. Α1. Θεωρία Θεώρημα σελ. 145 σχολικού βιβλίου. Α2. Θεωρία Ορισμός σελ. 15 σχολικού βιβλίου

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

f(x) γν. φθίνουσα ολ.ελ. γν. αύξουσα

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Πανελλαδικές Εξετάσεις 2017

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ. A1. Έστω f μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 12. = e dt. Να αποδείξετε ότι: ΛΥΣΗ

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

1 εφ x dx. 1 ν 1. συνx. 2 + ln1 = - ln 2. J 3-2 = 1 2 J 1 = ln 2 2, οπότε. x lnx 2 x, x > 0.

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

και γνησίως αύξουσα στο 0,

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΚΑΤΟΙΚΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ÈÅÌÁÔÁ 2008 ÏÅÖÅ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ Ορισμός σχολικού βιβλίου σελ. 303 Α2.

Λύσεις θεμάτων προσομοίωσης-1 ο /2017 ΛΥΣΕΙΣ

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

( f ) ( T) ( g) ( H)

Άγγελος Λιβαθινός, Μαθηματικός. ΑΠΑΝΤΗΣΕΙΣ-ΛΥΣΕΙΣ. Α1. Θεωρία ( Σχολικό Βιβλίο, Σελίδα 98. Μέτρο Μιγαδικού αριθμού- ιδιότητα)

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

Λύσεις των θεμάτων. Παρασκευή 9 Ιουνίου 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

f ( x) f ( x ) για κάθε x A

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ TΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

Προτεινόμενες λύσεις. , β) και η f είναι συνεχής στο x. , η f είναι γνησίως αύξουσα στο (α,x. 0]. Έτσι έχουμε: f(x) f(x

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Σχέδιο βαθμολόγησης-προσομοίωση Προσανατολισμού Γ Λυκείου - 1/2017 ΣΧΕΔΙΟ ΒΑΘΜΟΛΟΓΗΣΗΣ

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

[f(x)] [f(x)] [f (x)] (x 2 + 2) x 2-2 x 2.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Πανελλαδικές εξετάσεις 2017

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΙ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΤΑΡΤΗ : 35 π.μ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΕΠΙΜΕΛΕΙΑ lisari team

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

. Β2. Η συνάρτηση f είναι παραγωγίσιμη με: 1 1 1, και f ( x) ( ln(ln x) ).

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Transcript:

Γκύζη -Αθήνα Τηλ :.6.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 MAΪΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ A. Θεωρία σχολικού βιβλίου σελίδα 6-6 Α. Θεωρία σχολικού βιβλίου σελίδα Α. Θεωρία σχολικού βιβλίου σελίδα 6 Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Σωστό ΘΕΜΑ Β Β. H f είναι αραγωγίσιμη ως ρητή στο IR με Έχουμε λοιόν τον ακόλουθο ίνακα: f () f () f() Άρα: η f είναι γνησίως φθίνουσα στο (,] η f είναι γνησίως αύξουσα στο [, ) η f έχει ελάχιστο (ολικό) στο Ο(,) Β. Για κάθε IR έχουμε: f () και συνεώς έχουμε τον ακόλουθο ίνακα: f f f () Άρα: f() η f είναι κυρτή στο, Σ.Κ. Σ.Κ. η f είναι κοίλη στα, και,

Γκύζη -Αθήνα Τηλ :.6.5.777 η f έχει σημεία καμής τα Α,, Β, Β. Η C f δεν έχει κατακόρυφη ασύμτωτη αφού η f είναι συνεχής στο IR. Είσης: lim f() lim lim και lim f() lim lim Συνεώς η f έχει οριζόντια ασύμτωτη την ευθεία y στο και στο. Πλάγια ασύμτωτη δεν έχει, αφού έχει οριζόντια. Β. Με βάση τα αραάνω έχουμε τον ακόλουθο ίνακα μεταβολών: f () f () f() Σ.Κ. και την ακόλουθη γραφική αράσταση: Σ.Κ. ΘΕΜΑ Γ Γ. Έστω η συνάρτηση f με f() e, IR. H f είναι αραγωγίσιμη στο IR με f () e e f () e. Είναι: ή e e e e εειδή e e e e είναι f (). Έχουμε λοιόν τον ακόλουθο ίνακα: και

Γκύζη -Αθήνα Τηλ :.6.5.777 f () f() Γ. Αό την σχέση f () e Η f έχει ολικό ελάχιστο για το f(). Άρα ισχύει f() για κάθε IR με την ισότητα να ισχύει μόνο για και συνεώς η εξίσωση f() έχει μοναδική λύση την. έχουμε ισοδύναμα f() e και εειδή (αό ερώτημα Γ) e τελικά έχουμε: f() e Εειδή η συνάρτηση f είναι συνεχής στο (,) και δε μηδενίζεται σε αυτό, θα διατηρεί σταθερό ρόσημο. Εομένως: Αν (,) και f() f() e τότε στο διάστημα αυτό είναι Αν (,) και f() τότε στο διάστημα αυτό είναι f() e Εειδή η συνάρτηση f είναι συνεχής στο (, ) και δε μηδενίζεται σε αυτό, θα διατηρεί σταθερό ρόσημο. Εομένως: Αν (, ) και f() f() e τότε στο διάστημα αυτό είναι Αν (, ) και f() τότε στο διάστημα αυτό είναι f() e Άρα έχουμε τους ακόλουθους συνδυασμούς για τον τύο της f, IR ή f() e f() e e, f() e, ή, IR ή f() e, e, Γ. Για κάθε IR έχουμε f () e e e e Ισχύει ότι: e e e e και εειδή e τελικά έχουμε f () με την ισότητα να ισχύει μόνο για, οότε η f κυρτή στο IR. Γ. Θεωρούμε τη συνάρτηση g με g() f( ) f() στο [, ). Η g είναι αραγωγίσιμη ως διαφορά και σύνθεση αραγωγίσιμων συναρτήσεων στο [, ) με g () f ( )( ) f () f ( ) f () Ισχύει f f () f ( ) f ( ) f () [, ) συνεώς η συνάρτηση g είναι γνησίως αύξουσα, άρα και "-". Η αρχική εξίσωση λοιόν γίνεται: g:, οότε g () και f ημ f ημ f() f() g ημ g() ημ εειδή αό τη θεωρία γνωρίζουμε ότι ημ να ισχύει μόνο για και για κάθε ισχύει ημ με την ισότητα

Γκύζη -Αθήνα Τηλ :.6.5.777 ΘΕΜΑ Δ Δ. Αό τη σχέση f() f () ημ d ισοδύναμα έχουμε: f() f () ημ d f()ημ d f ()ημ d f()( συν) d f () ημ d f()συν f ()συν d f ()ημ f ()συν d f()συν f()συνf ()ημ f ()ημ f() f() () Εειδή η f είναι αραγωγίσιμη στο IR, είναι και συνεχής στο IR, άρα και στο. f() f() Αό τη δοσμένη σχέση lim, θέτουμε g() f() g()ημ με ημ ημ lim g(). Οότε: lim f() lim g()ημ και εειδή η f είναι συνεχής στο τελικά lim f() f() f() Αό την () τελικά έχουμε: f() f() f() f() f() f() f() ημ Για το f () έχουμε: f () lim lim lim lim ημ Δ. α) Έστω ότι η f έχει ακρότατο στη θέση IR. Εειδή η f είναι αραγωγίσιμη στο εσωτερικό σημείο IR αό το θεώρημα Fermat έχουμε: f () Παραγωγίζοντας τη δοσμένη σχέση έχουμε: f() f() e f(f()) e e f () f (f()) f () e, IR f Για γίνεται: e f f (f ) f e e, οότε αό την () έχουμε: f () ΑΤΟΠΟ, διότι f () Άρα η f δεν έχει ακρότατα. β) Εειδή η f δεν έχει ακρότατα στο IR θα ισχύει f () για κάθε IR. Είσης η f είναι συνεχής στο IR, ως αραγωγίσιμη και εομένως η f διατηρεί σταθερό ρόσημο στο IR. Ειλέον εειδή f () άρα f (), οότε η f είναι γνησίως αύξουσα στο IR. Δ. Εειδή η f είναι γνησίως αύξουσα και συνεχής στο IR, έχουμε: f(ir)ir limf(),limf() (, ), δηλαδή lim f() ημ συν ημ συν Ισχύει: f() f() f() f() f() f() Εειδή ημ συν lim lim, αό κριτήριο αρεμβολής lim. f() f() f() ()

Γκύζη -Αθήνα Τηλ :.6.5.777 ln f Δ. Έχουμε: e lnln lne ln f() f(ln) f() f(ln) f(ln) f(ln) To f(ln) f() για e αίρνει τιμή, άρα δεν είναι αντού μηδέν, e e e οότε f(ln) d f(ln) f(ln) Για η f(ln) αίρνει τιμή f(), άρα δεν είναι αντού μηδέν, οότε e e e e f(ln) f(ln) d d d d e e e f(ln ) e f(ln ) f(ln ) d ln d ln e d e f(ln) Άρα τελικά d 5