ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Σχετικά έγγραφα
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α2. Να διατυπώσετε το θεώρημα του Βolzano. Μονάδες 5

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α.3 Πότε η ευθεία y = λέγεται οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΘΕΜΑ 1ο Α. α) Να αποδείξετε ότι, αν z 1 =α+βi και. είναι δύο μιγαδικοί αριθμοί, τότε

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

f(x ) 0 O) = 0, τότε το x

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

G(x) = G(x) = ΘΕΜΑ 1o

A ένα σημείο της C. Τι

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

ΕΠΙΜΕΛΕΙΑ Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Συλλογή. Γενικού Λυκείου. Ημερησίου-Εσπερινού-Ομογενών

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

f(x ) 0 O) = 0, τότε το x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

β. Αν f (x) 0 σε κάθε εσωτερικό σημείο x του Δ, τι συμπεραίνετε για τη μονοτονία της συνάρτησης f ; Μονάδες 4,5

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ,

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

α,β,γ και α 0 στο σύνολο των μιγαδικών

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

AΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ( t) f dt = G(β) G(α) A2. Πότε η γραφική παράσταση μιας συνάρτησης f λέμε ότι έχει:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

= 1-3 i, να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα σε κάθε αριθμό το γράμμα της Στήλης Β έτσι, ώστε να προκύπτει ισότητα.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

1 1 1 (x yi) x yi = = = 2 (x - 1) + y 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Παράρτημα Χίου ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΘΕΣΣΑΛΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

γ. H εικόνα f( ) ενός διαστήματος μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. Μονάδες 2 Μονάδες 2 ε.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

1 ο κύκλος C με κέντρο την αρχή των αξόνων και ακτίνα ρ = 2

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

= 1-3 i, να γράψετε στο τετράδιό

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Transcript:

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α A. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο, να αποδείξετε ότι η f είναι συνεχής στο σημείο αυτό. Μονάδες 7 A. Να διατυπώσετε το θεώρημα του Fermat. Μονάδες 4 A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Ποια σημεία λέγονται κρίσιμα σημεία της f ; Μονάδες 4 A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Για οποιονδήποτε μιγαδικό αριθμό z ισχύει z = z (μονάδες ) β) Αν μια συνάρτηση f είναι στο πεδίο ορισμού της, τότε υπάρχουν σημεία της γραφικής παράστασης της f με την ίδια τεταγμένη. γ) Αν lim f ( ) =, τότε lim f ( ) ( ) =+ (μονάδες ) (μονάδες ) δ) Για δύο οποιεσδήποτε συναρτήσεις f, g παραγωγίσιμες στο ισχύει: ( f g) ( ) = f ( ) g( ) f( ) g ( ) (μονάδες ) ε) Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα Δ και δεν μηδενίζεται σε αυτό, τότε η f διατηρεί πρόσημο στο διάστημα Δ. (μονάδες ) Μονάδες ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Β Θεωρούμε τους μιγαδικούς αριθμούς z, w για τους οποίους η εξίσωση έχει μια διπλή ρίζα, την = w 4 i = z, B. Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων των z στο μιγαδικό επίπεδο είναι κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ =, καθώς επίσης ότι ο γεωμετρικός τόπος των εικόνων των w στο μιγαδικό επίπεδο είναι κύκλος με κέντρο Κ(4,) και ακτίνα ρ = 4 Μονάδες 8 B. Nα αποδείξετε ότι υπάρχει μοναδικός μιγαδικός αριθμός, η εικόνα του οποίου ανήκει και στους δύο παραπάνω γεωμετρικούς τόπους. Μονάδες 5 B. Για τους παραπάνω μιγαδικούς αριθμούς z, w του ερωτήματος Β να αποδείξετε ότι: z w και z+ w Μονάδες 6 B4. Από τους παραπάνω μιγαδικούς αριθμούς z του ερωτήματος Β να βρείτε εκείνους, για τους οποίους ισχύει: ΘΕΜΑ Γ Έστω η παραγωγίσιμη συνάρτηση f: ( ) ( ) z z zz = 5 f + f () = f () για κάθε f() = για την οποία ισχύουν: Μονάδες 6 ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Γ. Να αποδείξετε ότι: ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ f( ) =, + και στη συνέχεια ότι η συνάρτηση f είναι γνησίως αύξουσα στο Μονάδες 6 Γ. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f του ερωτήματος Γ. Μονάδες 4 Γ. Να λύσετε στο σύνολο των πραγματικών αριθμών την ανίσωση: ( + ) ( + ) f 5( ) 8 f 8( ) Μονάδες 7 Γ4. Να αποδείξετε ότι υπάρχει ένα, τουλάχιστον, ξ (, ) τέτοιο, ώστε: ξ ξ () = ξ( ξ ) ( ξ ξ) f t dt f Μονάδες 8 ΘΕΜΑ Δ Δίνεται συνάρτηση f: [,+ ) δύο φορές παραγωγίσιμη, με συνεχή δεύτερη παράγωγο στο [, + ), για την οποία ισχύουν: u ( f () t ) f = + dt du f() t ( ) για κάθε > f( ) f ( ) για κάθε > και f( ) = Θεωρούμε επίσης τις συναρτήσεις: ( ) ( ) f g() = με f ( ) > και h( ) f ( ) = με ΤΕΛΟΣ ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Δ. Nα αποδείξετε ότι: ( ) ( ) ( ) ( ) f f + = f για κάθε > Μονάδες 4 Δ. α. Να βρείτε το πρόσημο των συναρτήσεων f και f στο (, + ) (μονάδες 4) β. Να αποδείξετε ότι f ( ) = (μονάδες ) Μονάδες 7 Δ. Δεδομένου ότι η συνάρτηση g είναι κυρτή στο (, + ), να αποδείξετε ότι: α. g( ) για κάθε (, + ) f d < β. ( ) ( ) (μονάδες ) (μονάδες 4) Μονάδες 6 Δ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης h, τον άξονα και τις ευθείες = και = Μονάδες 8 ΟΔΗΓΙΕΣ (για τους εξεταζομένους). Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μην γράψετε πουθενά στις απαντήσεις σας το όνομά σας.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. ΤΕΛΟΣ 4ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, και μόνο για πίνακες, διαγράμματα κλπ. 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 5. Διάρκεια εξέτασης: τρεις () ώρες μετά τη διανομή των φωτοαντιγράφων. 6. Χρόνος δυνατής αποχώρησης: 8: KΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 5ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ IOYNIΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤA MAΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελίδα 7 Α. Σχολικό βιβλίο σελίδα 6 Α. Σχολικό βιβλίο σελίδα 6 Α4. α. Σωστό, β. Λάθος, γ. Σωστό, δ. Λάθος, ε. Σωστό. ΘΕΜΑ Β B. Η εξίσωση γίνεται : - w - 4 - i + z = Πρέπει Δ = - w - 4 - i - 4 z = w - 4 - i w - 4 - i = 6 z z = () 6 -β w - 4 - i Το είναι διπλή ρίζα άρα = = α 4 w - 4 - i = 4 () ος τρόπος ος τρόπος Το είναι ρίζα της εξίσωσης άρα ( ) w - 4 - i - w - 4 - i + z = - w - 4 - i + 6 8 6-8 w - 4 - i + w - 4 - i = = w - 4 - i - 4 = w - 4 - i - 4 = w - 4 - i = 4 () Επομένως ο γ.τ. των εικόνων του w είναι ο κύκλος C με κέντρο Κ (4, ) και ακτίνα ρ = 4 () 4 ( ) z = z = Κ 6 Επομένως ο γ.τ. των εικόνων του z είναι ο κύκλος C με κέντρο O (, ) και ακτίνα ρ = Σ

B. (ΟΚ) = (4 - ) + ( - ) y = 6 + 9 = 5 = 5 Είναι (ΟΚ) = ρ + ρ, άρα οι κύκλοι εφάπτονται εξωτερικά σε ένα σημείο Α (σχήμα) Επομένως υπάρχει μοναδικός μιγαδικός αριθμός, η εικόνα του οποίου ανήκει και στους δύο παραπάνω γεωμετρικούς τόπους. O A 4 K B. w = (OB) = (OK) + ρ = 5 + 4 = 9 ma y z - w z + -w B z - w + w z - w + w ma z - w + 9 K z - w z + w z + w O A 4 z + w + w z + w + w ma z + w + 9 z + w

z - z - zz = 5 z (z - - z) = 5 B4. (-) + 4Im(z) z = z z - z - = 5 (z - z) - = 5 Im(z) i - = 5 - + 4Im(z) i = 5 = 5 9 + 6Im (z) = 5 6Im (z) = 6 Im (z) = Im(z) = z = Re (z) + Im (z) = Re (z) + = Re (z) = Re(z) = Eπομένως z = ± i ΘΕΜΑ Γ Γ. Για κάθε ΙR είναι : f () + [f () - ] = -f () f () + f () - + f () = f () - + f () = από συνέπειες Θ.Μ.Τ. είναι f () - + f () = c Για = έχω : f () - + f () = c c = Επομένως για κάθε ΙR είναι : f () - + f () = f () + f () = ( + )f () = f () = + f () = = + ( + ) ( + ) - ( ) 4 4 4 + - + ( + ) = = = ( + ) ( + ) ( + ) και το "=" ισχύει μόνο για = άρα η f είναι γνησίως αύξουσα στο ΙR

Γ. Η f είναι συνεχής στο IR, άρα δεν έχει κατακόρυφες ασύμπτωτες f () im = im + = im = im = = λ - - - - + - - imf () - λ = im - = im = im = = β - - - - + + άρα η C έχει πλάγια ασύμπτωτη στο - την y = f f () im = im + = im = im = = λ + + + + + - - im f () - λ = im - = im = im = = β + + + + + + άρα η C έχει πλάγια ασύμπτωτη στο + την y = f Γ. f 5( + ) - 8 f 8( + ) 5( + ) - 8 8( + ) 5( + ) 8( + ) + 8 5( + ) 8 ( + ) + ( + ) ( + ) + 8 5 f + f f + - f

- Γ4. Έστω συνάρτηση h, με h () = f (t) dt,, Η συνάρτηση f είναι συνεχής άρα η συνάρτηση f, με f () = f (t) dt είναι παρ/μη στο [, ],άρα και συνεχής η h είναι συνεχής στο [, ] ως πράξεις των συνεχών f, f, με f () = - και f, με f () =. η h είναι παραγωγίσιμη στο (, ) ως πράξεις παραγωγίσιμων με - h () = f - - + f (t) dt h () = f (t) dt = και h = f (t) dt = Άρα από θ. Rolle η εξίσωση h () = έχει μια τουλάχιστον ρίζα στο (, ) Επομένως υπάρχει ένα τουλάχιστον ξ, τέτοιο, ώστε ξ -ξ f (t) dt = -ξ (ξ - ) f (ξ - ξ). ΘΕΜΑ Δ u f (t) - Δ. f () = + dt du () f (t) Παραγωγίζουμε την () και έχουμε : f (t) - f () = + dt, > f (t) () Παραγωγίζουμε την () και έχουμε για κάθε > f () - f () = f () f () = f () - f () f () f () + = f ()

Δ.α. Είναι f (). f (), για κάθε >,άρα f () και f (). Η f είναι συνεχής στο (, +) και f (), για κάθε >, άρα από συνέπειες θ. Bolzano, η f διατηρεί σταθερό πρόσημο στο (, +). Είναι u f (t) - f () = + dt du = >, f (t) επομένως f () >, για κάθε >. Η f είναι συνεχής στο (, +) και f (), για κάθε >, άρα από συνέπειες θ. Bolzano, η f διατηρεί σταθερό πρόσημο στο (, +). f (t) - Είναι f () = + dt = >, f (t) επομένως f () >, για κάθε >. β. f () = + f () f (), για κάθε > Eίναι f () >, για κάθε >, άρα f ()= + f () f () Η f είναι συνεχής στο =, άρα f () = im im im im + + + + f () = + f () f () = + f () f () f () = = + f () f () = = f () f () f () - f () () - Δ.α. g () = = = f () f () f () f () - - g () = = = και g () = = = - f () f () (ε) : εφαπτομένη της C στο σημείο Μ (, g ()) (ε) : y - g () = g () ( - ) y = - + g H g είναι κυρτή άρα η C βρίσκεται πάνω από την (ε) με εξαίρεση το σημείο επαφής Μ, άρα g () -, για κάθε > g

Δ.β. Για κάθε > είναι : f ()> f () g () - - f () ( - ) f () f () Για = είναι : f () > ( - ) f () άρα f () ( - ) f (), για κάθε f () - ( - ) f (), για κάθε και το "=" δεν ισχύει παντού Eπομένως f () -( - ) f () d > f () d - ( - ) f () d > f () > ( - ) f () d f () - f () > > ( - ) f () d ( - ) f () d ( - ) f () d > Δ4. Eίναι h () >, για κάθε [, ] () Ε = f () d = f () f () d = f () f () - f () f () f () d = f () f () - f () f () = - f () - f () d = - f () d + f ()d f () - f () - d Άρα Ε = - Ε + f () Ε = + f () - f () Ε = + E = E = τ.μ.