Παραδείγµατα γραµµικών αναλογικών συστηµάτων µιας εισόδου µιας εξόδου

Σχετικά έγγραφα
Μερικά πρώτα παραδείγµατα συστηµάτων διακριτού χρόνου

εύτερο παράδειγµα ΓΧΑ συστήµατος. Κύκλωµα RLC.

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Τυπική µορφή συστήµατος 2 ας τάξης

2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.

Ζητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Σήματα και Συστήματα

Προηγµένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ισοδυναµία τοπολογιών βρόχων.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Συστήματα Αυτομάτου Ελέγχου

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ψηφιακή Επεξεργασία Σημάτων

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

x(t) 2 = e 2 t = e 2t, t > 0

Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 11: Μετασχηματισμός Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

Kεφάλαιο 5. µετασχηµατισµού Laplace.

[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

x(t)e jωt dt = e 2(t 1) u(t 1)e jωt dt = e 2 t 1 e jωt dt =

( s ) Παραγώγιση στο χρόνο. Ολοκλήρωση στο χρόνο. Θεώρηµα αρχικής και τελικής τιµής Ο ΜΟΝΟΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Σεραφείµ Καραµπογιάς

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Συνέλιξη και Συστήµατα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ.Ε. ΜΕ ΚΡΟΥΣΤΙΚΕΣ ΙΕΓΕΡΣΕΙΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Σήματα και Συστήματα. Νόκας Γιώργος

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

= 5 cos(2π500t π/2) + 9 cos(2π900t + π/3) cos(2π1400t) (9) H(f) = 4.5, αλλού

ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

x(t) = 4 cos(2π600t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) (3)

Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Περιγραφή Σηµάτων Συνεχούς Χρόνου Συνάρτηση δέλτα Κατανοµές

Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Αντιστρέψιµα και µη αντιστρέψιµα συστήµατα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκοντες : Γ. Στυλιανού, Γ.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

x(t) = 4 cos(2π600t π/3) + 2 sin(2π900t + π/4) + sin(2π1200t) (1) w(t) = y(t)z(t) = 2δ(t + 1) (2) (2 sin(2π900t + π/4) t= 1 + sin(2π1200t) )

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Ψηφιακή Επεξεργασία Σημάτων

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Κεφάλαιο 7 Βάσεις και ιάσταση

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

y(t) = x(t) + e x(2 t)

x(t) = 4 cos(2π400t π/3) + 2 cos(2π900t + π/8) + cos(2π1200t) h(t) = 2000sinc(2000t) = h(t) = 2000sinc(2000t) H(f) = rect

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z. χρόνου και εξηγήσουµε έννοιες όπως περιοχή σύγκλισης, πόλος και µηδενικό.

Kεφάλαιο 5. µετασχηµατισµού Laplace.

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 93

3. Μια πρώτη προσέγγιση στην επίλυση των κανονικών μορφών Δ. Ε.

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

Εισαγωγή στην Τοπολογία

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Transcript:

1. ΓΡΑΜΜΙΚΑ ΑΝΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΙΑΣ ΕΙΣΟ ΟΥ ΜΙΑΣ ΕΞΟ ΟΥ Από αυστηρά µαθηµατικής απόψεως, ένα οποιοδήποτε αναλογικό σύστηµα είναι ένας τελεστής που δρα σε συναρτήσεις που θεωρούνται ως είσοδοι, παράγοντας έναν αριθµό εξόδων. Θα επικεντρωθούµε, τουλάχιστον καταρχήν, σε συστήµατα µιας εισόδου- µίας εξόδου. Ένα τέτοιο σύστηµα είναι γραµµικό, όταν και µόνον όταν περιγράφεται από ένα γραµµικό τελεστή. Ισοδυνάµως, ισχύει ο εξής ορισµός: ΟΡΙΣΜΟΣ (1) ΑΝΑΛΟΓΙΚΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΙΑΣ ΕΙΣΟ ΟΥ ΜΙΑΣ ΕΞΟ ΟΥ Ένα τέτοιο αναλογικό σύστηµα Τ λέγεται γραµµικό όταν για δύο οποιεσδήποτε εισόδους x t,x t και δύο οποιαδήποτε βαθµωτά µεγέθη (δηλαδή αριθµούς) α, β ισχύει: Ταx t+βx t=ατx t+βτx t Σε εναλλακτική διατύπωση, εάν το σύστηµα Τ, δεχόµενο σαν είσοδο την x t, παράγει σαν έξοδο την y t, ενώ µε είσοδο την x t, παράγει σαν έξοδο την y t, τότε όταν το σύστηµα δέχεται σαν είσοδο την αx t+βx t παράγει σαν έξοδο το α t+βy t. Προσοχή: Τα ανωτέρω πρέπει να ισχύουν για δύο οποιεσδήποτε συναρτήσεις x t, x t και για κάθε ζεύγη αριθµών α,β C. Η µεταβλητή t κατά κανόνα παίρνει τιµές σε ένα διάστηµα που είναι υποσύνολο των πραγµατικών αριθµών. Παραδείγµατα γραµµικών αναλογικών συστηµάτων µιας εισόδου µιας εξόδου ΠΑΡΑ ΕΙΓΜΑ 1: Ένα σύστηµα τέτοιο ώστε Τxt=3xt είναι προφανώς γραµµικό. (Το σύστηµα Τxt=3xt+5 είναι γραµµικό;) ΠΑΡΑ ΕΙΓΜΑ 2: Το σύστηµα τέτοιο ώστε Τ xt= είναι γραµµικό, όπως προκύπτει άµεσα από τη γραµµικότητα της παραγώγου, δηλαδή από την ταυτότητα: d dt αx t+βx t=α dx t +β dx t dt dt ΠΑΡΑ ΕΙΓΜΑ 3: 1

Ένα σύστηµα τέτοιο ώστε Τ xt= είναι γραµµικό, όπως προκύπτει άµεσα από τη γραµµικότητα της δευτέρας παραγώγου: d dt αx t+βx t=α d x t +β d x t dt dt ΠΑΡΑ ΕΙΓΜΑ 4: Ένα σύστηµα τέτοιο ώστε Τ xt= είναι γραµµικό, όπως προκύπτει άµεσα από τη γραµµικότητα της n-οστής παραγώγου: d dt αx t+βx t=α d x t dt +β d x t dt ΠΑΡΑ ΕΙΓΜΑ 5: Έστωσαν δύο σταθεροί, µη αρνητικοί αριθµοί t,t, τότε το σύστηµα Τ x!= 1 # xwdw είναι γραµµικό, ως άµεση συνέπεια της γραµµικότητας του ολοκληρώµατος. ηλαδή, =α) 1 1 # αx w+βx wdw 1 # x wdw*+β) # x wdw* ΘΕΩΡΗΜΑ 1. Εάν το σύστηµα Τ είναι γραµµικό, τότε για ένα πεπερασµένο πλήθος εισόδων x t,x t,,x, t, ισχύει Τα x t+α x t+ +α. x, t =α Τx t+α Τx t+ +α. Τx, t Απόδειξη Με απλή επαγωγή, χρησιµοποιώντας την προσεταιριστική ιδιότητα των πραγµατικών συναρτήσεων µαζί µε τον ορισµό 1, δηλαδή,,',' Τ)/α 0 x 1 t*=τ3/α 0 x 1 t+α, x, t4=τ)/α 0 x 1 t*+α, Τx, t= 12 12 12 Ο.Ε.. Σηµαντική σηµείωση: Η ιδιότητα της γραµµικότητας στην έξοδο ενός γραµµικού συστήµατος διατηρείται υπό προϋποθέσεις (οµοιόµορφη σύγκλιση) όταν η είσοδος 2

αυτού του συστήµατος είναι άπειρη σειρά ακολουθιών εισόδου. Επειδή, δε, το ολοκλήρωµα είναι µια άπειρη σειρά στοιχειωδών τραπεζίων, µπορώ να εναλλάξω τη δράση του τελεστή 5 µε το ολοκλήρωµα µιας τυχούσης συναρτήσεως/σήµατος 67. ηλαδή εάν η σύγκλιση είναι καλή, κάτι που το θεωρώ δεδοµένο για τις περισσότερες εφαρµογές, µπορώ να γράψω 8 9: 6!, 7;! >=: 86!,7;!. < = < = ΘΕΩΡΗΜΑ 2. Εάν τα συστήµατα Τ,Τ,,Τ. είναι γραµµικά, τότε ένας οποιοσδήποτε γραµµικός συνδυασµός αυτών είναι γραµµικό σύστηµα. Απόδειξη Η απόδειξη θα δοθεί µε απλή επαγωγή χρησιµοποιώντας την προσεταιριστική ιδιότητα των πραγµατικών συναρτήσεων. Θα δείξουµε µόνο το βήµα της επαγωγής που αφορά δύο γραµµικά συστήµατα Τ,Τ, όπου το συνολικό σύστηµα είναι το Τ=?Τ +μτ. Πράγµατι, για κάθε ζεύγος συναρτήσεων εισόδου x t,x t και κάθε ζεύγος αριθµών α,β ισχύει: Ταx t+βx t=?τ +μτ αx t+βx t= λτ αx t+βx t+μτ αx t+βx t= =αλτ x t+βλτ x t+αμτ x t+βμτ x t =α9λτ x t+μτ x t>+β9λτ x t+μτ x t>= =ατx t+βτx t Αλληλουχία γραµµικών συστηµάτων Ο.Ε.. Ας θεωρήσουµε τα γραµµικά συστήµατα Τ,Τ,,Τ. και επιπλέον ότι η έξοδος του Τ γίνεται είσοδος στο Τ, η έξοδος του Τ γίνεται είσοδος στο Τ B,, η έξοδος του Τ.' γίνεται είσοδος στο Τ,. Σχηµατικά, και συµβολικά T DE xt=t, FT,' G HT 9T xt>ijk. ΘΕΩΡΗΜΑ 3. Η αλληλουχία T DE k-γραµµικών συστηµάτων Τ,Τ,,Τ. είναι επίσης γραµµικό σύστηµα. Απόδειξη Η απόδειξη θα δοθεί, πάλι, µε απλή επαγωγή. Θα δείξουµε µόνο το βήµα της επαγωγής που αφορά τρία γραµµικά συστήµατα Τ,Τ,Τ B, όπου το συνολικό σύστηµα είναι το T DE =Τ B 9Τ Τ >. Πράγµατι, για κάθε ζεύγος συναρτήσεων εισόδου x t,x t και για κάθε ζεύγος αριθµών α,β ισχύει: T DE αx t+βx t=τ B HΤ 9Τ αx t+βx t>i= =Τ B HΤ 9αΤ x t+βτ x t>i=τ B HαΤ 9Τ x t>+βτ 9Τ x t>i= =ατ B HΤ 9Τ x t>i+βτ B HΤ 9Τ x t>i=αt DE x t+βt DE x t 3

Ο.Ε.. ΟΡΙΣΜΟΣ (2) ΣΥΝΕΛΙΞΗΣ ΥΟ ΣΥΝΕΧΩΝ ΣΗΜΑΤΩΝ. Έστωσαν δύο σήµατα xt,ht. Α) Για µη-περιοδικά σήµατα, η συνέλιξη t ορίζεται ως: εφόσον το ολοκλήρωµα συγκλίνει. t=# 6wht wdw, Β) Για περιοδικά σήµατα µε περίοδο Τ, η συνέλιξη t ορίζεται ως: O t=# 6wht wdw Η συνέλιξη, συχνά, συµβολίζεται µε *. ηλαδή, t=6t ht. parastasi_synelixis.m P Ιδιότητες συνέλιξης Αντιµεταθετικότητα: 6t ht=ht 6t Προσεταιριστικότητα: 6t ht Rt=6t ht Rt Επιµεριστικότητα ως προς την πρόσθεση: 6t ht+rt=6t ht+6t Rt ΘΕΩΡΗΜΑ 4. Μετασχηµατισµός Laplace της συνέλιξης Ο µετασχηµατισµός Laplace της συνέλιξης δύο συναρτήσεων xt και ht, όπου xt= ht=0 για t<0 ', ισούται µε το γινόµενο των µετασχηµατισµών Laplace των δύο συναρτήσεων (όλες οι συγκλίσεις των ολοκληρωµάτων θεωρούνται καλές). Ισοδυνάµως, εάν υπάρχουν οι µετασχηµατισµοί Xs=L[xt\, ]s=l[ht\ και Ys=L[yt\=L[6t ht\, τότε Ys=XsHs. Απόδειξη Θα δώσουµε την απόδειξη για τη µη-περιοδική περίπτωση, δεδοµένου ότι η απόδειξη στην περίπτωση της περιοδικής είναι εντελώς ανάλογη. L[yt\=# `'a% G# 6wht wdwjdt. Επειδή, τα όρια του δεύτερου ολοκληρώµατος δεν εξαρτώνται από τη µεταβλητή t, µπορούµε να ενθέσουµε τον όρο `'a% εντός του δευτέρου ολοκληρώµατος, οπότε προκύπτει: L[yt\=# G# `'a% 6wht wdwjdt. 4

Εναλλάσσοντας τη σειρά των ολοκληρωµάτων, εφόσον η σύγκλιση το επιτρέπει, πχ. είναι οµοιόµορφη, και βγάζοντας το 6w εκτός του ολοκληρώµατος ως προς t, λαµβάνουµε: L[yt\=# G# `'a% ht w;7j6wdw 1 Αλλά από τις ιδιότητες του µετασχηµατισµού Laplace # `'a% ht w;7 =]s`'ad 2 Αντικαθιστώντας τη (2) στην (1) λαµβάνουµε: L[yt\=# ]s`'da 6wdw=# ]s`'da 6wdw= =]s# `'da 6wdw=]sfs Ο.Ε.. ΟΡΙΣΜΟΣ (3) και διευκρίνιση. Η βηµατική συνάρτηση η οποία συνήθως συµβολίζεται ως g7, είναι εκείνη η οποία είναι µηδέν για t<0 ' ένα για t>0 & και εµφανίζει ασυνέχεια στο t=0. ιευκρινίζεται ότι µία οποιαδήποτε πραγµατική συνάρτηση µπορεί να περιοριστεί στους µη αρνητικούς πραγµατικούς αριθµούς ώστε να ισχύει 67=0 για t<0 ' εάν την πολλαπλασιάσω µε g7. 2. ΧΡΟΝΙΚΑ ΑΝΑΛΛΟΙΩΤΑ (TIME INVARIANT) ΑΝΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟΣ (4) ΧΡΟΝΙΚΑ ΑΝΑΛΛΟΙΩΤΩΝ (TIME INVARIANT) ΑΝΑΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Ένα σύστηµα Τ( ) λέγεται χρονικά αναλλοίωτο, όταν για κάθε ακολουθία εισόδου x(t) ισχύουν τα κάτωθι: Αν 7=867 και l οποιοσδήποτε πραγµατικός αριθµός, τότε 567 l=7 l. Παράδειγµα 1: Το σύστηµα 7=367 είναι προφανώς χρονικά αναλλοίωτο, αλλά το ίδιο ισχύει και για το σύστηµα 7=36 7 το οποίο δεν είναι γραµµικό. Παράδειγµα 2: Το σύστηµα Τ xt= είναι χρονικά αναλλοίωτο. Πράγµατι, εάν στην είσοδο αυτού θέσουµε το 67 l όπου l οποιοσδήποτε αριθµός, ισχύει Τ xt l= dxt l dt = j;6r dz l j dz dt n m2'l m2'l = j z m2'l 1=7 l 5

Παράδειγµα 3: Το σύστηµα Τ xt= είναι χρονικά αναλλοίωτο. Πράγµατι, εάν στην είσοδο αυτού θέσουµε το 67 l όπου l οποιοσδήποτε αριθµός, αποδεικνύεται µε απλή επαγωγή ότι ισχύει: Τ xt l= d xt l dt = j; 6R dz l j dz dt n m2'l p2%'l = j z m2'l 1=7 l Παράδειγµα 4: Έστωσαν δύο σταθεροί, µη αρνητικοί αριθµοί t,t, µε 7 +7 >0.Τότε το σύστηµα Τ x7= : xwdw είναι χρονικά αναλλοίωτο. Πράγµατι, εάν στην ( & είσοδο αυτού θέσουµε το 67 l όπου l οποιοσδήποτε αριθµός, ισχύει Τ xt l= 1 # xw ldw Εάν στο ολοκλήρωµα κάνουµε την αντικατάσταση R=! l και εάν θέσουµε q=7 l, τότε Ενώ, εξ ορισµού, Τ xτ= 1 %'l& # xzdz %'l' ( 7 l= 1 %'l&% # 6!;! 7 +7 %'l'% ( Άρα, Τ xt l=7 l και το σύστηµα είναι χρονικά αναλλοίωτο. 3. ΓΡΑΜΜΙΚΑ ΧΡΟΝΙΚΑ ΑΝΑΛΛΟΙΩΤΑ/ΓΧΑ (LINEAR TIME INVARIANT/LTI) ΚΑΙ ΛΟΙΠΑ ΑΝΑΛΟΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Το αιτιατό σύστηµα Αιτιατό ονοµάζεται ένα σύστηµα η έξοδος του οποίου εξαρτάται από προηγούµενες/παρούσες αλλά όχι από επόµενες χρονικά τιµές των εισόδων. Για παράδειγµα, για να είναι αιτιατό ένα σύστηµα 7, τότε η έξοδος 7 P πρέπει να εξαρτάται από εισόδους 67 µόνο για τιµές του 7 µικρότερες ή ίσες του 7 P, για κάθε 7 P. Ένα σύστηµα λέγεται γραµµικό χρονικά αναλλοίωτο, ΓΧΑ, (linear time invariant/lti) αν είναι γραµµικό και χρονικά αναλλοίωτο ταυτόχρονα. 6

Παραδείγµατα ΓΧΑ αναλογικών συστηµάτων Τxt=3xt Τ xt= Τ xt= Τ xt= : xtdt ( & 4. ΚΡΟΥΣΤΙΚΗ ΑΠΟΚΡΙΣΗ ΓΧΑ Έστω ένα τυχόν γραµµικό, χρονικά αναλλοίωτο σύστηµα Τ( ) και έστω ότι θέτουµε σε αυτό σαν είσοδο τη συνάρτηση δ(t), οπότε λαµβάνουµε σαν έξοδο την h7. ηλαδή h7=8s7. Τότε, η γνώση του h7, που λέγεται κρουστική απόκριση του συστήµατος Τ, µας δίνει τη δυνατότητα προσδιορισµού της εξόδου 7 του συστήµατος, για κάθε είσοδο 67, µέσω της συνέλιξης των 67 και h7, όπως υποδεικνύει το κάτωθι: ΘΕΩΡΗΜΑ 5. Έστω ένα οποιοδήποτε γραµµικό χρονικά αναλλοίωτο σύστηµα Τ( ) µε κρουστική απόκριση h7. Τότε, εάν τυχόν 67 γίνει είσοδος στο σύστηµα Τ( ), προκύπτει έξοδος 7=h7 67, ηλαδή η συνέλιξη των συναρτήσεων/σηµάτων 67 και h7. Απόδειξη θεωρήµατος 5 Εκ του ορισµού του δ του Dirac ισχύει : N 67= #δt w6!d! Αφήνουµε το γραµµικό σύστηµα Τ να δράσει και στα δύο µέλη της ανωτέρω εξίσωσης, όπου τονίζουµε ότι ο Τ δρα µόνο σε συναρτήσεις του 7 αφού το αριστερό µέλος είναι συνάρτηση µόνο του 7. Άρα 7

N Τxt=TF #δt wxwdwk Αλλά σύµφωνα µε την παρατήρηση που ακολουθεί το θεώρηµα 1 του παρόντος κεφαλαίου µπορούµε να εναλλάξουµε τον Τ µε το ολοκλήρωµα οπότε λαµβάνουµε N N Τxt = # Tδt wxwdw= #ht wxwdw=h7 67 Στο τελευταίο βήµα χρησιµοποιήσαµε το χρονικά αναλλοίωτο του συστήµατος Τ ΟΕ Μετασχηµατισµός Laplace - Συνάρτηση µεταφοράς ΓΧΑ ΘΕΩΡΗΜΑ 6. Έστω Τ( ) ένα γραµµικό χρονικά αναλλοίωτο σύστηµα µε κρουστική απόκριση h7 και 67 ένα σήµα εισόδου µε 67, h7 = 0 για t<0 '. Εάν fu=l67,]u=lh7 και αν η έξοδος του συστήµατος είναι 7 για είσοδο 67 και vu=l7 τότε ισχύει vu=]u fu. Απόδειξη: είναι άµεση συνέπεια των θεωρηµάτων 5 και 4. Σηµαντικότατη παρατήρηση: Η συνάρτηση µεταφοράς Η(s) ενός ΓΧΑ είναι ανεξάρτητη των σηµάτων εισόδου και εξόδου. Άρα, αν γνωρίζω το µετασχηµατισµό Laplace της κρουστικής απόκρισης ενός ΓΧΑ συστήµατος, τότε για τυχούσα είσοδο 67g7 βρίσκω την έξοδο πρώτα στο πεδίο των s και µετά µε αντίστροφο µετασχηµατισµό Laplace στο πεδίο του χρόνου 7. Κρουστική απόκριση και συνάρτηση µεταφοράς ΓΧΑ σε αλληλουχία (cascaded LTI) Επειδή έχουµε αποδείξει προηγουµένως ότι ένα σύστηµα που είναι αλληλουχία γραµµικών συστηµάτων είναι και αυτό γραµµικό, υπάρχει µια κρουστική απόκριση h7 η οποία πλήρως περιγράφει τη συµπεριφορά αυτού του συστήµατος. Ας εξεταστεί πρώτα η περίπτωση δύο γραµµικών συστηµάτων σε αλληλουχία: τότε 5 DE 67=8 98 67>, ας θέσουµε 8

7=8 67οπότε 7=8 7. Άλλα επειδή τα 8,8 είναι γραµµικά ισχύει µε κρουστική απόκριση έστω h 7και h 7 αντίστοιχα: 7=h 7 67 και 7=h 7 7. Αντικαθιστώντας την πρώτη σχέση στη δεύτερη λαµβάνουµε 7=h 7 h 7 67=h 7 h 7 67 h7 67. Επειδή η ανωτέρω σχέση πρέπει να ισχύει για κάθε 67 µε 67=0 για t<0 ' ισχύει τελικά h7=h 7 h 7. Θα εξετάσουµε τώρα την περίπτωση k γραµµικών συστηµάτων που δρουν σε αλληλουχία. Σε αυτή την περίπτωση έχουµε: 5 DE 67=8. F8.' G H5 98 67>IJK Με απλή επαγωγή και εκµεταλλευόµενοι την προσεταιριστικότητα της συνέλιξης και τη γραµµικότητα των εν λόγω συστηµάτων ισχύει τελικά 7=h x 7 h x' 7 h 7 h 7 67 h7 67. Επειδή η ανωτέρω σχέση πρέπει να ισχύει για κάθε 67 ισχύει τελικά h7=h x 7 h x' 7 h 7 h 7. Μετασχηµατίζοντας κατά Laplace τις προηγούµενες σχέσεις λαµβάνουµε στο πεδίο των συχνοτήτων s : Πρώτα για δύο συστήµατα : Αφού έχουµε αποδείξει ότι ο µετασχηµατισµός Laplace της συνέλιξης δύο συναρτήσεων ισούται µε το γινόµενο των µετασχηµατιζοµένων προκύπτουν οι σχέσεις. v u=] ufu, v u=] uv u και vu=]ufu όπου ]u=] u] u Για οποιοδήποτε, δε, αριθµό συστηµάτων ισχύει v u=] ufu, v u=] uv u,, v.' u=].' uv.' u, vu=]. uv.' u και µετά από διαδοχικές αντικαταστάσεις vu=]. u].' u ] u] uyu. Επειδή,δε, το 5 DE είναι γραµµικό, υπάρχει ]u τέτοιο ώστε vu=]ufu για κάθε είσοδο fu. Άρα zu=]. u].' u ] u] u. 9

4. ΑΝΑΛΟΓΙΚΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΕΙΣΟ ΩΝ ΠΟΛΛΩΝ ΕΞΟ ΩΝ Ένα οποιοδήποτε σύστηµα πολλών εισόδων πολλών εξόδων παριστάνεται συνήθως σχηµατικά ως εξής. Είσοδοι χ 1 (t), χ 2 (t),, χ n (t) Σύστηµα Έξοδοι y 1 (t), y 2 (t),, y m (t) Για τη διαχείριση ενός τέτοιου συστήµατος είθισται να χρησιµοποιούµε τους πίνακες στήλης-διανύσµατα χ χ y 7=} και 7=} χ y Οπότε σε αυτή την περίπτωση το γραµµικό σύστηµα ορίζεται ως εξής: ΟΡΙΣΜΟΣ (5) ΑΝΑΛΟΓΙΚΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΕΙΣΟ ΩΝ ΠΟΛΛΩΝ ΕΞΟ ΩΝ Έστω ένα σύστηµα Σ, το οποίον δεχόµενο ως είσοδο το τυχόν διάνυσµα ƒ 7 παράγει σαν έξοδο το ƒ 7 ενώ µε είσοδο το τυχόν 7 παράγει σαν έξοδο το 7. Τότε το σύστηµα αυτό λέγεται γραµµικό, όταν δεχόµενο ως είσοδο το διάνυσµα α ƒ 7+β 7, όπου α,β τυχόντες αριθµοί, παράγει σαν έξοδο το διάνυσµα α ƒ 7 +β 7. Προσοχή: Τα ανωτέρω πρέπει να ισχύουν για δύο οποιαδήποτε διανύσµατα ƒ 7, 7 και για κάθε ζεύγη αριθµών α,β C. Η µεταβλητή t κατά κανόνα παίρνει τιµές σε ένα διάστηµα που είναι υποσύνολο των πραγµατικών αριθµών. Θα γίνει µία εισαγωγή στη διαχείριση τέτοιων συστηµάτων στην ενότητα περί χώρου καταστάσεων. 10