ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Σχετικά έγγραφα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Προσομοίωση Συστημάτων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Θεωρία Πιθανοτήτων & Στατιστική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

X = = 81 9 = 9

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

3. Κατανομές πιθανότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρητικές Κατανομές Πιθανότητας

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Συμπίεση Δεδομένων

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

2 η Εργαστηριακή Άσκηση

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ ΥΔΡΟΛΟΓΙΚΩΝ ΦΑΙΝΟΜΕΝΩΝ

Πανεπιστήμιο Πελοποννήσου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Ηλεκτρονικοί Υπολογιστές IV

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Στατιστική Συμπερασματολογία

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

Πανεπιστήμιο Ιωαννίνων, Τμήμα Πληροφορικής. Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας) Διάφορες Ασκήσεις πάνω στην 3 η Ενότητα:

Εξίσωση Τηλεπικοινωνιακών Διαύλων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Τυχαίοι Αριθμοί. (Random Numbers) Προσομοίωση Βιομηχανικής Παραγωγής & Επιχειρήσεων

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

γ. Η διακύμανση είναι μέτρο διασποράς και είναι καθαρός αριθμός, δηλαδή δεν έχει μονάδες. Μονάδες 9

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Χρονικές σειρές 4 o μάθημα: ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του έβδομου φυλλαδίου ασκήσεων. f X (t) dt για κάθε x. F Y (y) = P (Y y) = P X y b ) a.

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 4: Δειγματοληψία και Κβάντιση Εικόνας

Τυχαία μεταβλητή (τ.μ.)

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Εισαγωγή στην Εκτιμητική

Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

3-Φεβ-2009 ΗΜΥ Σήματα

ΕΙΣΑΓΩΓΗ Η μελέτη διαφόρων στοχαστικών φαινομένων μπορεί γενικά να γίνει χρησιμοποιώντας

ιωνυµική Κατανοµή(Binomial)

Συνεχείς Τυχαίες Μεταβλητές

Στατιστική Επιχειρήσεων Ι

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

Ψηφιακή Επεξεργασία Εικόνας

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Τεχνικές Εκτίμησης Υπολογιστικών Συστημάτων Ενότητα 7: Η επιλογή των πιθανοτικών κατανομών εισόδου

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών»

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

Transcript:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ TE Αρχές Ψηφιακών Συστημάτων Επικοινωνίας και Προσομοίωση Εαρινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst283 e-mail: nsagias@uop.gr

Οι τυχαίοι αριθμοί παίζουν πολύ σημαντικό ρόλο στην προσομοίωση Παράγοντας τυχαίους αριθμούς, μιμούμαστε τη στατιστικά τυχαία συμπεριφορά του φαινομένου που μελετάμε Οι τυχαίοι αριθμοί μπορούν να χρησιμοποιηθούν σε Γεννήτριες bit Γεννήτριες AWGN θορύβου Γεννήτριες διαλείψεων 2

Οι τυχαίοι αριθμοί, λόγω του ότι παράγονται βάσει κάποιου αλγορίθμου, δεν είναι εντελώς τυχαίοι και γι αυτό ονομάζονται ψευδοτυχαίοι Οι τυχαίοι αριθμοί ακολουθούν κάποια γνωστή κατανομή, όπως Ομοιόμορφη Κανονική Για την δημιουργία τυχαίων αριθμών σε ΗΥ χρησιμοποιούνται γεννήτριες συναρτήσεις 3

Έστω η τυχαία μεταβλητή Χ με ομοιόμορφη κατανομή U[,] Τα δείγματα της Χ θα είναι δεκαδικοί αριθμοί, οι οποίοι θα παίρνουν τιμές μεταξύ και με ίδια πιθανότητα, π.χ..945,.24,.333 Η συνάρτηση πυκνότητας πιθανότητας είναι X ( ) =, f x x Η αθροιστική συνάρτηση κατανομής είναι ( ) =, F x x x X Η μέση τιμή και η διακύμανση είναι μ Χ =.5 και var(x) = /2 f X (x) F X (x) x x 4

Έστω η τυχαία μεταβλητή Χ με ομοιόμορφη κατανομή U[,] Έστω η τυχαία μεταβλητή Y με ομοιόμορφη κατανομή U[a,b] Χρησιμοποιώντας τη X μπορούμε να παράξουμε τυχαίους αριθμούς που να ακολουθούν την U[a,b] σύμφωνα με το μετασχηματισμό Y = (b a) X + a Δηλαδή, πολλαπλασιάζουμε τα δείγματα της X με (b a) και προσθέτουμε a Η συνάρτηση πυκνότητας πιθανότητας και η αθροιστική συνάρτηση κατανομής είναι y a fy ( y) =, a y b και FY ( y) =, a y b b a b a Η μέση τιμή και η διακύμανση είναι μ Y = (b a)/2 και var(y) = (b a) 2 /2 5

Με βάση την U[,], μπορούμε εύκολα να υλοποιήσουμε μια γεννήτρια bit Δεδομένου ότι F X (x) = x, προκύπτει ότι Pr{X<=.5} = F X (.5) =.5 ή 5% Προφανώς ισχύει ότι Pr{X >.5} = - Pr{X<=.5} =.5 ή 5% Ο κώδικας της γεννήτριας bit είναι: 2bit.m Διαιρώντας το [,] σε 4 διαστήματα, μπορούμε να αντιστοιχίσουμε 2 bit σε κάθε διάστημα N = ; A = rand(, N); B = zeros(, N); for k = :N if A(k) <=.5 B(k) = ; else B(k) = ; end end disp('οι τιμές που περιέχει ο A είναι: '); A disp('τα bit που παράχθηκαν είναι: '); B 6

Έστω η τυχαία μεταβλητή Χ με ομοιόμορφη κατανομή U[,] Έστω η τυχαία μεταβλητή Y στο διάστημα [a,b] της οποίας η αθροιστική συνάρτηση κατανομής είναι η F Y Χρησιμοποιώντας τη X μπορούμε να παράξουμε τυχαίους αριθμούς Y που να ακολουθούν την F Y σύμφωνα με το μετασχηματισμό Y = F Y - (X) Άρα, αρκεί να μπορούμε να προσδιορίσουμε την F Y - προκειμένου να παράξουμε τυχαίους αριθμούς της κατανομής αυτής 7

Παράδειγμα αρνητικής εκθετικής κατανομής Έστω η τυχαία μεταβλητή Χ με ομοιόμορφη κατανομή U[,] Έστω η τυχαία μεταβλητή Y στο διάστημα [,+ ], της οποίας η αθροιστική συνάρτηση κατανομής είναι η ( ) ( λ ) F y = exp y, y Y με παράμετρο λ > Χρησιμοποιώντας τη X μπορούμε να παράξουμε τυχαίους αριθμούς Y που να ακολουθούν την F Y σύμφωνα με το μετασχηματισμό Y = ln λ ( X ) 8

Παράδειγμα αρνητικής εκθετικής κατανομής.9 Εμπειρική Θεωρητική Αθροιστική Συνάρτηση Κατανομής Εμπειρική Θεωρητική Συνάρτηση Πυκνότητας Πιθανότητας.8.7.8.6 F Y (x).5 f Y (x).6.4.3.4.2.2..5.5 2 2.5 3 3.5 4 4.5 5 x Κώδικας MATLAB Nexp.m N = ; % Πλήθος τυχαίων αριθμών lamda = ; % Παράμετρος της κατανομής.5.5 2 2.5 3 3.5 4 x X = rand(,n); Y = -log( - X) / lamda; % Το διάνυσμα Χ περιέχει N τυχαίους αριθμούς U[,] % Το διάνυσμα Y περιέχει N τυχαίους αριθμούς που % ακολουθούν την αρνητική εκθετική κατανομή 9

Έστω η τυχαία μεταβλητή Χ με κανονική κατανομή μηδενικής μέσης τιμής και μοναδιαίας διακύμανσης N(, ) Η τυχαία μεταβλητή Χ με κανονική κατανομή N(μ Χ, σ 2 Χ) έχει αθροιστική συνάρτηση κατανομής Y y FY ( y) Q µ = σy με Q τη συνάρτηση πιθανότητας Η δε συνάρτηση πυκνότητας πιθανότητας της Y είναι ( µ ) 2 Y y fy ( y) = exp 2 2 2πσ 2σY Y Χρησιμοποιώντας τη X μπορούμε να παράξουμε τυχαίους αριθμούς Y που να ακολουθούν την F Y σύμφωνα με το μετασχηματισμό Y = σ Y X + μ X

Παράδειγμα μετασχηματισμού κατανομής κατανομής.5 Εμπειρική Θεωρητική Συνάρτηση Πυκνότητας Πιθανότητας.9.8 Εμπειρική Θεωρητική Αθροιστική Συνάρτηση Κατανομής.4.7.6 f Y (x).3 F Y (x).5.2.4.3..2. -6-4 -2 2 4 6 x Κώδικας MATLAB Gaussian.m N = ; % Πλήθος τυχαίων αριθμών m = -2; % Η μέση τιμή της κατανομής s = sqrt(.5); % Η τυπική απόκλιση της κατανομής -3-2.5-2 -.5 - -.5 x X = randn(,n); Y = s * X + m ; % Το διάνυσμα Χ περιέχει N τυχαίους αριθμούς N(,) % Το διάνυσμα Y περιέχει N τυχαίους αριθμούς N(m,s^2)

Παράδειγμα γεννήτριας λευκού Γκαουσσιανού θορύβου Έστω ένα διάνυσμα X με M δείγματα, κατανεμημένα σύμφωνα με την N(, ), τα οποία αναπαριστούν χρονικά το θόρυβο από έως T Έστω ότι το κάθε δείγμα αντιστοιχεί σε διάρκεια Δt, δηλαδή T = M Δt Ο ρυθμός δειγματοληψίας είναι F s = /Δt και άρα οι συχνότητες που μπορούμε να δούμε είναι έως ±F s /2 Δt 2Δt 3Δt (M-3)Δt (M-2)Δt (M-)Δt t X f f 2 /(M Δt) 2 3 FFT 4 (M/2-)/(M Δt) M/2 -/(2 Δt) M/2+ IFFT M-2 M- -2/(M Δt) M- M -/(M Δt) M -/(2 Δt) -(M/2-)/(M Δt) -/(M Δt) (M/2-2)/(M Δt) (M/2-)/(M Δt) 2 M/2 M/2+ M- M 2

Παράδειγμα γεννήτριας λευκού Γκαουσσιανού θορύβου Η φασματική πυκνότητα του λευκού θορύβου είναι N S ( ) n f =, < f < + 2 Άρα η ισχύς των δειγμάτων του θορύβου πρέπει να είναι σ 2 = F s N /2 Χρησιμοποιώντας τη X μπορούμε να παράξουμε δείγματα θορύβουy ~ N(, σ 2 ), σύμφωνα με το μετασχηματισμό Y= X FN Για N = 2 - W/Hz και F s = 5 MHz WGN.m S n (f) N / 2 2 s Εμβαδό σ 2 = F s N /2 Πλάτος (mv) 25 2 5 5-5 - -5-2 Λευκός Γκαουσσιανός Θόρυβος -F s /2 F s /2 f -25 2 3 4 5 6 7 8 9 Χρόνος (µsec) 3