ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

Σχετικά έγγραφα
ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΤΗΝ ΔΙΑΦΟΡΑ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ

Πανεπιστήμιο Πελοποννήσου

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

1. Η κανονική κατανοµή

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2012

3. Κατανομές πιθανότητας

οι ενήλικες στην περιοχή Β, ο φοιτητής γνωρίζει ότι X ~ N(

Παρουσίαση 4 η : Στοιχεία στατιστικής αξιολόγησης εκτιμήσεων

Έλεγχος Υποθέσεων II. Στατιστική IΙ, Τμήμα Ο.Ε. ΑΠΘ. Χ. Εμμανουηλίδης, 1

Στατιστικοί Ελεγχοι. t-έλεγχος για την σύγκριση των µέσων δύο πληθυσµών. Έλεγχος 5: Έλεγχος της οµοιογένειας δύο πληθυσµών µε διακυµάνσεις σ 1

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

, της Χ που έχουμε διαθέσιμες μετά από μια πραγματοποίηση του τυχαίου δείγματος X, X, 2

5. ιαστήµατα Εµπιστοσύνης

ειγματοληπτικές κατανομές

Επεξεργασία. Μέθοδοι Monte Carlo Εφαρμογές στην Επίλυση Προβλημάτων

6. ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΗ ΓΡΑΜΜΙΚΗ ΣΥΣΧΕΤΙΣΗ

ρ. Ευστρατία Μούρτου

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

και ονομάζεται μηδενική υπόθεση (null hypothesis), και η άλλη με H

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΙΣΑΓΩΓΙΚΕΣ ΔΙΑΛΕΞΕΙΣ ΒΑΣΙΚΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ I

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΟΥΤΡΟΥΜΑΝΙ ΗΣ Θ. ΖΑΦΕΙΡΙΟΥ Ε.

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 13 Ιουνίου 2010

ιάστηµα εµπιστοσύνης της µ 1

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Εκτιµητική. Boutsikas M.V. (2003), Σηµειώσεις Στατιστικής ΙΙΙ, Τµήµα Οικονοµικής Επιστήµης, Πανεπιστήµιο Πειραιώς.

[ ] = ( ) ( ) ( ) = { }

Ψηφιακός Έλεγχος. 8 η διάλεξη Σφάλματα. Ψηφιακός Έλεγχος 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παρουσίαση 3 η : Αρχές εκτίμησης παραμέτρων Μέρος 2 ο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Γ. Πειραματισμός - Βιομετρία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Διαστήματα Εμπιστοσύνης

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

ο εκτιμητής LS είναι n 1 x y 2 t Οι βασικές ιδιότητες του εκτιμητή είναι: ( ) = β, αμεροληψία, . Αν έχουμε n x C, τότε Var Τότε, θα έχουμε Var (

Εισαγωγή στην Εκτιμητική

σ.π.π. της 0.05 c 0.1

ΚΕΦΑΛΑΙΟ 2 Ο ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΤΟΥΣ

11. Σημειακή Εκτίμηση & Εκτίμηση με Διάστημα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

10. Στατιστικές συναρτήσεις και δειγματοληπτικές κατανομές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

Ανάλυση και Σχεδιασμός Μεταφορών Ι Δειγματοληψία - Μέθοδοι συλλογής στοιχείων

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική

Χάραξη γραφηµάτων/lab Graphing

Στατιστικοί Ελεγχοι. t - Έλεγχος για τον μέσο μ ενός πληθυσμού. t-έλεγχος για την σύγκριση των μέσων δύο πληθυσμών

Διαφορές μεταξύ Ασφαλίσεων Ζωής και Γενικών

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Στατιστική Συμπερασματολογία

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Δειγματοληπτικές κατανομές

1. Έλεγχος Υποθέσεων. 1.1 Έλεγχοι για την µέση τιµή πληθυσµού

Θηκόγραμμα (box-plot) Γραφική παρουσίαση των μέτρων θέσης μιας μεταβλητής

Άσκηση 19 Εξαναγκασμένες ηλεκτρικές ταλαντώσεις και συντονισμός

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )

Πιθανότητες & Τυχαία Σήματα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Σημειακή εκτίμηση και εκτίμηση με διάστημα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Υπόδειγμα αποτίμησης κεφαλαιακών Περιουσιακών Στοιχείων (CAPM)

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ AΝΑΛΟΓΙΕΣ

Αποδοτικότητα Χαρτοφυλακίου

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

12.1 Σχεδιασμός αξόνων

Το θεώρηµα του Green

Επανάληψη ελέγχων υποθέσεων

Κεφάλαιο 2. Αξιοπιστία μονάδων - συστημάτων στο χρόνο. Κατανομές χρόνων ζωής

Transcript:

ΚΕΦΑΛΑΙΟ 16 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΔΙΑΚΥΜΑΝΣΕΙΣ Α. Περίπτωη Ενός Πληθυμού Αν μας ενδιαφέρει να κατακευάουμε ένα διάτημα εμπιτούνης για την διακύμανη ενός πληθυμού, χρηιμοποιούμε το γεγονός ότι αν Χ 1, Χ,..., Χ n είναι ένα τυχαίο δείγμα από έναν Ν(μ, ) πληθυμό τότε, n ( i ) i 1 (n 1) * n n 1 Χρηιμοποιώντας το γεγονός αυτό μπορούμε να κατακευάουμε ένα 100(1-α)% διάτημα εμπιτούνης για το ως εξής: α/ α/ n 1, α/ n 1,1α/ ή ιοδύναμα n 1, α/ n n1,1α/ 1 α 35

ή n n n1,1α/ n1, α/ * (n 1) (n 1) n1,1α/ n1, α/ 1 α * 1 α Παράδειγμα: Μια μηχανή που χρηιμοποιείται να γεμίζει κουτιά με μπύρα θα πρέπει να λειτουργεί με τρόπο ώτε η ποότητα μπύρας που τοποθετείται ε κάθε κουτί να είναι περίπου ταθερή. Αν τοποθετηθεί περιότερη από την κανονική μπύρα, τότε τα κουτιά ξεχειλίζουν, ενώ αντίθετα, αν τοποθετηθεί ποότητα πολύ μικρότερη από την κανονική, θα δημιουργηθούν παράπονα από τους καταναλωτές. Προκειμένου να ελεγχθεί η ποότητα μπύρας που τοποθετείται τα κουτιά, επιλέγονται τυχαία 0 τέτοια κουτιά τα οποία παρατηρείται μια τυπική απόκλιη 0. gr. Να εκτιμηθεί η διακύμανη της ποότητας που τοποθετείται τα κουτιά με την χρήη ενός 95% διατήματος εμπιτούνης. Λύη: Υποθέτοντας ότι η ποότητα της μπύρας που τοποθετείται ε κάθε κουτί ακολουθεί την κανονική κατανομή, ένα 95% διάτημα εμπιτούνης για το θα είναι το, ή ή 0(.) 19,.975 0(. ) 3. 85 0(.), 19,.05 0(. ), 8907. (.0,.09) 353

Το αντίτοιχο διάτημα εμπιτούνης για την τυπική απόκλιη κατακευάζεται με την θεώρηη των τετραγωνικών ριζών των άκρων του παραπάνω διατήματος. Παρατήρηη: Η επιλογή περιοχών τις ουρές της κατανομής του αυτού εμβαδού για την κατακευή του διατήματος εμπιτούνης είναι βέβαια αυθαίρετη. Ο ερευνητής μπορεί να επιλέξει οποιοδήποτε ζεύγος ημείων, έτι ώτε το υνολικό εμβαδόν τις ουρές της κατανομής να είναι ίο με α. Επιπλέον το διάτημα εμπιτούνης που κατακευάθηκε με τη προηγηθεία μέθοδο δεν είναι κατ' ανάγκη το βραχύτερο. Μπορεί κανείς να κατακευάει διάτημα του αυτού βαθμού εμπιτούνης, το οποίο να είναι βραχύτερο. Παρόλα αυτά, την πράξη χρηιμοποιείται η μεθόδος που αναφέραμε των ίων εμβαδών τις ουρές της κατανομής κυρίως διότι υπάρχουν οι πίνακες αλλά και διότι η ακρίβεια η οποία επιτυγχάνεται δεν διαφέρει πολύ από εκείνην που θα επιτυγχάναμε αν είχαμε χρηιμοποιήει την διαδικαία κατακευής διατήματος εμπιτούνης ελαχίτου μήκους. Σημείωη: Το τατιτικό πακέτο tatgraphics δίνει τα διατήματα εμπιτούνης για τη διακύμανη ενός πληθυμού με την ίδια διαδικαία και την ίδια οθόνη με τα διατήματα εμπιτούνης για την μέη τιμή. Β. Περίπτωη Δύο Πληθυμών Προκειμένου να υγκρίνουμε τις διακυμάνεις δύο ανεξαρτήτων κανονικών πληθυμών με την κατακευή διατημάτων εμπιτούνης, χρηιμοποιούμε το θεώρημα που υνδέει ανεξάρτητες Χ μεταβλητές με την κατανομή. Όταν μας ενδιαφέρει η ύγκριη των διακυμάνεων δύο πληθυμών, κατακευάζουμε διατήματα εμπιτούνης για τον λόγο. Χρηιμοποιώντας το γεγονός ότι: (n 1) * n n 1 354

και (m 1) * m m 1 όπου n, m είναι τα μεγέθη των δύο ανεξαρτήτων δειγμάτων με * * διαπορές, (αντίτοιχα, για τις αμερόληπτες εκτιμήτριες) που έχουν ληφθεί από δύο ανεξάρτητους κανονικούς πληθυμούς με διακυμάνεις,. Σύμφωνα με το θεώρημα του παραρτήματος θα έχουμε, * * n (n 1) m (m 1) n-1, m-1 (, είναι ανεξάρτητες τυχαίες μεταβλητές δεδομένου ότι και Χ, Υ είναι ανεξάρτητες τυχαίες μεταβλητές). α/ α/ n-1, m-1, α/ n-1, m-1, 1-α/ * n (n 1) n 1, m 1, α/ * n 1, m 1,1α/ m (m 1) 1 α 355

Επομένως, ένα 100(1-α)% διάτημα εμπιτούνης για το δίνεται από τον τύπο, ή, ιοδύναμα από τον τύπο n n 1, m m 1 n n 1 m m 1 1 1 n 1, m 1,1 α/ n 1, m 1,α/ * * 1 1 n1,m1,1α/, * n1,m1,α/ * Σημείωη: Η χρηιμοποίηη του παραπάνω τύπου έχει κάποιες δυκολίες δοθέντος ότι οι πίνακες της κατανομής δεν δίνουν πάντα το κατώτερο εκατοτιαίο ημείο της κατανομής. Παρ όλα αυτά το ημείο αυτό μπορεί να προδιοριθεί δεδομένου ότι, αν U V, r r όπου U και V είναι ανεξάρτητες τυχαίες μεταβλητές που ακολουθούν τις κατανομές με r 1, r βαθμούς ελευθερίας έχουμε ότι, V 1 r r, U Επομένως αν Χ r 1, r θα έχουμε, α/ ( <,r, α/) r 1 ( 1 > 1 ),r, α/ r 1 356

Επομένως, Αλλά, 1/ r, Επομένως, δηλαδή ( < ) 1 1,r, α/ 1 1 r ( 1 < 1 ) 1,r α/ r 1, α/ 1/, r, α/ r, r, 1 α/ r 1 1, r, α/ 1 / r,, 1 α/ α/ α/,r, α/, r, 1 α/ 1/, r, 1 α/ r 1 Σημείωη: Τα διατήματα εμπιτούνης για τον λόγο των διακυμάνεων δύο ανεξάρτητων κανονικών πληθυμών δίνονται το τατιτικό πακέτο TATGRAHIC τον ίδιο πίνακα που καταλήγουμε την ανάλυη δύο δειγμάτων (TWO-AMLE ANALI) που είδαμε προηγουμένως. Έτι, για παράδειγμα, αν μας ενδιαφέρει να κατακευάουμε ένα 95% διάτημα εμπιτούνης για τον λόγο των διακυμάνεων των χρόνων που χρειάζονται οι εργαζόμενοι να υναρμολογήουν ένα αντικείμενο μετά από εκπαίδευη με δύο διαφορετικές μεθόδους εκπαίδευης που είδαμε ε προηγούμενο παράδειγμα, παρατηρούμε από τον πίνακα του TATGRAHIC που ακολουθεί ότι, επιλέγοντας το 95% διάτημα εμπιτούνης, το διάτημα αυτό για 357

τον λόγο των διακυμάνεων είναι (AMLE 1 AMLE ) (0.746,5.43163) με 8 και 8 βαθμούς ελευθερίας αντίτοιχα. TWO-AMLE ANALI REULT AMLE 1 AMLE OOLED AMLE TATITIC: NUMBER O OB. 9 9 18 AVERAGE 35. 31.5556 33.3889 VARIANCE 4.4444 0.078.361 TD. DEVIATION 4.94413 4.4754 4.7155 MEDIAN 35 31 33 DIERENCE BETWEEN MEAN 3.66667 CON. INTERVAL OR DI. IN MEAN: 95 ERCENT (EQUAL VAR.)AMLE 1-AMLE -1.04687 8.3801 16 D.. (UNEQUAL VAR.)AMLE 1-AMLE -1.05066 8.38399 15.8 D.. RATIO O VARIANCE 1.053 CON. INTERVAL OR RATIO O VARIANCE: 95 ERCENT AMLE 1 AMLE 0.746 5.43163 8 8 D.. HOTHEI TET OR H0: DI 0 COMUTED t TATITIC 1.64948 V ALT: NE IG. LEVEL 0.11854 AT ALHA.05 O DO NOT REJECT H0. 358