Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 12

Σχετικά έγγραφα
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διδάσκων: Αντώνιος Τζές

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 5

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 10

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 7

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Αναγνώριση Προτύπων Ι

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)

website:

E[ (x- ) ]= trace[(x-x)(x- ) ]

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

HMY 799 1: Αναγνώριση Συστημάτων

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Βέλτιστος Έλεγχος Συστημάτων

E [ -x ^2 z] = E[x z]

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

Βέλτιστος Έλεγχος Συστημάτων

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM)

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Βέλτιστος Έλεγχος Συστημάτων

x(t) 2 = e 2 t = e 2t, t > 0

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

Διαφορικές Εξισώσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

HMY 799 1: Αναγνώριση Συστημάτων

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΑΛΓΕΒΡΟ - ΠΟΛΥΩΝΥΜΙΚΕΣ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών

Μια εισαγωγή στο φίλτρο Kalman

Η Βασική Δομή Συστημάτων Ελέγχου Κίνησης

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Αναγνώριση Προτύπων Ι

Στατιστική Συμπερασματολογία

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Συστήματα Αυτόματου Ελέγχου

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

µέθοδοι υποβιβασµού τάξης µοντέλου σε κυκλώµατα µε µεγάλο αριθµο θυρών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)

Αριθμητική Ανάλυση και Εφαρμογές

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Προσεγγιστικοί Αλγόριθμοι

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Αναδρομικός αλγόριθμος

Β. Βασιλειάδης. Επιχειρησιακή Έρευνα Διάλεξη 5 η -Αλγόριθμος Simplex

Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

8.1 Διαγωνοποίηση πίνακα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Στατιστική. Εκτιμητική

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

ΜΕΜ251 Αριθμητική Ανάλυση

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Παραδείγματα Διανυσματικοί Χώροι (3)

Έλεγχος Κίνησης

Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Το μοντέλο Perceptron

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 10: Αυτόματα Στοίβας II

lim (f(x + 1) f(x)) = 0.

ΑΠΑΝΤΗΣΕΙΣ. z x y 2xyi. Re z x y. Θα δείξουμε ότι για τους μιγαδικούς αριθμούς z για τους οποίους ισχύει ότι. z z zz. zz zz z z 1 0 z z 1 (1)

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

Transcript:

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 2 Πάτρα 2008

Γενικευμένος προβλεπτικός έλεγχος Μέχρι τώρα καμμία από τις μεθόδους ελέγχου που αναλύσαμε δεν μπορεί να θεωρηθεί ότι αποτελεί έναν «γενικού σκοπού» αλγόριθμο για ευσταθή έλεγχο της πλειοψηφίας των πραγματικών συστημάτων. Για να θεωρηθεί ως τέτοια μια μέθοδος πρέπει να εφαρμόζεται με επιτυχία σε: μη ελάχιστης φάσης συστήματα ανοικτού βρόγχου ασταθή συστήματα

σύστημα με μεταβλητό ή αγνωστο νεκρό χρόνο. σύστημα με άγνωστη τάξη Ο Γενικευμένος προβλεπτικός έλεγχος φαίνεται πως μπορεί να ανταπεξέλθει στα παραπάνω προβλήματα με έναν μόνο αλγόριθμο.

Θεωρούμε το μοντέλο: Aq ( ) yt ( ) = B ( q ) ut ( ) + ξ ( t )/ Δ () όπου na A( q ) = + aq + + a q n a nb Bq ( ) = b+ bq + + b q 0 n b Δ= q

Βασει της (), παράγουμε έναν βημάτων μπροστά εκτιμητή yt ( + ), θεωρώντας την εξίσωση: E ( ) ( q A q F q ) = Δ+ (2) Όπου E, F είναι πολυώυμα μοναδικώς ορισμένα δεδομένου του A(q ) και διαστήματος πρόβλεψης. Αν πολλαπλασιάσουμε την () με EΔ q και αντικαταστήσουμε για EAΔ από την (2) παίρνουμε: y ( t + ) = EBΔ ut ( + ) + F y ( t ) + E ξ ( t+ )

Καθώς το E q είναι τάξης, τα στοιχεία θορύβου είναι όλα στο ( ) μέλλον έτσι ώστε ο βέλτιστος προβλεπτής, βάσει των μετρήσιμων δεδομένων εξόδου μέχρι τον χρόνο t και βάσει οποιουδήποτε u(t+i) για i>, είναι προφανώς: yˆ( t + t) = G Δ u( t+ ) + F y( t) όπου G q ή ( ) = E B G Bq ( ) q F( ) q = ( q ) Aq ( ) Δ

Στην ανάπτυξη του γενικευμένου ελάχιστης διασποράς αλγορίθμου χρησιμοποιήθηκε μόνο μία πρόβλεψη yˆ( t+ κ t ) όπου κ θεωρήθηκε η τιμή νεκρού χρόνου του συστήματος. Σε αυτόν τον αλγόριθμο, θεωρήσαμε ολόκληρη ομάδα προβλέψεων όπου το παίρνει τιμές από μια ελάχιστη ως μια μέγιστη τιμή: αυτές καλούνται ο ελάχιστος και ο μέγιστος ορίζοντας πρόβλεψης.

Diophantine Recursion Χρησιμοποιώντας επαναληπτικά την Διοφαντική εξίσωση και δεδομένων των πολυωνύμων E, F βρίσκουμε τα E, F Θεωρούμε: + +. E = E R E + = E + F = F S = F +

A = AΔ = EA + q F ( + ) = RA + q S Αφαιρώντας την τελευταία από την προτελευταία σχέση παίρνουμε: ( ) 0 = A ( R E) + q q S F Το πολυώνυμο R Ε είναι πολυώνυμο βαθμού και μπορεί να χωριστεί σε δύο μέρη: R E = R + r q

Έτσι ώστε ( ) + + = AR q q S F Ar 0 Τότε προφανώς R = 0 και επίσης το S δίνεται από: Sq ( F Ar ) Επίσης ισχύει: r = f 0 S = f a r i i+ i+ () για i = 0 μέχρι τον βαθμό του Sq ( ) και Rq ( ) = Eq ( ) + q r G B q R q = + ( ) ( )

Δεδομένων των A( q ) και B( q ) και μίας λύσης E ( q ) και F q ( ) τότε οι εξισώσεις () μπορούν να χρησιμοποιηθούν για να πάρουμε το E ( ) q F ( ) q + και η (2) για να δώσει το + κτλ,, με μικρή υπολογιστική προσπάθεια. Για την αρχικοποίηση των επαναλήψεων, σημειώνουμε ότι για = : EA + q F Και καθώς το στοιχείο οδήγησης του A είναι τότε: ( ) E =, F = q A

Νόμος προβλεπτικού ελέγχου Υποθέτουμε ότι έχουμε διαθέσιμο ένα μελλοντικό σημείο ρύθμισης ή μια ακολουθία αναφοράς wt ( + ); =,2, K Θεωρούμε την συνάρτηση κόστους της μορφής: N 2 2 J( N, N2) = E y( t+ ) w( t+ ) + λ( ) Δ u( t+ ) = N = N 2 2 Όπου N : ελάχιστος ορίζοντας κόστους N 2 : μέγιστος ορίζοντας κόστους λ ( ) : control weighting sequence

Στην προηγούμενη συνάρτηση κόστους, δεδομένα είναι διαθέσιμα μέχρι τον χρόνο t ενώ δεν είναι διαθέσιμες μελλοντικές μετρήσεις. Επίσης πρέπει: N2 deg ( B( q )) N2 χρόνος ανύψωσης του συστήματος N, N κ (για ελαχιστοποίηση υπολογισμών)

Οι μελλοντικές έξοδοι μοντελοποιούνται ως εξής: y( t+ ) = GΔ u( t) + F y( t) + Eξ( t+ ) yt ( + 2) = GΔ ut ( + ) + Fyt ( ) + Eξ( t+ 2) 2 2 2 y( t+ N) = G Δ u( t+ N ) + F y( t) + E ξ( t+ N) N N N

Υποθέτουμε ότι το f ( t + ) είναι το στοιχείο του y( t + ) που αποτελείται από γνωστά σήματα στον χρόνο t, έτσι ώστε για π.χ.: f( t+ ) = G( q ) g 0 Δ u( t) + Fy( t) f ( t+ 2) = q G2( q ) q g2 g20 Δ ut ( ) + Fy 2 ( t) όπου G( q ) = g + g q + i i0 n

Τότε οι προηγούμενες εξισώσεις μπορούν να γραφούν στην μορφή: ŷ = Gu + f όπου τα διανύσματα είναι όλα Νx: yˆ yt+ ˆ( + ) = yt ˆ( + N) Δu() t u = Δ ut ( + N ) f f( t+ ) = f( t+ N)

Ο πίνακας G είναι ένας κάτω τριγωνικός πίνακας ΝxN: G g 0 g g0 =, g i = g, = 0,,2, < i g N gn 2 g 0 Αν ο νεκρός χρόνος του συστήματος είναι κ> οι πρώτες κ γραμμές του G θα είναι 0.

Με W wt ( + ) = w ( t + N ) Έχουμε: { } ( ) { 2 } T λ J = E J(, N) = E y W ( y W) + u u { T ( ) ( ) } T J = Gu + f W Gu+ f W +λu u

Η ελαχιστοποίηση του J οδηγεί στο διάνυσμα: ( T ) T λ ( ) u = G G+ I G W f Το πρώτο στοιχείο του u είναι το Δu(t) έτσι ώστε ο έλεγχος u(t) δίνεται από: ut () = ut ( ) + g T ( W f ) όπου g T είναι η πρώτη γραμμή του ( T ) T GG+ λi G.

Μετά από ένα διάστημα NU < N2 οι προβλεπόμενες αυξήσεις του ελέγχου θεωρούνται μηδενικές: Δ ut ( + ) = 0, > NU Το NU καλείται ορίζοντας ελέγχου (ισοδυναμεί με άπειρο κόστος στις δράσεις αύξησης του ελέγχου μετά από το NU) Οι εξισώσεις πρόβλεψης μειώνονται σε: ŷ = Gu + f

Όπου G g 0 g g 0 = g 0 g g 2 g N N N NU NxNU Ο αντίστοιχος νόμος ελέγχου δίνεται από: T T λ NUxNU ( ) u = G G + I G w f

Επιλογή των οριζόντων N, συνήθως N = κ N 2 : συνήθως ( N ) 2 deg B( q ) NU, τουλάχιστον ίσος με τον αριθμό των ασταθών ή με άσχημη συμπεριφορά πόλων ( NU, βιομηχανικές διαδικασίες)