ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

Σχετικά έγγραφα
P(A ) = 1 P(A). Μονάδες 7

P(A ) = 1 P(A). Μονάδες 7

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

= +. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α. Μονάδες 7.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

P(A ) = 1 P(A). Μονάδες 7

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΠΑΡΑΣΚΕΥΗ 20 ΜΑΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

,,, και τα ενδεχόμενα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑ 1o A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Μαθηματικών της Ώθησης

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

P A B P(A) P(B) P(A. , όπου l 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(f(x)+g(x)) =f (x)+g (x), x R

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

x. Αν ισχύει ( ) ( )

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΒΑΣΙΛΕΙΟΣ ΝΤΑΙΦΩΤΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

(f(x) + g(x)) = f (x) + g (x).

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Transcript:

ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ 016 ΜΘΗΜΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ Γ ΛΥΕΙΟΥ ΘΕΜΤ Ι ΠΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙ: ΤΣΙΤΟΣ ΧΡΗΣΤΟΣ

ΠΝΕΛΛΔΙΕΣ ΕΞΕΤΣΕΙΣ ΤΕΤΡΤΗ 0 ΜΪΟΥ 016 ΕΞΕΤΖΟΜΕΝΟ ΜΘΗΜ: ΜΘΗΜΤΙ Ι ΣΤΟΙΧΕΙ ΣΤΤΙΣΤΙΗΣ ΘΕΜ A1. ν A και A είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου Ω να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ΠΝΤΗΣΗ 1: Σχολικό βιβλίο σελ. 150 P(A) 1P(A). (Μονάδες 7) : Να δώσετε τον ορισμό της διαμέσου (δ) ενός δείγματος ν παρατηρήσεων. (Μονάδες ) ΠΝΤΗΣΗ : Σχολικό βιβλίο σελ. 7 3: Έστω f μία συνάρτηση με πεδίο ορισμού το. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό ελάχιστο στο 0xA (Μονάδες ) ΠΝΤΗΣΗ 3: Σχολικό βιβλίο σελ. 1

: Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιο σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) ν και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου Ω με Β, τότε για τις πιθανότητές τους ισχύει P(A) P(Β). β) Ο σταθμισμένος αριθμητικός μέσος ή σταθμικός μέσος είναι μέτρο διασποράς. γ) ν οι συναρτήσεις f και g είναι παραγωγίσιμες, τότε ισχύει ότι: (f(x) g(x)) f(x)g(x) f(x)g(x) δ) Το ραβδόγραμμα χρησιμοποιείται για τη γραφική παράσταση των τιμών μιας ποιοτικής μεταβλητής. ε) ν μία συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει f(x)0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα στο Δ. (Μονάδες 10) ΠΝΤΗΣΗ A: α) Σωστό β) Λάθος γ) Σωστό δ) Σωστό ε) Λάθος ΘΕΜ Β x 5 Δίνεται η συνάρτηση f με τύπο f(x) x 6x 1,x R. 3 3 Β1: Να βρείτε τα ακρότατα της συνάρτησης f. (Μονάδες 9) ΠΝΤΗΣΗ Β1: Eίναι : f (x) x 5x 6,x R. Είναι f(x)=0x 5x60x3 ή x

x 3 f(x) f H f είναι γνησίως αύξουσα (,] και στο [3, ) ενώ είναι γνησίως φθίνουσα στο [, 3]. 11 Η f παρουσιάζει τοπικό μέγιστο στο x1, το f() 3 H f παρουσιάζει τοπικό ελάχιστο στο x3, το f(3) 7 Β: Να βρείτε την εξίσωση της εφαπτομένης της γραφικής παράστασης της συνάρτησης f στο σημείο της A(0,f(0)) ΠΝΤΗΣΗ Β: (Μονάδες ) H εφαπτομένη έχει (ε): yαxβ (1). Ισχύει ότι αf(0)6, οπότε (ε): y6xβ. Όμως (ε), άρα : f(0)60ββ1. Άρα : (ε) y6x1. Β3. Να υπολογίσετε το όριο f (x) 1 lim 1 x 1 x (Μονάδες ) ΠΝΤΗΣΗ Β3: Είναι : f (x) 1 f (x) 5x 6-1 x lim lim lim x1 x 1 x1 x 1 x1 5x 6 lim x 1 x 1 (x 6)(x 1) x 1 lim (x 6) 7. x1

ΘΕΜ Γ Μεταξύ των οικογενειών με τρία παιδιά επιλέγουμε τυχαία μία οικογένεια και εξετάζουμε τα παιδιά της ως προς το φύλο και ως προς τη σειρά γέννησής τους. Γ1. Να προσδιορίσετε το δειγματικό χώρο Ω του πειράματος χρησιμοποιώντας ένα δενδροδιάγραμμα. ΠΝΤΗΣΗ Γ1: άνουμε το δεντροδιάγραμμα του πειράματος (Mονάδες ) ρχή : γόρι, : ορίτσι 1 ο Παιδί ο Παιδί 3 ο Παιδί Ω {AAA, AAK, AKA, AKK, KAA,, KKA, KKK} (ii) Β {,,,,,, } (iii) Γ {,,, }

Γ.. Να παρασταθούν με αναγραφή των στοιχείων τους τα ενδεχόμενα που προσδιορίζονται από την αντίστοιχη ιδιότητα: A: «τo πρώτο παιδί είναι κορίτσι» Β: «ο αριθμός των κοριτσιών υπερβαίνει τον αριθμό των αγοριών» Γ: «τα δύο πρώτα παιδιά είναι του ίδιου φύλου». ΠΝΤΗΣΗ Γ: Tα ενδεχόμενα με αναγραφή των στοιχείων τους είναι : {KAA, KAK, KKA, KKK} BAKK, KAK, KKA, KKK} Γ{,,, } (Μονάδες 6) Γ3: Υποθέτουμε ότι ο δειγματικός χώρος Ω αποτελείται από ισοπίθανα απλά ενδεχόμενα. α) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχομένων: ΔAB, Ε AB, ΖΓ Ε β) Να υπολογίσετε την πιθανότητα των παρακάτω ενδεχομένων: Η: «δεν πραγματοποιείται κανένα από τα,β» Θ: «πραγματοποιείται ακριβώς ένα από τα,β». ΠΝΤΗΣΗ Γ3: α) τα ενδεχόμενα Δ,Ε,Ζ με αναγραφή των στοιχείων τους είναι: Άρα: Δ=Β={,,} Ε=Β={,,,,} Ζ=ΓΕ={,} Ν(Δ)= 3, Ν(Ε)=5, Ν(Ζ)=, Ν(Ω)= πό τον κλασσικό ορισμό της πιθανότητας είναι: (μονάδες 9 ) (μονάδες 6 ) Μονάδες 15

Ρ(Ε)= Ν(Ε) 5 άρα Ρ(Ε)= Ν(Ω) Ρ(Ζ)= Ν(Ζ) άρα Ρ(Ζ)= Ν(Ω) 1 β) Το ενδεχόμενο: «δεν πραγματοποιείται κανένα από τα,β» είναι το (Β). άρα Ρ(Η)=Ρ((Β))=1Ρ(Β) Ρ(Η)=1 5 3 Το ενδεχόμενο: «πραγματοποιείται ακριβώς ένα από τα,β» είναι το (Β)(Β): Ρ(Θ)=Ρ((Β)(Β)) Β,Β ασυμβίβαστ α Ρ(Β)+Ρ(Β) = Ρ()Ρ(Β)+Ρ(Β)Ρ(Β) = Ρ(Β) Ρ(Β) οπότε: Ρ(Θ)= 5 3 1

ΘΕΜ Δ Οι χρόνοι (σε λεπτά) που χρειάστηκαν ν υπολογιστές για να τρέξουν ένα πρόγραμμα, έχουν ομαδοποιηθεί σε ισοπλατείς κλάσεις πλάτους c, όπως στον παρακάτω πίνακα: Χρόνος (σε λεπτά) [, ) εντρική Τιμή xi Συχνότητα vi [, ) 1 [, ) [, ) ΣΥΝΟΛΟ Δ1: Να αποδείξετε ότι c=. (Μονάδες ) ΠΝΤΗΣΗ Δ1: Χρόνος (σε λεπτά) εντρική τιμή xi [,+c) [+c,+c) 1 Άρα c c 16 3c 1 1 16 3c 3c 1 c

Δ: ν η μέση τιμή των χρόνων είναι x =1, να αποδείξετε ότι ν=5 (μονάδες ) και στη συνέχεια να μεταφέρετε στο τετράδιό σας τον παραπάνω πίνακα κατάλληλα συμπληρωμένο (μονάδες ). ΠΝΤΗΣΗ Δ: O πίνακας γίνεται: (Μονάδες 6) Χρόνος (σε εντρική τιμή xi Συχνότητα vi xi * vi λεπτά) [, 1) 10 0 00 [1,16) 1 15 10 [16, 0) 1 10 1 [ 0, ) ν ν ΣΥΝΟΛΟ 5+ ν 590+ ν Οπότε: x 590 v x ivi 1 i1 5 v (5 v )1 590 v 630 1v 0 v v 5 590 v Άρα ο τελικός πίνακας γίνεται Χρόνος (σε εντρική τιμή xi Συχνότητα vi xi * vi λεπτά) [, 1) 10 0 00 [1,16) 1 15 10 [16, 0) 1 10 1 [ 0, ) 5 110 ΣΥΝΟΛΟ 50 700

Δ3: ν οι παρατηρήσεις είναι ομοιόμορφα κατανεμημένες σε κάθε κλάση, να βρείτε πόσοι υπολογιστές χρειάστηκαν τουλάχιστον 9 λεπτά για να τρέξουν το πρόγραμμα. ΠΝΤΗΣΗ Δ3: Πάνω από 9 λεπτά χρειάστηκαν 3 v 3 v v3 v 0 15 10 5 5 υπολογιστές 1 (Μονάδες 5) Δ: Να αποδείξετε ότι η τυπική απόκλιση των χρόνων είναι s= και να εξετάσετε αν το δείγμα των χρόνων είναι ομοιογενές. ΠΝΤΗΣΗ Δ: (Μονάδες 6) Χρόνος εντρική Συχνότητα x i x (xi x) (xi x) vi (σε λεπτά) τιμή xi vi [, 1) 10 0-16 30 [1,16) 1 15 0 0 0 [16, 0) 1 10 16 160 [ 0, ) 5 6 30 ΣΥΝΟΛΟ 50 56 00 s i 1 (x i x) v v i 00 50 16 Άρα s= και CV x s 0, 0,1 ή (%10%) x 1 Άρα το δείγμα είναι ανομοιογενές

Δ5: ντικαθιστούμε τον επεξεργαστή κάθε υπολογιστή με έναν ταχύτερο και βρίσκουμε ότι κάθε υπολογιστής τρέχει τώρα το πρόγραμμα στο 0% του χρόνου που χρειαζόταν πριν. Να εξετάσετε ως προς την ομοιογένεια το καινούργιο δείγμα χρόνων. ΠΝΤΗΣΗ Δ5: Έχουμε xi : αρχικός χρόνος yi : τελικός χρόνος Συνδέονται με την σχέση (Μονάδες ) y i y 0,x S y CV 0,x,i {1,,3...50} y i 0, S S y y x 0,s x 0,x To CV παραμένει αμετάβλητο s x x CV x