ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ



Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Λύσεις των θεμάτων ΤΕΤΑΡΤΗ 23 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(f(x)+g(x)) =f (x)+g (x), x R

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

P A B P(A) P(B) P(A. , όπου l 1

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

(f (x) g(x)) = f (x) g(x)+f (x) g (x) (μονάδες 2)

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

Φροντιστήριο ΜΕΤΑΙΧΜΙΟ έχουμε τα "μέσα" να σας φτάσουμε στα... "άκρα"!

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

ΘΕΜΑ Α Α1. Αν και είναι δύο συμπληρωματικά ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι για τις πιθανότητές τους ισχύει: ( ) 1 ( ).

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΑΠΑΝΤΗΣΕΙΣ. 40. Ακόμα είναι. και F1 f και ακόμα Τέλος έχουμε F3 f1 f2 f3 F2 f. N i

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

P(A ) = 1 P(A). Μονάδες 7

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΘΕΜΑΤΑ ΓΕΝΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

Χρόνια υπηρεσίας [ - )

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

= +. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α. Μονάδες 7.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

Οµάδα (I): Οµάδα (II): Οµάδα (III):

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

x. Αν ισχύει ( ) ( )

Ασκήσεις επανάληψης στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου, χ. Έτος του Μανώλη Ψαρρά Άσκηση 1 η

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Λύσεις των θεμάτων των επαναληπτικών πανελλαδικών εξετάσεων στα Μαθηματικά και Στοιχεία Στατιστικής

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (Τεύχος 96) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ. f (x) s lim e. t,i 1,2,3,...

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Transcript:

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα να δώσετε τον κλασικό ορισμό της πιθανότητας ενός ενδεχομένου Α Μονάδες 4 Α3. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής μεταβλητότητας μιας μεταβλητής X, αν > και πώς, αν < ; Μονάδες 4 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. α) Το κυκλικό διάγραμμα χρησιμοποιείται μόνο για τη γραφική παράσταση ποσοτικών δεδομένων (μονάδες ). β) Η παράγωγος της f στο εκφράζει το ρυθμό μεταβολής του y = f() ως προς, όταν = (μονάδες ). γ) Αν Α,Β ενδεχόμενα ενός δειγματικού χώρου Ω με Α Β, τότε ισχύει ότι Ρ(Α)>Ρ(Β) (μονάδες ). δ) Το εύρος, η διακύμανση και η τυπική απόκλιση των τιμών μιας μεταβλητής είναι μέτρα διασποράς (μονάδες ). ε) lm ημ = ημ, R (μονάδες ). Μονάδες ΘΕΜΑ Β Οι χρόνοι (σε λεπτά) που χρειάστηκαν οι μαθητές μιας τάξης για να λύσουν ένα μαθηματικό πρόβλημα ανήκουν στο διάστημα [5,45) και έχουν ομαδοποιηθεί σε τέσσερις κλάσεις ίσου πλάτους. Τα δεδομένα των χρόνων εμφανίζονται στο

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ παρακάτω ιστόγραμμα αθροιστικών σχετικών συχνοτήτων επί τοις εκατό. Β. Με βάση το παραπάνω ιστόγραμμα αθροιστικών σχετικών συχνοτήτων επί τοις εκατό, να υπολογίσετε τη διάμεσο των χρόνων που χρειάστηκαν οι μαθητές. Μονάδες 4 Β. Στον επόμενο πίνακα συχνοτήτων της κατανομής των χρόνων, να αποδείξετε ότι α=8 (μονάδες 3) και να μεταφέρετε τον πίνακα κατάλληλα συμπληρωμένο στο τετράδιό σας (μονάδες 5). Μονάδες 8 Β3. Να βρεθεί η μέση τιμή X και η τυπική απόκλιση s των χρόνων που χρειάστηκαν οι μαθητές. ( ίνεται ότι: 84 9,7) Μονάδες 8

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Β4. Να βρεθεί το ποσοστό των μαθητών που χρειάστηκαν τουλάχιστον 37 λεπτά να λύσουν το μαθηματικό πρόβλημα. Μονάδες 5 ΘΕΜΑ Γ Από τους μαθητές μιας τάξης ενός σχολείου επιλέγουμε τυχαία έναν μαθητή. Αν ν φυσικός αριθμός με ν 3, τότε η πιθανότητα του ενδεχομένου ο μαθητής να μαθαίνει 3ν Γαλλικά είναι ν + ν+ Ισπανικά είναι ν + και τις δύο παραπάνω γλώσσες είναι ν + ν + μια τουλάχιστον από τις παραπάνω γλώσσες είναι ίση με το όριο ( + 3 ) lm + Γ. Να αποδείξετε ότι το ενδεχόμενο ο μαθητής να μαθαίνει μία τουλάχιστον από τις παραπάνω δύο γλώσσες είναι βέβαιο. Μονάδες 7 Γ. Να αποδείξετε ότι ν = 3 Μονάδες 6 Γ3. Να βρείτε την πιθανότητα του ενδεχομένου ο μαθητής να μαθαίνει μόνο μία από τις δύο γλώσσες. Μονάδες 6 Γ4. Αν ο αριθμός των μαθητών που μαθαίνουν και τις δύο παραπάνω γλώσσες είναι 3, να βρείτε τον αριθμό των μαθητών της τάξης. Μονάδες 6 ΘΕΜΑ + ln Δίνεται η συνάρτησηf() =,> Δ. Να αποδείξετε ότι η f είναι γνησίως φθίνουσα. Μονάδες 5 Δ. Έστω Μ(,f()), > σημείο της γραφικής παράστασης

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ της f. Η παράλληλη ευθεία από το Μ προς τον άξονα y y τέμνει τον ημιάξονα O στο σημείο Κ(,) και η παράλληλη ευθεία από το Μ προς τον άξονα τέμνει τον ημιάξονα Oy στο σημείο Λ(,f()). Αν O είναι η αρχή των αξόνων, να αποδείξετε ότι το εμβαδόν του ορθογωνίου παραλληλόγραμμου ΟΚΜΛ γίνεται ελάχιστο, όταν αυτό γίνει τετράγωνο. Μονάδες 7 3. Έστω η ευθεία ε:y = λ + β, β, η οποία είναι παράλληλη προς την εφαπτομένη της γραφικής παράστασης της f στο σημείο Σ(,f()). Θεωρούμε δέκα σημεία (,y), =,,, της ευθείας ε, τέτοια ώστε οι τετμημένες τους να έχουν μέση τιμή = και τυπική απόκλιση s =. Να βρείτε για ποιες τιμές του β το δείγμα των τεταγμένων y των δέκα σημείων είναι ομοιογενές. Μονάδες 8 4. Αν Α και Β είναι ενδεχόμενα ενός δειγματικού χώρου με ισοπίθανα απλά ενδεχόμενα, τέτοια ώστε Α και Α Β, τότε να αποδείξετε ότι f(p(a)) + f(p(a B)) f(p(a B) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία σχολικό βιβλίο σελίδα 3 Α. Θεωρία σχολικό βιβλίο σελίδα 48 Α3. Θεωρία σχολικό βιβλίο σελίδα 96 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ Μονάδες 5

ΘΕΜΑ Β Β. ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ F% F% 3 5% F% 5 5 5 35 45 Η διάμεσος έχει αθροιστική σχετική συχνότητα F = 5%, οπότε δ = 5 Β. ν = α+4 + 3α 6 + α + 8 + α = 7α+4 α+ 4 3α 6 f = και f = 7 α+ 4 7 α+ 4 α+ 4 3α 6 5 f+ f = F + = α= 8 7α+ 4 7α+ 4 Χρόνοι v f% N F% [5,5) [5,5) 8 3 3 5 [5,35) 3 4 4 54 9 [35,45) 4 6 6 Σύνολο 6 Β3. Χρόνοι v v v [5,5) [5,5) 8 36 7 [5,35) 3 4 7 6 [35,45) 4 6 4 96 Σύνολο 6 44 396

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ v 44 = = = 4 v 6 v v 396 s = v = () = 4 = 84 v v v 6 Άρα s= s = 84 9,7 B4. Θεωρούμε ότι οι παρατηρήσεις σε κάθε κλάση κατανέμονται ομοιόμορφα. Άρα το ποσοστό των μαθητών που χρειάστηκαν τουλάχιστον 37 λεπτά για 4 4 να λύσουν το μαθηματικό πρόβλημα είναι f% 4 = % = 8% 5 5 ΘΕΜΑ Γ Έστω τα ενδεχόμενα: Γ: Ο μαθητής μαθαίνει Γαλλικά Ι: Ο μαθητής μαθαίνει Ισπανικά 3ν Έχουμε P( Γ ) = ν + ν+ ΡΙ= () ν + ν+ ΡΓ Ι= ν + Γ. Έχουμε ( + ) ( + 3) 4 lm + ( + )( + 3+ ) 3 ΡΓ Ι= lm = = ( )( + ) = lm = 3 ( + )( + + ) ( ) lm =. Οπότε το Γ Ι 3 ( + + ) είναι βέβαιο ενδεχόμενο. Γ. Έχουμε 3ν ν+ v+ ΡΓ Ι=ΡΓ+ΡΙ ΡΓ Ι + = ν + ν + v + ν ν= ν 3 3 ν= 3 Γ3. Τα ενδεχόμενα Γ Ι και Ι Γ είναι ξένα μεταξύ τους, οπότε:

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Ρ Γ Ι Ι Γ =Ρ( Γ Ι ) +Ρ( Ι Γ ) = 4 3 =Ρ( Γ) Ρ( Γ Ι ) +Ρ( Ι) Ρ( Γ Ι ) =Ρ( Γ Ι) Ρ( Γ Ι ) = = = 5 Γ4. ΝΓ Ι ΝΓ Ι 3 ΡΓ Ι= ΝΩ= = = 8 ΝΩ ΡΓ Ι 5 ΘΕΜΑ Δ Δ. ( + ln ) ( + ln )( ) ln( ln) ln f ( ) = = = ln + ln ( ln ) = = <,e e,,+ για κάθε ( + ). Οπότε η f γνησίως φθίνουσα στο Δ. E = OKO Λ= f = ln+,> ln E' ( ) =,> E = = E ( ) > > E ( ) < < < Οπότε το εμβαδόν του ορθογωνίου ΟΚΜΛ γίνεται ελάχιστο όταν = και αφού ΟΚ = ΟΛ = το ΟΚΜΛ είναι τετράγωνο. Δ3. λ= f ( ) =. Οπότε ε: y = + β. Έχουμε y= +β=β. sy = s = sy CVy = =. Το δείγμα των τεταγμένων y των δέκα σημείων y β είναι ομοιογενές αν και μόνο αν CVy β β β ή β β ή β 3 Α Α Βκαι Α Β Α Βτότε < Ρ Α Ρ Α Β Δ4. Επειδή και <Ρ( Α Β ΡΑ Β. ) (Είναι Ρ(Α)> και ΡΑ Β> αφού Α και Α Β )

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ f P A f P A B Αφού f γνησίως φθίνουσα στο (,+ ) τότε f( P( A B) ) f( P( A B) ), οπότε f P( A) + f P A B f P A B ( ) ( ) ( ) και ΕΠΙΜΕΛΕΙΑ: ΚΟΥΣΗΣ Π. ΣΙΦΝΑΙΟΣ Δ. ΤΖΩΡΤΖΙΝΗΣ Ι. ΦΙΛΙΟΓΛΟΥ Β. ΦΛΩΡΟΠΟΥΛΟΣ Α.