ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΆΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: M Τετάρτη 6 Απριλίου 04 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα Ε_ΜλΓΑ(α) Μια συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστηµα του πεδίου ορισµού της, όταν για οποιαδήποτε, µε < ισχύει f ( ) >f ( ) Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 60 Για οποιαδήποτε γωνία ω ισχύει η ταυτότητα ηµ ω + συν ω = Απόδειξη Αν M(, y ) είναι το σηµείο στο οποίο η τελική πλευρά της οποιασδήποτε γωνίας ω τέµνει τον τριγωνοµετρικό κύκλο, τότε θα είναι: ηµω= y και συνω= Επειδή όµως, OM = και ( ΟΜ ) = + y = + y ( ) θα ισχύει: + y =, οπότε θα έχουµε: συν ω+ ηµ ω= Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 74 Αν α> 0 µε α και θ> 0, τότε: α = θ log α θ = Ισοδύναµα αυτό διατυπώνεται ως εξής: Ο logαθ είναι ο εκθέτης στον οποίο πρέπει να υψώσουµε τον α για να βρούµε το θ ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 7
A4 α) Σωστή β) Σωστή γ) Σωστή δ) Λάθος ε) Σωστή ΘΕΜΑ Β Β Πρέπει P() = α + ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Άρα Βα Για α = είναι + α α + = α + α + α = 0 α = ή α = P() = + + Έχουµε λοιπόν + + + + + + -+ Ε_ΜλΓΑ(α) Έτσι σύµφωνα µε την Ευκλείδεια διαίρεση του P() µε το Q() το πηλίκο είναι π () = +, ενώ το υπόλοιπο υ () = + Ββ Για να ορίζεται η ανίσωση πρέπει Q( ) 0 + + 0, είναι = οπότε το τριώνυµο Q( ) = + + δεν έχει ρίζες, δηλαδή ισχύει + + 0 για κάθε R και µάλιστα + + > 0 αφού είναι οµόσηµο του α = > 0 ιαδοχικά έχουµε P() + + + + Q() + + + + +> 0 + + + + 0 + + ( + ) ( + ) 0 ( + )( ) 0 ( + ) ( ) 0 (Σχόλιο ) + ( + ) + 0 + + 0 + Γινόµενο 0 0 + ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 7
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Από τον παραπάνω πίνακα πρόσηµου έχουµε ότι η ανίσωση επαληθεύεται για [, + ) ή = (Σχόλιο ) () Σχόλιο: Ε_ΜλΓΑ(α) ( + ) ( ) 0 Συνήθως µεταφέρουµε όλους τους όρους στο πρώτο µέλος οπότε έχουµε + 0 Στη συνέχεια κάνουµε τα κλάσµατα οµώνυµα και παίρνουµε + + + ( + + ) 0 Εδώ όµως παρατηρούµε ότι το Q( ) = + + έχει + + = < 0 οπότε έχει το ίδιο πρόσηµο µε το α = > 0, δηλαδή ισχύει + + > 0 οπότε µπορούµε να κάνουµε απαλοιφή παρονοµαστών χωρίς να αλλάξουµε τη φορά () Σχόλιο: Το = της ( + ) ( ) 0 επαληθεύεται για = ή = ενώ το > επαληθεύεται για (, ) [, + ) + έτσι έχουµε { } Βγ Πρέπει Q() = + + 0 που ισχύει για κάθε R και µάλιστα Π () = + 0 Η εξίσωση γίνεται: + = + + ( + ) = + + + + = + + = 0 η οποία είναι δεκτή Σχόλιο: Για κάθε και τα δυο µέλη της εξίσωσης αρνητικά οπότε υψώνουµε στο τετράγωνο Εναλλακτικά: + = + + είναι µη + = + + ( + ) = + + + + = + + = 0 Κάνουµε επαλήθευση Για = 0 η + = + + µας δίνει το οποίο ισχύει Άρα η ρίζα = 0 είναι δεκτή 0 + = 0 + 0 + ΘΕΜΑ Γ π Γ Επειδή ηµ + β = συν( β) Πρέπει f (0) = και f ( π ) = τότε f () = ασυν( β ) ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 7
Γ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Ε_ΜλΓΑ(α) Άρα ασυν 0 = α = και ασυν( βπ ) = συν( βπ ) = α π π δηλ συν( βπ ) = βπ = κπ + ή βπ = κπ ( κ Z ) Έτσι β = κ + ή β = κ ( κ Z ) Έστω β = κ +, πρέπει 0 κ + κ κ 6 Άρα κ = 0, οπότε β = 4 Έστω β = κ, πρέπει 0 κ κ κ που είναι 6 αδύνατη γιατί κ Z Έχουµε λοιπόν α = και β = Άρα f () = συν Επειδή για κάθε R ισχύει συν συν f () και αφού είναι f (0) = και f ( π ) = έχουµε f (0) f () f ( π) για κάθε R Έτσι, η f παρουσιάζει ελάχιστο για = 0 το f (0) = µέγιστο για =π το f ( π ) = Εναλλακτικά: Επειδή f () = συν,το ελάχιστο της f είναι το και το µέγιστο το (σχόλιο σελ8) π Η περίοδος της f είναι T = = 6π Ένας πίνακας τιµών της συνάρτησης f στο διάστηµα [0,6 π ] είναι ο εξής: 0 π π 9π 6π f () 0 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 4 ΑΠΟ 7
Γ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Με τη βοήθεια του παραπάνω πίνακα σχεδιάζουµε τη γραφική παράσταση Ε_ΜλΓΑ(α) Παρατηρούµε ότι η f είναι γνησίως αύξουσα στο [0, π ] και γνησίως φθίνουσα στο [ π,6 π ] Είναι π π f (0) =, f ( π ) = συν =, f ( π ) = συν = και 04π 67 π + π π f (04 π ) = συν = συν = συν 67π + = π π π συν 670π + π + = συν π + = συν = Έτσι, το σύστηµα γίνεται: λ + y = 4λ λ + λ y = 0 λ Έχουµε D = = λ + λ = λ(λ ) λ λ Πρέπει D = 0 λ = 0 ή λ = y = 0 Για λ = 0 το σύστηµα γίνεται που είναι αόριστο 0 = 0 + y = + y = Για λ = το σύστηµα γίνεται που είναι αδύνατο + y = 0 + y = 0 Άρα το ( Σ ) για λ = 0 έχει άπειρες λύσεις της µορφής (, y) = ( κ,0) για κάθε κ R ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 5 ΑΠΟ 7
ΘΕΜΑ Πρέπει και Έστω 4 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 4 4 0 4 > > 0 (4 )(4 ) 0 = ω τότε (4 ω)(4ω ) > 0 - /4 4 + 4 - ω + + 0 4ω - 0 + + Γινόµενο 0 + 0 Από τον παραπάνω πίνακα έχουµε 4 4 < ω < όµως = ω Έτσι < < < < (Σχόλιο ) (επειδή η είναι γνησίως αύξουσα στο R, αφού έχει βάση >) Άρα το πεδίο ορισµού της συνάρτησης f είναι το A = (,) () Σχόλιο: Ε_ΜλΓΑ(α) Από την επίλυση των παραδειγµάτων σελ67 του σχολικού βιβλίου προκύπτει ότι εφαρµόστηκε η πρόταση: Όταν µια συνάρτηση f είναι γνησίως αύξουσα σε ένα διάστηµα του πεδίου ορισµού της, τότε για οποιαδήποτε, ισχύει < f ( ) < f ( ), για αυτόν το λόγο την εφαρµόσαµε πιο πάνω χωρίς απόδειξη Για κάθε (, ) τότε και (, ) Έχουµε 4 4 4 f ( ) n n = l n = l 4 4 = l = 4 4 4 = ln n f () = l = 4 4 ηλαδή η f είναι περιττή συνάρτηση ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 6 ΑΠΟ 7
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 04 Πρέπει f () = h(), όπου (,) 4 ιαδοχικά έχουµε 4 ln n n = l l 4 4 4 ln n 4 = l = = 4 4 4 ( ) + = 0 ( ) + 6 = 0 Έστω = ω > 0, τότε ω + ω 6 = 0 Άρα ω = (απορρίπτεται) ή ω = δεκτή αφού < < < < 4 4 Ε_ΜλΓΑ(α) και προφανώς < < 4, άρα οι γραφικές παραστάσεις των f και h έχουν κοινό 4 σηµείο n l n n n Είναι n n l l l = l = l = = = ln ln ln Άρα το σηµείο τοµής των γραφικών παραστάσεων f και h έχει τετµηµένη n = l 0 ln Επειδή ln (e ) = ( lne ) = (l ne) = 4 η ανίσωση γίνεται: 4f () > 4f ( ) + ln l n πρέπει A = (, ) και > 0 0 Άρα (,0) (0, ) Όµως η f είναι περιττή, δηλαδή f ( ) = f () οπότε η παραπάνω ανίσωση γίνεται ln l n < 0 Έστω l n = ω τότε ω ω < 0 < ω < ηλαδή < ln < lne < ln < l ne e < < e < και < e e ισοδύναµα < ή > και e < < e e e - -e -/e /e e + Από το παραπάνω σχήµα έχουµε λύσεις Επειδή όµως πρέπει (,0) (0,), τότε e e (, ) (,) e e ( e, ) (,e ) ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 7 ΑΠΟ 7