ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1ο Α. Θεωρία - Θεώρηµα σελίδα 251 σχολ. βιβλίου. Β. Θεωρία - Ορισµός σελίδα 213 σχολ. βιβλίου.

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑ.Λ (ΟΜΑ Α Β ) 2009 ΕΚΦΩΝΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α. Απόδειξη σελ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Α.4 α β γ δ ε Σωστό Σωστό Λάθος Λάθος Λάθος. Άρα υπάρχουν δύο εφαπτόμενες που διέρχονται από το σημείο A(1,4). M 0, 5 με εξίσωση y 9x 5

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑ 52 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 8 η ΕΚΑ Α

( 0) = lim. g x - 1 -

ίνονται οι πραγµατικές συναρτήσεις f, g µε πεδίο ορισµού το έχουν πρώτη και δεύτερη παράγωγο και g(x) f(α) g(α) f(x) g (x) για κάθε x { α}

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

1995 ΘΕΜΑΤΑ ίνονται οι πραγµατικοί αριθµοί κ, λ µε κ < λ και η συνάρτηση f(x)= (x κ) 5 (x λ) 3 µε x. Να αποδείξετε ότι:, για κάθε x κ και x λ.

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Α) Να αποδείξετε ότι η νιοστή παράγωγος της συνάρτησης f µπορεί να πάρει. )e όπου α ν, β ν είναι συντελεστές

Τετάρτη, 20 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Μ. Τετάρτη 11 Απριλίου 2012

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΝΕΟ ΦΡΟΝΤΙΣΤΗΡΙΟ. Λύσεις. Θέμα Α. Α1. Σχολικό βιβλίο σελίδα 262. Α2. Σχολικό βιβλίο σελίδα 169. Α3. α) (1) κάτω, (2) το σημείο επαφής τους

άρα ο μετασχηματισμός Τ είναι κανονικός 1 1 (ε) : 2x - y + 5 = y - - x + 5 =

β ] και συνεχής στο ( a, β ], τότε η f παίρνει πάντοτε στο [ a,

ίνονται οι πραγµατικές συναρτήσεις f, g που έχουν πεδίο ορισµού το σύνολο

) f (x) = e x - f(x) ΜΑΘΗΜΑ Η ΣΥΝΑΡΤΗΣΗ F(x) = ΑΣΚΗΣΕΙΣ. Ασκήσεις Εύρεση συνάρτησης Ύπαρξη ρίζας. f (t)dt

just ( u) Πατρόκλου 66 Ίλιον

1 η ΕΚΑ Α ΜΑΘΗΜΑ 45 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

είναι μιγαδικοί αριθμοί, τότε ισχύει , z 2 Μονάδες 2 β. Μία συνάρτηση f με πεδίο ορισμού Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x 0

µε Horner 3 + x 2 = 0 (x 1)(x

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο)

4o Επαναληπτικό Διαγώνισμα 2016

[ ] ( ) [( ) ] ( ) υ

( ) = ( ) για κάθε. Θέμα Δ. x 2. Δίνονται οι συναρτήσεις f x

ΜΑΘΗΜΑΤΙΚΑ Θετικής - Τεχνολογικής κατεύθυνσης Γ Λυκείου

E f (x)dx f (x)dx E. 7 f (x)dx (3). 7 f (x)dx E E E E.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. Α. Έστω συνάρτηση f παραγωγίσιµη δύο φορές στο [, ] f''! 0 για κάθε χ [ a, β ] και έστω η

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης

Μαθηµατικά Κατεύθυνσης Γ Λυκείου Θέµατα Θεωρίας

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 23

η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α 1, τότε έχουμε τη σταθερή συνάρτηση f x 1.

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΛΥΚΕΙΟΥ 2004 ΕΚΦΩΝΗΣΕΙΣ. log x2

ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. 1. y - -2 x + π. f (x) = 3x, x = 1. π y = 9 x - 6. δ. f (x) = x, x0. 4. y = -9 x + 5. (2000-1ο) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Τομέας Μαθηματικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ. I. Να αποδείξετε ότι η γραφική παράσταση της f δεν έχει σηµεία που να βρίσκονται πάνω από τον άξονα. x x.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 24 / 5 / 08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γεωμετρικός τόπος του z είναι κύκλος με κέντρο Κ(0, 0) και ακτίνα ρ = 2

α) Στο μιγαδικό επίπεδο οι εικόνες δύο συζυγών μιγαδικών είναι σημεία συμμετρικά ως προς τον πραγματικό άξονα

4.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

Προτάσεις που χρησιμοποιούνται στη λύση ασκήσεων και χρειάζονται απόδειξη. Πρόταση 1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Α2. Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σε ένα διάστημα του πεδίου ορισμού της; Μονάδες 3

114 ασκήσεις ένα ερώτημα - σε όλη την ύλη. x και g x ln 1 2x ln x. ισχύει η σχέση: είναι περιττή και ισχύει ότι. f x x 2 2x, για κάθε x

ΚΕΦΑΛΑΙΟ 4. α > α. Γνωρίζουµε ότι για κάθε x ( 0, + ) l οg x. Αυτό σηµαίνει ότι σε κάθε x ( 0, ) l οg x, εποµένως έχουµε τη συνάρτηση:

Ερωτήσεις πολλαπλής επιλογής. 1. * Αν η γραφική παράσταση µιας συνάρτησης f είναι αυτή που φαίνεται στο σχήµα, τότε λάθος είναι

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ 1.2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ. . Άρα, το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Ένα εξαιρετικό υποψήφιο 3 ο ή 4 ο θέµα. Να µελετηθεί προσεκτικά. µιγαδικό επίπεδο είναι σηµεία του κύκλου. z z z z

Σάββατο, 27 Μαΐου 2006 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ. A.1. Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα Δ. Να αποδείξετε ότι:

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Μαθηματικά Προσανατολισμού Γ Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. συνάρτηση φ: α,β. Ορισμός Έστω f συνάρτηση ορισμένη στο., αν. κάθε xo.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ. Σύνολο τιμών της f λέμε το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα.

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

Λύσεις 1 ης Εργασίας 1. Γράψτε και σχεδιάστε ποιοτικά στο ίδιο διάγραµµα καθένα από τα επόµενα

Επίλυση αποδεικτικών σχέσεων της Θερµοδυναµικής

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

(iii) Ο συντελεστής διεύθυνσης λ κάθε ευθείας κάθετης προς την ΓΔ έχει με. τον συντελεστή διεύθυνσης της ΓΔ γινόμενο ίσο με -1. Αρα θα είναι.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Βασικό θεώρηµα της παράγουσας Θ.Θ του ολοκληρωτικού λογισµού Μέθοδοι ολοκλήρωσης

3ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟΣΤΑΣΗ ΥΟ ΣΗΜΕΙΩΝ ( ) = +. ( ) ( ) ( ) ( ) ( ) x x ( ) ( ) ΙΑΜΑΝΤΟΠΟΥΛΟΣ ΘΥΜΙΟΣ 1

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ στο ΔΙΑΦΟΡΙΚΟ ΛΟΓΙΣΜΟ

( 1) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ A A 1. Σχολικό σελ. 260 Α 2. Σχολικό σελ. 169 Α 3 Α 4 ΘΕΜΑ Β Β1. Άρα. Β2. Άρα από την δεύτερη σχέση έχω: = 1

Επαναληπτικά θέµατα Θεωρίας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

με x1 x2 , τότε η f είναι γνησίως αύξουσα στο Α. β) Αν για μια συνάρτηση f: ισχύει ότι f x , τότε το σύνολο τιμών της δεν μπορεί να είναι της μορφής,

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Σ ΣΤΑ ΘΕΜΑ. f x0. x x. x x. lim. lim f. lim x. lim f x. lim. lim f x f x 0. lim. σχήμα. 7 μ Α1. ,οπότε. 4 μ. f x0 0 0 αφού η f είναι.

f(x)dx = f(c)(b a) f(t)dt = f(c)(x a). c(x) a 1 = x a 2

1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

1. Έςτω f:r R, ςυνεχήσ ςυνάρτηςη και α,b,c R. Αποδείξτε ότι

f(x) dx ή f(x) dx f(x) dx

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΡΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Δυνάμεις με ρητό ή άρρητο εκθέτη.

Η συνάρτηση F(x)= 13/3/2010 ΘΕΩΡΗΜΑ Αν f είναι συνάρτηση συνεχής σε διάστημα Δ και α είναι ένα σημείο του Δ, τότε

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ΟΛΟΚΛΗΡΩΜΑΤΑ-ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

Transcript:

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α Θεωρί - Θεώρηµ σείδ 5 σχο βιβίου Β Θεωρί - Ορισµός σείδ σχο βιβίου Γ Σωστό β Σωστό γ Λάθος δ Λάθος ε Λάθος ΘΕΜΑ ο Α Έστω z yi ι Μ, y η ειόν του Τότε yi i Άρ ι y Έτσι όµως y y ηδή οι ειόνες των µιγδιών z βρίσοντι στην ευθεί ε : y β Ο µιγδιός z µε το µιρότερο µέτρο έχει ειόν το σηµείο Μ γι το οποίο είνι ΟΜ ε Αφού ΟΜ ε ε - y O M ε: y- y OM OΜ OΜ Άρ η είσωση της ΟΜ είνι: y Τεχνιή Επεεργσί: Keysone 4

Οι συντετγµένες του Μ σηµείου τοµής των ΟΜ, ε προύπτουν πό τη ύση του συστήµτος των εισώσεων y, y Εποµένως M : y y y y Άρ Μ, ι z i Β Έστω w y i, µε, y R Η είσωση w w z γράφετι y y i i y y i i y ι y ι y 4 ή ι y Άρ w 4 i ή w i ΘΕΜΑ ο Α Ισχύει ότι γι άθε > ηδή ln γι άθε > Όµως, οπότε γι άθε > Εποµένως η προυσιάζει στη θέση οιό, άρ ι τοπιό εάχιστο το Αόµη η είνι πργωγίσιµη στο διάστηµ, ως διφορά πργωγίσιµων συνρτήσεων Άρ σύµφων µε το θεώρηµ Ferm είνι Όµως B ln, οπότε ln e Γι e είνι e ln Η είνι δύο φορές πργωγίσιµη στο διάστηµ, µε e e > γι άθε, Άρ η είνι υρτή e ι β Αφού η είνι υρτή στο, προύπτει ότι η είνι γνησίως ύουσ στο,, µε προφνή ρίζ που είνι ι µονδιή φού η είνι γνησίως ύουσ Έτσι ν < < <, ενώ ν > > ηδή η είνι γνησίως φθίνουσ στο διάστηµ, ] ι γνησίως ύουσ στο διάστηµ [, β γ γ Η δοσµένη είσωση ισοδύνµ γράφετι: Τεχνιή Επεεργσί: Keysone 5

Θεωρούµε τη συνάρτηση g β γ, µε [, ] g είνι συνεχής στο R ως πουωνυµιή άρ ι στο [, ] g β β β <, διότι οιό εάχιστο της ι β, g γ γ >, επίσης διότι οιό εάχιστο της ι γ *Πιο νυτιά είνι β < διότι: Αν β, επειδή η είνι γνησίως φθίνουσ στο διάστηµ υτό ισχύει: < β < β > β < Αν β,, επειδή η είνι γνησίως ύουσ στο διάστηµ υτό ισχύει: < β > β Οµοίως προύπτει γ > Άρ g g <, οπότε όγω του θεωρήµτος Bolzno υπάρχει, ώστε g β γ β Άρ η δοσµένη είσωση έχει µι τουάχιστον ρίζ στο, *Πρτήρηση: Θέτοντς χάριν συντοµίς β > ι γ > θ µπορούσν ν δοθούν ι οι πράτω ύσεις: Η συνάρτηση h ντίστοιχ ότν µε πεδίο ορισµού το, έχει όρι ι ι ενώ ποδεινύετι πού εύο ότι είνι ι γνησίως φθίνουσ στο,, διότι h < γι άθε,, άρ έχει σύνοο τιµών το h, h, ι άρ το µηδέν περιέχετι στο σύνοο τιµών της δηδή η h έχει τουάχιστον µι ρίζ στο, Επίσης εντιά πό το ότι η h έχει όρι ι ντίστοιχ ότν, προύπτει ότι υπάρχουν ριθµοί γ, δ ώστε < γ < δ < µε γ > ι δ < οπότε όγω του θεωρήµτος Bolzno στο διάστηµ γ, δ υπάρχει ρίζ της είσωσης h ι Τεχνιή Επεεργσί: Keysone 6

Τεχνιή Επεεργσί: Keysone 7 β Αγεβριή ύση: Θέτοντς,, προύπτει Η τιµή υτή είνι ποδετή ως ρίζ της είσωσης φού < < ι είνι µάιστ µονδιή ρίζ ΘΕΜΑ 4 ο Η συνεχής στο [, ] άρ ι η είνι συνεχής στο [, ] Εποµένως η συνάρτηση είνι πργωγίσιµη στο [, ], άρ είνι ι συνεχής Η συνάρτηση είνι πργωγίσιµη στο [, ] φού η είνι συνεχής στο [, ] Άρ η είνι συνεχής στο, ] ως διφορά συνεχών συνρτήσεων Εετάζουµε τη συνέχει της συνάρτησης στη θέση Είνι, διότι: ' ' DL είνι, φού η είνι συνεχής στο [, ], ι διότι η συνάρτηση είνι συνεχής, άρ η πργωγίσιµη άρ ι συνεχής Επίσης 6 6 6 6 6 Οπότε

Άρ η συνάρτηση είνι συνεχής ι στο Εποµένως η είνι συνεχής στο [, ] β Στο διάστηµ, είνι: η συνάρτηση Η πργωγίσιµη φού η είνι συνεχής, µε Η η συνάρτηση πργωγίσιµη ως πουωνυµιή µε Άρ ι η συνάρτηση µε: είνι πργωγίσιµη ως πηίο πργωγισίµων συνρτήσεων Επίσης στο ίδιο διάστηµ, φού η είνι συνεχής συνάρτηση θ είνι πργωγίσιµη ι η συνάρτηση µε Άρ η συνάρτηση είνι πργωγίσιµη ως διφορά πργωγίσιµων συνρτήσεων µε:, < < γ Η συνάρτηση είνι συνεχής στο [, ] ι πργωγίσιµη στο,, µε πό το β ερώτηµ Βρίσουµε την τιµή της στη θέση : Όµως Έτσι όγω της είνι Ισχύουν εποµένως γι τη συνάρτηση οι προϋποθέσεις του θεωρήµτος Rolle στο διάστηµ [, ], άρ υπάρχει έν τουάχιστον, τέτοιο ώστε Όµως πό β ερώτηµ Άρ είνι Η Τεχνιή Επεεργσί: Keysone 8

Τεχνιή Επεεργσί: Keysone 9 δ Η συνάρτηση είνι συνεχής στο [, ] ι πργωγίσιµη στο, Άρ ισχύουν οι προϋποθέσεις του θεωρήµτος µέσης τιµής Εποµένως υπάρχει έν τουάχιστον, : *β τρόπος: Αρεί ν δειχθεί ότι υπάρχει ρίζ στο,, µε, γι την είσωση: Θεωρούµε τη συνάρτηση P ρχιή της, γι την οποί έχουµε : είνι συνεχής στο [, ως άθροισµ της συνεχούς πό το ερώτηµ ι της πουωνυµιής β είνι πργωγίσιµη στο, ως άθροισµ της πργωγίσιµης πό το β ερώτηµ ι της πουωνυµιής, µε P γ Ρ Ρ διότι Ρ ι P

Έτσι ισχύουν οι προϋποθέσεις του θεωρήµτος Rolle ι άρ υπάρχει, ώστε P P, δηδή ποδείχθηε ότι η είσωση έχει ρίζ, Τεχνιή Επεεργσί: Keysone