Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ

Σχετικά έγγραφα
Διαγώνισμα Φυσική ς Α Λυκει ου Έργο και Ενε ργεια

Η ίδια κατά μζτρο δφναμθ όταν εφαρμοςκεί ςε διαφορετικά ςθμεία τθσ πόρτασ προκαλεί διαφορετικά αποτελζςματα Ροιά;

Α1. Ροιεσ από τισ δυνάμεισ του ςχιματοσ ζχουν μθδενικι ροπι ωσ προσ τον άξονα (ε) περιςτροφισ του δίςκου;

Α2. το ςτιγμιότυπο αρμονικοφ μθχανικοφ κφματοσ του χιματοσ 1, παριςτάνονται οι ταχφτθτεσ ταλάντωςθσ δφο ςθμείων του.

ςυςτιματα γραμμικϊν εξιςϊςεων

Η άςκθςθ αποτελεί τροποποιθμζνθ εκδοχι του κζματοσ φυςικισ, τθσ Ευρωπαϊκισ Ολυμπιάδασ Φυςικών Επιςτθμών 2009_επιμζλεια κζματοσ: Κώςτασ Παπαμιχάλθσ

Η ζννοια της δφναμης. 1.Nα αντιςτοιχίςετε τουσ όρουσ τθσ ςτιλθσ-ι με τουσ όρουσ τθσ ςτιλθσ-ιι Στιλθ-Ι

Απάντηση ΘΕΜΑ1 ΘΕΜΑ2. t=t 1 +T/2. t=t 1 +3T/4. t=t 1 +T ΔΙΑΓΩΝΙΣΜΑ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΥΜΑΤΑ 1) (Β), 2. (Γ), 3. (Γ), 4. (Γ), 5. (Δ).

ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία

Διαγώνισμα Φυσική ς Α Λυκει ου Δυναμική σε μι α δια στασή και στο επι πεδο

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ ΜΕΛΕΣΗ ΣΗ ΚΙΝΗΗ ΩΜΑΣΟ Ε ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ - ΜΕΣΡΗΗ ΣΟΤ ΤΝΣΕΛΕΣΗ ΣΡΙΒΗ ΟΛΙΘΗΗ

ΑΝΣΙΣΡΟΦΗ ΤΝΑΡΣΗΗ. f y x y f A αντιςτοιχίηεται ςτο μοναδικό x A για το οποίο. Παρατθριςεισ Ιδιότθτεσ τθσ αντίςτροφθσ ςυνάρτθςθσ 1. Η. f A τθσ f.

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Δ. Για όλεσ τισ αςκθςεισ δίνεται η ηλεκτρικθ ςταιερά

Άπειρεσ κροφςεισ. Τθ χρονικι ςτιγμι. t, ο δακτφλιοσ ςυγκροφεται με τον τοίχο με ταχφτθτα (κζντρου μάηασ) μζτρου

Διάδοση θερμότητας σε μία διάσταση

Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη

Δείκτεσ απόδοςθσ υλικών

Γενικά Μαθηματικά ΙΙ Αςκήςεισ 11 ησ Ενότητασ

Επαναληπτικό Διαγώνισμα Φυσικη ς Α Λυκει όυ

Τάξη Β. Φυςικθ Γενικθσ Παιδείασ. Τράπεζα ιεμάτων Κεφ.1 ο ΘΕΜΑ Β. 1.1 Νόμοσ Coulomb

Ένα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:

ΚΤΚΛΩΜΑ RLC Ε ΕΙΡΑ (Απόκριςη ςε ημιτονοειδή είςοδο)

Αςκήςεισ. Ενότητα 1. Πηγζσ τάςησ, ρεφματοσ και αντιςτάςεισ

Διαγώνισμα Φυσική ς Κατευ θυνσής Γ Λυκει ου - Ταλαντώσεις

ΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι

ΦΥΕ 14 ΑΚΑΔ. ΕΤΟΣ Η ΕΡΓΑΣΙΑ. Ημερομηνία παράδοςησ: 12 Νοεμβρίου (Όλεσ οι αςκιςεισ βακμολογοφνται ιςοτίμωσ με 10 μονάδεσ θ κάκε μία)

Παράςταςη ςυμπλήρωμα ωσ προσ 1

Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του

ΧΗΥΙΑΚΟ ΔΚΠΑΙΔΔΤΣΙΚΟ ΒΟΗΘΗΜΑ «ΥΤΙΚΗ ΘΔΣΙΚΗ ΚΑΙ ΣΔΦΝΟΛΟΓΙΚΗ ΚΑΣΔΤΘΤΝΗ» ΦΥΣΙΚΗ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΧΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ ΘΔΜΑ Α ΘΔΜΑ Β

lim x και lim f(β) f(β). (β > 0)

Πλαγιογώνια Συςτήματα Συντεταγμζνων Γιϊργοσ Καςαπίδθσ

Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

Μετατροπι Αναλογικοφ Σιματοσ ςε Ψθφιακό. Διάλεξθ 10

Μθχανολογικό Σχζδιο, από τθ κεωρία ςτο πρακτζο Χριςτοσ Καμποφρθσ, Κων/νοσ Βαταβάλθσ

Δείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8

ΕΡΓΑΣΗΡΙΑΚΗ ΑΚΗΗ 4.1

Ανάλυςη κλειςτϊν δικτφων

x n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.

Α ΕΚΦΕ ΑΝ. ΑΤΤΙΚΗΣ Υπ. Κ. Παπαμιχάλθσ. Μζτρηςη του λόγου γ=c P /C V των αερίων με τη μζθοδο Clement Desormes

Μάκθςθ Κατανομϊν Πικανότθτασ και Ομαδοποίθςθ

ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ

Ακολουκιακά Λογικά Κυκλώματα

ΡΟΓΑΜΜΑΤΙΣΤΙΚΟ ΡΕΙΒΑΛΛΟΝ MICRO WORLDS PRO

Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox

Πολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1

Ιςοηυγιςμζνα δζντρα και Β- δζντρα. Δομζσ Δεδομζνων

Εισαγωγή στα Lasers. Γ. Μήτσου

ΕΛΑΣΘΚΟΣΗΣΑ ΖΗΣΗΗ ΚΑΘ ΠΡΟΦΟΡΑ

Δίκτυα Υπολογιςτϊν 2-Rooftop Networking Project

Φυσική Α Λυκείου Νίκοσ Αναςταςάκθσ Γενικό Λφκειο Βάμου

1. Αν θ ςυνάρτθςθ είναι ΠΟΛΤΩΝΤΜΙΚΗ τότε το πεδίο οριςμοφ είναι το διότι για κάκε x θ f(x) δίνει πραγματικό αρικμό.

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ

Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2

Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)

Μθχανζσ Διανυςμάτων Υποςτιριξθσ Support Vector Machines. Κϊςτασ Διαμαντάρασ Τμιμα Ρλθροφορικισ ΤΕΙ Θεςςαλονίκθσ

Κ.Μ. ΚΟΥΜΑΣ. Φυσική Α Λυκείου. Σύνθεση υνάμεων 1. Σκοπός Άσκησης. 2. Υλοποίηση. 3. Εκτέλεση (επίδειξη συζήτηση) φ F r 1. F r. w r

Για τισ δυνάμεισ αυτζσ ιςχφουν: Ν=w λόγω ιςορροπίασ ςτον κατακόρυφο άξονα

Δυναμικι Μθχανϊν I. Διάλεξθ 16. Χειμερινό Εξάμθνο 2013 Τμιμα Μθχανολόγων Μθχ., ΕΜΠ

Εφδοξοσ+ Συνδεκείτε ςτθν Εφαρμογι Φοιτθτϊν και μεταβείτε ςτθ ςελίδα «Ανταλλαγι Βιβλίων (Εφδοξοσ+)».

3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ

Φσσική Γ Λσκείοσ 37 Θετ. και Τετν. Κατεύθσνση

17. Πολυδιάςτατοι πίνακεσ

Η θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)

ΘΕΡΜΟΔΤΝΑΜΙΚΗ Ι. Ενότθτα 1: Βαςικά χαρακτθριςτικά τθσ Θερμοδυναμικισ. ογομϊν Μπογοςιάν Πολυτεχνικι χολι Σμιμα Χθμικϊν Μθχανικϊν

Το καλωςόριςμα των μαθητών ςτο Εργαςτήριο Φυςικών Επιςτημών

3 ο ΓΥΜΝΑΣΙΟ ΤΡΙΚΑΛΩΝ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΑΣ Γ ΓΥΜΝΑΣΙΟΥ

Αν η ςυνάρτηςη ƒ είναι ςυνεχήσ ςτο να προςδιορίςετε το α.

Γενικά Μαθηματικά ΙΙ

Επιχειρηςιακή Ζρευνα και εφαρμογζσ με την χρήςη του λογιςμικοφ R

Ενδεικτικζσ Λφςεισ Θεμάτων

Αρχή διατήρηςησ τησ μηχανικήσ ενζργειασ

ΑΝΩΣΑΣΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΠΕΙΡΑΙΑ ΣΕΧΝΟΛΟΓΙΚΟΤ ΣΟΜΕΑ ΧΟΛΗ ΣΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΤΣΟΜΑΣΙΜΟΤ Σ.Ε.

ΚΥΚΛΩΜΑΤΑ VLSI. Ασκήσεις Ι. Γ. Τσιατούχας. Πανεπιςτιμιο Ιωαννίνων. Τμιμα Μθχανικϊν Η/Υ και Πλθροφορικισ 8/11/18

ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ

ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι

Ο τρίτοσ νόμοσ μασ διδάςκει ότι, ςε όλο το φμπαν, οι επιδράςεισ είναι αλλθλεπιδράςεισ.

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9. ΑΝΩΣΗ Η αρχή του Αρχιμήδη

Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα

Θεςιακά ςυςτιματα αρίκμθςθσ

ΗΜΕΙΩΕΙ ΣΕΧΝΙΚΗ ΣΟΤ ΣΕΡΜΑΣΟΦΤΛΑΚΑ ΕΙΗΓΗΣΗ: ΚΑΡΑΒΕΛΗ ΓΡΗΓΟΡΗ

όπου θ ςτακερά k εξαρτάται από το μζςο και είναι για το κενό

Είναι μια μελζτθ αςκενι-μάρτυρα (case-control). Όςοι ςυμμετζχουν ςτθν μελζτθ ζχουν επιλεγεί με βάςθ τθν ζκβαςθ.

Σράπεζα θεμάτων Θετικού Προςανατολιςμού Κεφ. 1 Θέμα Δ

Γενικά Μαθηματικά ΙΙ

Σφντομεσ Οδθγίεσ Χριςθσ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΑΠΟ ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΦΤΙΚΗ ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ / Β ΛΤΚΕΙΟΤ

8 τριγωνομετρία. βαςικζσ ζννοιεσ. γ ςφω. εφω και γ. κεφάλαιο

ΕΝΟΤΘΤΑ 2: ΕΠΙΚΟΙΝΩΝΩ ΜΕ ΤΟΝ ΥΠΟΛΟΓΙΣΤΘ. ΚΕΦΑΛΑΙΟ 6: Θ «Βοικεια» ςτον Υπολογιςτι

ΝΟΜΟΙ ΚΙΝΗΗ ΠΛΑΝΗΣΩΝ ΣΟΤ ΚΕΠΛΕΡ

ΕΝΟΣΗΣΑ 3: ΧΡΗΗ ΕΡΓΑΛΕΙΩΝ ΕΚΦΡΑΗ ΚΑΙ ΔΗΜΙΟΤΡΓΙΑ

ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ

Πανεπιςτιμιο Κφπρου ΟΙΚ 223: Μακθματικά για οικονομολόγουσ ΙΙ Διδάςκων:

ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου

Διαγώνιςμα Γ Λυκείου Ιανουάριοσ2018

Ενδεικτική Οργάνωςη Ενοτήτων. Α Σάξη. Διδ. 1 ΕΝΟΣΗΣΑ 1. 6 Ομαδοποίθςθ, Μοτίβα,

Transcript:

Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα και κα διατυπϊνουμε απόψεισ ςυμπεράςματα. Η ομογενισ ράβδοσ βάρουσ Β και μικουσ ιςορροπεί οριηόντια όπωσ φαίνεται και ςτο ςχιμα. Ολόκλθρο το δεξί τθσ μιςό βρίςκεται ςε επαφι με τθν πάνω επιφάνεια του πάγκου ενϊ ςτο δεξί τθσ άκρο, με τθ βοικεια τροχαλίασ και μθ εκτατοφ νιματοσ, αςκείται θ κατακόρυφθ δφναμθ και θ δφναμθ ςτιριξθσ. Με δεδομζνα το βάροσ Β και το μικοσ, να προςδιοριςτοφν θ που ο πάγκοσ αςκεί ςτθ ράβδο. F B Απάντηςη Ζνεκα τθσ ιςορροπίασ τθσ ράβδου ζχουμε τελικά

Και Όπου Οι παραπάνω εξιςϊςεισ αντιςτοιχοφν ςτα τμιματα υπερβολϊν που είναι ςχεδιαςμζνεσ ςτο παρακάτω διάγραμμα: Πόςο ελαςτικό είναι το νήμα; Από τθ μια μεριά πρζπει να εμφανίηει μια ελαςτικότθτα για να υπάρχει θ δυνατότθτα θ τάςθ του να κινείται ςτο εφροσ τιμϊν όμωσ, από τθν άλλθ, ςφμφωνα με τισ επιταγζσ του προβλιματοσ το νιμα κα πρζπει να είναι μθ εκτατό. Το πρόβλθμα λφνεται αν «επιτρζψουμε» ςτο νιμα να ζχει μια ελαςτικότθτα που να τείνει ςτο μθδζν ι με άλλα λόγια μια ςκλθρότθτα που να τείνει ςτο «άπειρο». Ζτςι τα παραπάνω μποροφν να ςυμβιβαςτοφν εντόσ μιασ «επιμικυνςθσ» του νιματοσ που τείνει ςτο μθδζν.

Πόςο φυςικό ςτερεό είναι η ράβδοσ; Η δφναμθ ςτιριξθσ είναι θ ςυνιςταμζνθ που προκφπτει από μια πυκνότθτα κατανομισ. Από τθν ανάλυςθ που κάναμε παραπάνω φαίνεται ότι το ςθμείο εφαρμογισ τθσ μπορεί να αλλάηει όντασ όλο το δεξί μιςό τθσ ράβδου ςε επαφι με τον πάγκο. Δθλαδι το «κζντρο» τθσ πυκνότθτασ κατανομισ τθσ δφναμθσ μπορεί να πάρει διάφορεσ κζςεισ. Είναι προφανζσ ότι εκεί που θ πυκνότθτα κατανομισ είναι μεγαλφτερθ θ ράβδοσ κα είναι περιςςότερο «πιεςμζνθ». Πρζπει κατά ςυνζπεια και εδϊ να «ακροβατιςουμε» ςτα όρια, όπωσ κάναμε και προθγουμζνωσ, να προςδϊςουμε μια ςχεδόν μθδενικι ελαςτικότθτα ςτθ ράβδο. Άλλωςτε ςτθν περίπτωςθ μασ οι δυνάμεισ που αναπτφςςονται μεταξφ ράβδου και πάγκου δε μπορεί παρά να είναι δυνάμεισ «παραμορφϊςεων». Από μια πυκνότητα κατανομήσ οδηγοφμαςτε ςε μια μοναδική. Το αντίςτροφο ιςχφει; Ιςχφει μόνο ςτισ ακραίεσ κζςεισ ςτισ ενδιάμεςεσ όχι. Σε μια ενδιάμεςθ υπάρχει ζνα πλικοσ άπειρων διαφορετικϊν κατανομϊν θ κάκε μια από τισ οποίεσ μπορεί να οδθγιςει ςτθν Δθλαδι για τθ λφςθ ενόσ προβλιματοσ ςτο οποίο δεν μασ δίδονται αρκετζσ πλθροφορίεσ θ χριςθ τθσ κατανομισ δεν κα βοθκοφςε. Θεωροφμε τθ διάταξθ του παρακάτω ςχιματοσ. Η ράβδοσ ιςορροπεί οριακά. Το μοναδικό ςθμείο ςτο οποίο θ ράβδοσ δζχεται δφναμθ από τον δεξί πάγκο είναι το μζςον. Η ςυνάρτθςθ κατανομισ τθσ δφναμθσ είναι μοναδικι και ελζω Dirac γράφεται, όπου θ κρουςτικι ςυνάρτθςθ που είναι παντοφ μθδζν εκτόσ από το ςθμείο όπου παίρνει τθν τιμι ζνα. Με ζχουμε ςυμβολίςει το βάροσ αλλά με «διάςταςθ».

Με τουσ υπερευαίςκθτουσ «γρφλουσ» μποροφμε να επιφζρουμε ακόμα και «ανεπαίςκθτεσ» μεταβολζσ ςτο φψοσ και ςτθν κλίςθ ενόσ πάγκου του οποίου θ πάνω B επιφάνεια κα ζλκει ςε επαφι με τθν κάτω επιφάνεια του αριςτεροφ τετάρτου τθσ ράβδου. Ανυψϊνουμε τον πάγκο με τουσ γρφλουσ διατθρϊντασ τθν πάνω του επιφάνεια οριηόντια και τον φζρνουμε ςε «απόςταςθ αναπνοισ από τθ ράβδο, είναι και δεν είναι ςε επαφι με τθ ράβδο και αςκεί μθδενικι δφναμθ ςε αυτιν. Επιφζρουμε τϊρα πολφ μικρι μεταβολι ςτο φψοσ και ςτθν κλίςθ του πάγκου, ζτςι ϊςτε να αςκιςει ςτθ ράβδο μια ςυνιςταμζνθ F 2 F 1 B κατακόρυφθ δφναμθ ζςτω με ςθμείο εφαρμογισ που απζχει από το μζςον κατά προςζχοντασ ϊςτε όλθ θ πάνω επιφάνεια και των δυο πάγκων να βρίςκεται ςε επαφι με

τθν ράβδο και θ ράβδοσ να διατθρεί τθν οριηόντια κζςθ τθσ. Μπορεί να ςυμβεί αυτό; Θα δοφμε Από το παραπάνω ςχιμα ζχουμε: και Για και Παίρνουμε και Όπωσ ζχουμε πει και πριν είναι απείρου πλικουσ οι κατανομζσ θ κάκε μια από τισ οποίεσ κα μποροφςε να δϊςει και. Μποροφμε εφκολα να επιλζξουμε τθ βζλτιςτθ κατανομι; Θεωρθτικά είναι αδφνατον ακόμθ και αν προςεγγίςουμε το πρόβλθμα θλεκτροδυναμικά. Τι κάνουμε αν είμαςτε υποχρεωμζνοι να λφςουμε ζνα τζτοιο πρόβλθμα; Με μετριςεισ προςκζτουμε και άλλα δεδομζνα ςτο πρόβλθμα μασ και με μεκόδουσ αριθμητικήσ ανάλυςησ προςδιορίηουμε τθ βζλτιςτθ κατανομι.

Ασ μθ μασ διαφεφγει ότι χωρίσ χριςθ κατανομϊν χρθςιμοποιιςαμε ιδθ δυο πρόςκετα δεδομζνα. Δθλαδι το πρόβλθμα μασ επιδζχεται άπειρεσ λφςεισ είτε χρθςιμοποιιςουμε κατανομζσ είτε όχι που ςθμαίνει ότι τα δεδομζνα μασ δεν επαρκοφν. Τα παραπάνω κα γινόταν πιο πιςτευτά αν κεωροφςαμε τθν θλεκτροδυναμικι φφςθ των ανεπαίςκθτων «επιμθκφνςεων» και «παραμορφϊςεων» Και ζνα τελικό επιχείρθμα Θεωρϊντασ ανεπαίςκθτεσ μεταβολζσ είναι κάτι ςαν αυτό που κάνουμε και ςτα μακθματικά όταν προςεγγίηουμε ζνα όριο μιασ ςυνάρτθςθσ όταν ςαν το όριο όταν και όταν. Τελικά όταν ςϊματα ζρχονται ςε επαφι δεν είναι τα ίδια με αυτό που ιταν πριν τθν επαφι. Τα μθχανικά ςτερεά παραμζνουν ςχεδόν ίδια. Ε. Λαμπράκθσ