Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Σχετικά έγγραφα
Κεφ. 5: Ολοκλήρωση. 5.1 Εισαγωγή

Κεφ. 4: Ολοκλήρωση. 4.1 Εισαγωγή

Αριθμητική Ανάλυση και Εφαρμογές

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

Παράδειγμα #8 ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και β) για τη παράγωγο f

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Ολοκληρώματα.

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.

Αριθμητική Ανάλυση και Εφαρμογές

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Αριθµητική Ολοκλήρωση

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ

Αριθμητική Ανάλυση και Εφαρμογές

Οι συναρτήσεις που θα διαπραγματευτούμε θεωρούνται ότι είναι ολοκληρώσιμες με την έννοια που καθόρισε ο Riemann. Η συνάρτηση

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

15 εκεµβρίου εκεµβρίου / 64

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Σήματα και Συστήματα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3)

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

f x και τέσσερα ζευγάρια σημείων

Αριθμητική Ανάλυση και Εφαρμογές

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

Interpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. x x

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

18 ΟΡΘΟΓΩΝΙΑ ΠΟΛΥΩΝΥΜΑ

ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών


4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

Συµπληρωµατικές σηµειώσεις για τον «Επιστηµονικό Υπολογισµό» Χειµερινό εξάµηνο Τµήµα Μαθηµατικών, Πανεπιστήµιο Αιγαίου

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

7. ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ. και σε κάθε γειτονιά του z

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

Non Linear Equations (2)

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΕΧΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΔΙΑΣΤΗΜΑΤΑ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Έστω μια συνεχής (και σχετικά ομαλή) συνάρτηση f( x ), x [0, L]

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Παράδειγμα #2 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ. ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

Κεφάλαιο 0: Εισαγωγή

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

1.1. Διαφορική Εξίσωση και λύση αυτής

Παράδειγμα 14.2 Να βρεθεί ο μετασχηματισμός Laplace των συναρτήσεων

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

~ 1 ~ ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2013 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

( x ), x είναι ίσες. x,x είναι ίσες. x 5, x δεν είναι ίσες

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Προβλήματα που αφορούν εντολές ελέγχου της ροής ενός προγράμματος.

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΑΡΑΓΩΓΟΥ - ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΣΥΝΕΧΕΙΑ [Κεφ. 2.1: Έννοια της Παραγώγου του σχολικού βιβλίου].

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

Transcript:

Κεφ. 5: Ολοκλήρωση 5. Εισαγωγή 5. Εξισώσεις ολοκλήρωσης Newto Cotes 5.. Κανόνας τραπεζίου 5.. Πρώτος και δεύτερος κανόνας Smpso 5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) 5. Ολοκλήρωση Gauss 5.. Πολυώνυμα Legedre, Chebyshev, Hermte, Laguerre 5.. Ολοκλήρωση Gauss-Legedre, Gauss-Chebyshev, Gauss-Laguerre και Gauss-Hermte 5.. Παραδείγματα

5. Εισαγωγή Γενικά ο αναλυτικός υπολογισμός ορισμένων ολοκληρωμάτων είναι επίπονος και σε πολλές περιπτώσεις αδύνατος. Η εναλλακτική λύση είναι ο υπολογισμός των ολοκληρωμάτων με αριθμητικές μεθόδους. Οι πλέον συνηθισμένες μέθοδοι αριθμητικής ολοκλήρωσης είναι: Εξισώσεις Newto-Cotes Ολοκλήρωση Gauss Και στις δύο μεθοδολογίες το ολοκλήρωμα προσεγγίζεται με άθροισμα σύμφωνα με τη σχέση b a N f d wf f στα σημεία όπου f οι τιμές της a,b και w οι συντελεστές βαρύτητας που προκύπτουν ανάλογα με τη μέθοδο ολοκλήρωσης.

5. Αριθμητική ολοκλήρωση Newto Cotes Γενική εξίσωση: Πρόδρομη έκφραση παρεμβολής Newto a aa ( ) aa ( )( a f ( ) f( ah) f( ) ) f( ) af( ) f( ) f( )!! όπου aa ( )( a)( a) aa ( )...( a) f ( )... f( ) Oh 4!! 4 f ( ) f h f f( ) f f h f f h f... f ( ) f ( h) f ( ) f h f h f h f f f f

Κανόνας Τραπεζίου: h, a I f ( ) d h f ( ah) da h [ f ( ) af ( ) O h ] da a h haf f f f h f f O h h Κανόνας Τραπεζίου για διαστήματα: f f... f f I 4

ος Κανόνας Smpso: h, a I f ( d ) h f( ahda ) aa ( ) aa ( )( a) 4 h [ f ( ) af ( ) f ( ) f ( ) Oh ] da!! 4 a a a a a a 5 ( ) ( ) ( ) haf f f f Oh 6 4 4 6 6 5 h 4 h f f f f f f f 9 h f f f O h 5 4 ος Κανόνας Smpso για διαστήματα: I 4 4... 4 h f f f f f f f f 4 5

ος Κανόνας Smpso ή Κανόνας /8: h, a I aa ( )! f ( d ) h f ( ah) dah [ f ( ) af ( ) f ( ) aa ( )( a) 4 f ( ) Oh ] da! 4 a a a a a a 5 ( ) ( ) ( ) haf f f f Oh 6 4 4 6 6 9 9 h[ f( ) [ f( ) f( )] [ f( ) f( ) f( )] 4 5 h 4 [ f ( ) f( ) f( ) f( ) f( ) f( )] f 8 8 9 9 h f( ) f( ) f( ) f( ) Oh 8 8 8 8 ος Κανόνας Smpso : h f f f f O h 8 5 I 5 6

a 4: I4 4 4 4 aa ( )! f ( ) dh f( ah) dah [ f( ) af( ) f( ) aa ( )( a) aa ( )( a)( a) 4 f ( ) f( )] da! 4! 4 a a a a a a h[ af( ) f( ) ( ) f( ) ( ) f( ) 6 4 4 6 6 5 4 a a a a 4 4 ( ) f( )] 6 7 8 h[4 f( ) 8[ f( ) f( )] [ f( ) f( ) f( )] 8 [ ( ) ( ) ( ) ( ) ( ) ( )] f f f f f f 4 [ ( 4 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] 45 f f f f f f f f f f f f I4 h (7 f f f f 7 f4 ) Oh 45 7 7

Εναλλακτική διατύπωση εξισώσεων Newto-Cotes Απόδειξη του ου κανόνα ολοκλήρωσης Smpso f ( d ) ( f 4 f f), αντικαθιστώντας τη συνάρτηση f ( ) με το πολυώνυμο παρεμβολής Lagrage ης τάξης. j P( ) L( ) f L( ) f L( ) fl( ) f, όπου L ( ). b a h j j j Το πολυώνυμο παρεμβολής Lagrage ης τάξης υπολογίζεται από τη σχέση P( ) f f f Με δεδομένο ότι τα f, f, f είναι σταθερές ως προς την ολοκλήρωση γράφουμε f d f d f d f d ( ) 8

Εισάγουμε την αλλαγή μεταβλητής ht απ όπου προκύπτει d hdt. Η νέα μεταβλητή ολοκλήρωσης είναι το t,. Η παραπάνω σχέση παίρνει τη μορφή: f ( d ) ht ht ht ht ht ht f hdt f hdt f hdt h h h h h h h h f t t dt f h t t dt f t t dt t t t ht t t ht t f t f h t f t t t h 4 h f fh f h f 4 f f 9

5.. Παραδείγματα (απλά και πολλαπλά ολοκληρώματα) Παράδειγμα: Αριθμητική επίλυση του ολοκληρώματος e d 4585.. με h.. f e.,. 887 f e., 4. 67 f e., 6. 5488 f e., 8. 449 f e.. 4 679. I f ff f f445. (κανόνας τραπεζίου 4 φορές). I f 4ff 4f f4. 458 ( ος κανόνας Smpso φορές) I? (η διακριτοποίηση με h δεν οδηγεί στον σωστό αριθμό σημείων ώστε να εφαρμοστεί ο ος κανόνας Smpso) 4. I4 7 f f 7 f f f4. 458 45

Αριθμητική ολοκλήρωση σε διαστάσεις (διπλά ολοκληρώματα): J I Παράδειγμα: s s I y ddy y w Κανόνας τραπεζίου με y : j I s j s j s j j, j y y y dy bd J I ac f,y ddy f w j y s ys ys y s y 4s y s y s y s y s y s s s 4s s s s s 4 4 s.5ss.5s4...,j,j

J I Παράδειγμα: s s I y y ddy y y w Κανόνας τραπεζίου με y : j j j, j y y y y y y dy I js j js j js j y y s y y s y y s y y y y y y y s 4 s s ys y y s y ys y s s s 8s 6s s 6s 4s 4 4.84 s s s s 4 5.7.44.7568.

Παράδειγμα: Υπολογίστε αριθμητικά εφαρμόζοντας τον κανόνα του τραπεζίου φορά σε κάθε κατεύθυνση το τριπλό ολοκλήρωμα: ydzdyd 56 Σχολιάστε την ακρίβεια του αριθμητικού αποτελέσματος και εξηγήστε τυχόν σημαντικές αποκλίσεις. h h h ydzdyd y dyd d z y z Αριθμητική λύση: h h y h hhyh z z 9 445 8 Η σημαντική διαφορά ανάμεσα στην αριθμητική και αναλυτική λύση οφείλεται αποκλειστικά στη επίλυση του ολοκληρώματος ως προς και συγκεκριμένα στο γεγονός ότι το πολυώνυμο ου βαθμού που προκύπτει από τον κανόνα του τραπεζίου δεν προσεγγίζει επαρκώς τη συνάρτηση Αντίθετα οι αριθμητικές ολοκληρώσεις στις άλλες δύο κατευθύνσεις y και z είναι απόλυτα ακριβείς..

Άσκηση: Έστω ημιάπειρο χωρίο με συντελεστές θερμικής αγωγής και διάχυσης k και αντίστοιχα που αρχικά ( t ) βρίσκεται σε θερμοκρασία T. Στη συνέχεια, για t η επιφάνεια δέχεται σταθερή θερμορροή q. Αποδεικνύεται ότι η χρονομεταβαλλόμενη θερμοκρασιακή κατανομή στο ημιάπειρο χωρίο δίδεται από τη σχέση: q Tt, T tep erfc k 4t t όπου y erfcs e dy s Για γνωστές τιμές των παραμέτρων k,, q και T υπολογίστε τον απαιτούμενο χρόνο t ώστε σε κάποια γνωστή απόσταση η θερμοκρασία να έχει τη * προδιαγεγραμμένη τιμή T. 4

5. Αριθμητική ολοκλήρωση Gauss: Gauss-Legedre: b f df w Gauss-Laguerre: f e d f w Gauss-Hermtte: f e d f w a Gauss-Chebyshev: f df w d f f w Σε κάθε μία από τις ολοκληρώσεις Gauss τα είναι οι ρίζες του αντίστοιχου πολυωνύμου βαθμού και τα w οι συντελεστές βαρύτητας. 5

Ρίζες πολυωνύμου Legedre ου και 4 ου βαθμού και οι αντίστοιχοι συντελεστές βαρύτητας:.5775698966..9984584856.65455486546.8665945.478548457454 Ρίζες πολυωνύμου Hermtte ου και 4 ου βαθμού και οι αντίστοιχοι συντελεστές βαρύτητας:.77678.8866955.65689.8854.546476.84949 Ρίζες πολυωνύμου Laguerre 4 ου βαθμού και οι αντίστοιχοι συντελεστές βαρύτητας:.54768969.7457658 4.566969 4 9.9579 w.65444 w.57486948 w.8887985 w4.59947556 Ρίζες πολυωνύμου Chebyshev βαθμού και οι αντίστοιχοι συντελεστές βαρύτητας: cos,,..., w 6

Ρίζες πολυωνύμου Hermtte βαθμού 6 και συντελεστές βαρύτητας:.46887899588e+.654874748e-9.8694479486e+.98844865e-6.769996979956e+.78695788e-4.5465784748e+.98486485e-.95787999654e+.88555997e-.858599888e+.884989858e-.895449446559e+.86474585857e+.74846855e+.5799479667e+ 7

Ρίζες πολυωνύμου Legedre βαθμού 8 και συντελεστές βαρύτητας:.95856799976545d-.97865666548844d- 5.85447546686899D-.89589596769598655D- 9.748984458459967845D-.8896559596897748D-.6648948865594D-.8667597747646777D-.7479864685599D-.84499695948544D-.994585766657885D-.89744776844679D-.595589749588D-.77766469748977498D-.88585488458599D-.7654987496758D-.56647747794699D-.68977468768895D-.64754994875694D-.677499585978496499D-.989458896974796D-.5794995465468659D- 4.8757875696867D-.565944747594955659D- 4.686966575444776784D-.44745759879464D- 5.8488878498759678D-.7498465866756D- 5.645989799857D-.94999764548868D- 5.68676879784754858D-.4986748777485649D- 6.689757454746D-.748847644487D- 6.7577468796647984D-.77595579866D- 6.68598989869875967D-.9886958678476976759D- 6.89676444767776D-.859865776869675D- 7.76585699885468D-.788754868674487D- 7.44975859776545D-.67557675657996874D- 7.695454786566D-.49557645495785D- 7.9877546544994869D-.7888659995D- 8.6954868464775D-.55946469659D- 8.8847585575666D-.446578688774D- 8.5944666969779D-.9956878499898899D- 8.78756767888777D-.8668489948754D- 8.96675579487768944D-.774655669658584D- 9.6577576546477D-.5896858756884499D- 9.845987774457959546D-.44958459766967D- 9.44769876747566D-.6876594997868D- 9.54597664649549485D-.644797869646677D- 9.654858947995457D-.67664645885D- 9.74994585777985645D- 8.68945696858464945D- 9.884857786974888D- 7.99476877567557D- 9.899499755565D- 5.69945498649697D- 9.94754965688778965D- 4.846948956794D- 9.97649864987688899494D-.665589568669956D- 9.99558656698885D-.44958694545447D- 8

Απόδειξη της έκφρασης Gauss-Legedre: Θέτουμε f p R, όπου, L p L f j,,,..., j j j f df w, j R! f! f f d p d R d L f d d Εάν η f L d q d f w q d f είναι ένα πολυώνυμο βαθμού και αφού το πολυώνυμο βαθμού τότε το είναι ένα q θα πρέπει να είναι πολυώνυμο βαθμού. 9

Γράφουμε τα αναπτύγματα με βάση τα πολυώνυμα Legedre: bp... bp b P και... Αντικαθιστούμε και εφαρμόζοντας ορθογωνιότητα έχουμε q c P c P q d b c PP d b c P P d b c P d j j j j j j Για να είναι το σφάλμα μηδενικό θέτουμε b b... b, ενώ ο συντελεστής b προκύπτει από τη σχέση b P. b P Επιπλέον το αποτέλεσμα αυτό δηλώνει ότι το πολυώνυμο έχουν τις ίδιες ρίζες που θα είναι οι ρίζες του πολυωνύμου Legedre βαθμού. Επειδή όμως πολυώνυμο, δηλαδή είναι σε μορφή γινομένου παραγόντων οι ρίζες του είναι τα που πρέπει να είναι οι ρίζες του πολυωνύμου Legedre βαθμού.

5... Παραδείγματα Παράδειγμα: Να υπολογιστεί το ολοκλήρωμα t erf e dt με Gauss-Legedre. Νέα μεταβλητή ολοκλήρωσης: t a b t s s t t sdt ds b a N t erf e dt ep s ds ep s w 4 4 erf s w s w 4 4 Έκφραση σημείων: ep ep : Για.5 ep.5775 ep.5775 4 4 erf.5.55

Παράδειγμα: Να υπολογιστεί το ολοκλήρωμα Ι= y dyd με Gauss-Legedre. Νέα μεταβλητή ολοκλήρωσης: y a b y s s y s dy ds b a I J y dyd s dsd s j ww j j Έκφραση σημείων: Ι s ww s ww s w w s w w...