ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2012 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012

ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2012

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 253 σχολικού βιβλίου. Έστω x1,

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 28 ΜΑΪΟΥ 2012

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ( ) ( ) ( ) ( )

ΘΕΜΑ Α : Α1. Σχολικό βιβλίο σελίδα 253. Α2. Σχολικό βιβλίο σελίδα 191. Α3. Σχολικό βιβλίο σελίδα 150. Α4. Α)Σ β)σ γ)λ δ)λ ε)λ ΘΕΜΑ Β : Β1.

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 25 MAΪΟΥ 2015 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.

Π Ρ Ο Ο Π Τ Ι Κ Η ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2015 ΘΕΜΑ Α. Α1. Απόδειξη σελίδα 194. Α2. Ορισμός σελίδα 188. Α3. Ορισμός σελίδα 259

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ


ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 28 MAΪΟΥ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. c είναι παράγουσες της f στο Δ και κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G( x) F( x) c,

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

( ) ( ) ( ) ( ) ( ) ( )

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ÖÑÏÍÔÉÓÔÇÑÉÁ ÓÕÍÏËÏ ËÁÌÉÁ. ( i) ( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ( ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Γ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ.

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

( ) ( ) ΘΕΜΑ 2 ο Α. Είναι. f (x) > 0 e 1 x > 0 1 x > 0 1 > x x < 1. η f είναι γνησίως αύξουσα Στο [ 1, + ) η f είναι γνησίως φθίνουσα.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 2 ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

f ( x) f ( x ) για κάθε x A

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΘΕΜΑ o Αν για τους µιγαδικούς αριθµούς z και w ισχύουν: z 6 i και w i w 3 3i τότε να βρείτε: α. το γεωµετρικό τόπο των εικόνων των µιγαδικών αριθµών z

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

Για να προσδιορίσουμε τη μονοτονία της συνάρτησης η πρέπει να βρούμε το πρόσημο της h, το οποίο εξαρτάται από τη συνάρτηση φ(x) = e x 1

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

y = 2 x και y = 2 y 3 } ή

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

- + Απαντήσεις. Θέμα Β Β1. Από την Cf παρατηρούμε ότι 0. f x για κάθε (0,4) συνεπώς η f είναι γνήσια αύξουσα στο [4, 5] και γνήσια φθίνουσα στο [0,4].

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.

Transcript:

ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνάρτηση f η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > 0 σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το. Μονάδες 7 A. Πότε λέµε ότι µία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστηµα [α, β]; Μονάδες 4 A3. Έστω συνάρτηση f µε πεδίο ορισµού Α. Πότε λέµε ότι η f παρουσιάζει στο 0 A τοπικό µέγιστο; Μονάδες 4 A4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασµένη. α) Στο µιγαδικό επίπεδο οι εικόνες δύο συζυγών µιγαδικών είναι σηµεία συµµετρικά ως προς τον πραγµατικό άξονα. β) Μια συνάρτηση f είναι, αν και µόνο αν για κάθε στοιχείο y του συνόλου τιµών της η εξίσωση f () = y έχει ακριβώς µία λύση ως προς. ΘΕΜΑ Β γ) Αν είναι lim f( ) =, τότε f () < 0 κοντά στο 0. 0 δ) (σφ )' = ηµ, { ηµ = 0} β ε) f ( g ) β ( ) d= [ f( g ) ( )] α α α f ( g ) ( ) d συναρτήσεις στο [α,β] β, όπου f, g είναι συνεχείς Μονάδες 0 Θεωρούµε τους µιγαδικούς αριθµούς z και w για τους οποίους ισχύουν οι επόµενες σχέσεις: z z = 4 () w 5w = () B. Να αποδείξετε ότι ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ = B. Αν z, z είναι δύο από τους παραπάνω µιγαδικούς αριθµούς z µε z z =, τότε να βρείτε το z z. Μονάδες 7

B3. Να αποδείξετε ότι ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών w στο y επίπεδο είναι η έλλειψη µε εξίσωση = και στη συνέχεια να βρείτε τη 9 4 µέγιστη και την ελάχιστη τιµή του w. B4. Για τους µιγαδικούς αριθµούς z, w που επαληθεύουν τις σχέσεις () και () να αποδείξετε ότι: z w 4 ΘΕΜΑ Γ ίνεται η συνάρτηση f( ) = ( )ln, > 0 Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστηµα = (0,] και γνησίως αύξουσα στο διάστηµα = [, ). Στη συνέχεια να βρείτε το σύνολο τιµών της f. Γ. Να αποδείξετε ότι η εξίσωση = 03, > 0 έχει ακριβώς δύο θετικές ρίζες. Γ3. Αν, µε < είναι οι ρίζες της εξίσωσης του ερωτήµατος Γ, να αποδείξετε ότι υπάρχει 0 (, ) τέτοιο ώστε f ( 0) f( 0) = 0 Γ4. Να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης g () = f () µε > 0, τον άξονα και την ευθεία = Μονάδες 7 ΘΕΜΑ Έστω η συνεχής συνάρτηση f :(0, ), η οποία για κάθε > 0 ικανοποιεί τις σχέσεις: f( ) 0 f() t dt ln t t ln = dt f() t f( ). Να αποδείξετε ότι η f είναι παραγωγίσιµη και να βρείτε τον τύπο της. Αν είναι f( ) = (ln ), > 0, τότε:. Να υπολογίσετε το όριο: ( ) lim f ( ) ηµ f( ) f( ) 0 Μονάδες 0 Μονάδες 5

3. Με τη βοήθεια της ανισότητας ln, που ισχύει για κάθε > 0, να αποδείξετε ότι η συνάρτηση F( ) = f( t) dt, > 0, όπου α > 0, είναι κυρτή (µονάδες ). Στη συνέχεια να αποδείξετε ότι: F() F(3) > F(), για κάθε > 0 (µονάδες 4). a 4. ίνεται ο σταθερός πραγµατικός αριθµός β > 0. Να αποδείξετε ότι υπάρχει µοναδικό ξ (β, β) τέτοιο ώστε: F(β ) F(3β ) = F(ξ ) Μονάδες 4 3

ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. α τρόπος: Αν z = yi, y, R, η σχέση () γράφεται ( ) yi ( ) yi = 4 ( ) y ( ) y = 4 y =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. β τρόπος: Η σχέση () γράφεται: ( z ) ( z ) ( z ) ( z ) = 4 ( z ) ( z ) ( z ) ( z ) = 4 z z z z z z z z = 4 z z = z z = z = z =. Άρα ο γεωµετρικός τόπος των εικόνων των µιγαδικών αριθµών z στο επίπεδο είναι κύκλος µε κέντρο την αρχή των αξόνων και ακτίνα ρ =. Β. Έστω z z = k, k 0. Τότε ( )( ) z z = z z = z z z z = ( )( ) ( ) z z z z = zz zz zz zz = z z zz zz = (α) ( )( ) z z = z z = z z z z = ( ) ( ) ( z z ) z z = z z z z z z z z = = (β). z z z z z z Προσθέτοντας τις (α), (β) κατά µέλη έχουµε: ( ) Όµως z =, z = οπότε προκύπτει z z = k. k k k = 4 = =, αφού k 0. Β3. 5 5 ( 5 ) ( 5 ) 44 w w = w w = w w w w = 5 5 5 44 ww w w ww = w 5( w w ) 5 w = 44 6 w 5( w w ) = 44 (3) Έστω w = yi, y, R τότε η σχέση (3) γίνεται: 6( y ) 5 ( yi) ( yi) = 44 6( y ) 5( y yi y yi) = 44 4

6 6y 5( y ) = 44 6 6 y 0 0y = 44 6 36y = 44 y y 4 9y = 36 = =. 9 4 3 Άρα ο γεωµετρικός τόπος των εικόνων του w είναι η παραπάνω έλλειψη µε µήκος µεγάλου ηµιάξονα a = 3 και µήκος µικρού ηµιάξονα β =. Είναι όµως γνωστό (µαθ. κατεύθυνσης Β Λυκείου, σελίδα 04) ότι για οποιοδήποτε σηµείο Μ της έλλειψης ισχύει ότι β ΟΜ α ή β ΟΜ α. Αν Α, Α, Β, Β οι κορυφές της έλλειψης, τότε: Α ( 3,0), Α(3, 0), Β (0, ), Β(0, ). Έτσι w = ( OA) = ( OA') = 3 και w = ( OB) = ( OB') =. ma min Β M w Α 0 Α -3 - - O 0 3 - Β Παρατήρηση : Το παραπάνω σχήµα είναι επιβοηθητικό της κατανόησης από τους µαθητές και δεν είναι απαραίτητο για τη λύση του ερωτήµατος. Β4. Με βάση την τριγωνική ανισότητα και επειδή z w = w z έχουµε: w z w z w z w w z w (4) Όµως λόγω του Β 3 είναι w 3, άρα: w και w 4. Τότε όµως η (4) γράφεται: w z 4. 5

Β M Λ Α 0 Α -3 - - O 0 3 - - Β Η παραπάνω ανίσωση είναι η αλγεβρική έκφραση της (ΛΜ) 3, µε (ΟΛ) = z, ΟΜ = w και (ΛΜ) = z w η οποία προκύπτει από το παραπάνω σχήµα. Παρατήρηση : Το σχήµα και εδώ δεν είναι απαραίτητο. Θα µπορούσε όµως πιθανώς και µια τέτοια «γεωµετρική λύση», αν και όχι τόσο αυστηρή όσο η αλγεβρική, να γίνει κατά ένα ποσοστό µονάδων βαθµολογίας αποδεκτή ανεξάρτητη λύση, καθόσον αναδεικνύει κατανόηση της έννοιας της µετρικής στο µιγαδικό επίπεδο. Παρατήρηση 3: Τα δύο πρώτα ερωτήµατα του δεύτερου θέµατος θα µπορούσαν να απαντηθούν χρησιµοποιώντας την άσκηση Α9 του σχολ. Βιβλίου σελ. 0, γνωστή ως κανόνα του παραλληλογράµµου (αφού πρώτα αποδειχθεί) : Για κάθε z, z Απόδειξη: C ισχύει ότι = z z z z z z = z z z z ( z z )( z z ) ( z z )( z z ) = z z z z z z z z z z z z z z z z = z z z z = z z B. γ τρόπος: για z = z και z = έχουµε : z z = z 4= z z = z = z = Άρα ο γεωµετρικός τόπος των εικόνων του z είναι κύκλος µε κέντρο την αρχή των αξόνων Ο και ακτίνα ρ =. Β. β τρόπος: Από τον κανόνα του παραλληλογράµµου έχουµε ότι z z z z = z z ( ) z z = z z = z z = 6

ΘΕΜΑ Γ Γ. Η f είναι συνεχής στο (0, ) ως αποτέλεσµα πράξεων µεταξύ συνεχών συναρτήσεων και παραγωγίσιµη µε f '( ) = ln = ln, (0 ). Όταν (0, ) είναι < και επειδή η συνάρτηση ln είναι γνησίως αύξουσα έχουµε ln < ln ln < 0. Επίσης < 0 και > 0 άρα < 0. Έτσι ln < 0 για κάθε (0, ), άρα η f είναι γν. φθίνουσα στο (0, ]. Όταν (, ) είναι > και επειδή ln γνησίως αύξουσα είναι ln > ln ln > 0. Επίσης είναι > 0 για κάθε (, ), οπότε ln > 0 για κάθε (, ). ηλαδή f () > 0 για κάθε (, ). Έτσι όµως η f είναι γνησίως αύξουσα στο [, ). Από τα προηγούµενα προκύπτει ο επόµενος πίνακας µεταβλητών για την f: f 0 min (-) Επειδή f γνησίως φθίνουσα στο (0, ] είναι f ((0,]) = f( ), lim f( ) ) 0 Όµως lim f( ) = lim [( )ln ] =. 0 0 Άρα f ((0,]) = [, ) (). Επίσης επειδή η f είναι γνησίως αύξουσα στο [, ) είναι f [, = f(), lim f( ). ( ) ) Όµως lim f( ) = lim [( )ln ] =. Άρα f ([, )) = [, ) (). Από (), () προκύπτει ότι το σύνολο τιµών της f είναι το [, ). Παρατήρηση: Η µονοτονία της f στα διαστήµατα (0, ] και [, ) µπορεί να προκύψει και από το πρόσηµο της δεύτερης παραγώγου: f ( ) = 0 = >, για κάθε > 0. Άρα η f είναι γνησίως αύξουσα στο (0, ) και επειδή f () = 0 η = είναι µοναδική ρίζα της f () = 0. Ακόµη, είναι:. 7

0< < f ( ) < f () f ( ) < 0άρα η f είναι γν. φθίνουσα στο (0, ]. > f ( ) > f () f ( ) > 0, άρα η f είναι γν. αύξουσα στο [, ). Η f παρουσιάζει (ολικό) ελάχιστο στο = το f () = ( ). ln =. Γ. Η εξίσωση = 03 (επειδή η συνάρτηση y = ln είναι γνησίως αύξουσα και άρα ) γράφεται ισοδύναµα: 03 ln( ) = ln( ) ( ) ln = 03 ( ) ln = 0 f( ) 0 = 0. Από το Γ ερώτηµα είναι: α) f ((0,]) = [, ) άρα υπάρχει (0, ] ώστε f( ) = 0 και επειδή η f είναι γνησίως φθίνουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα (0,]. f [, ] = [, ), άρα υπάρχει [, ) ώστε f ( ) = 0 και β) ( ) επειδή η f είναι γνησίως αύξουσα είναι και, άρα η τιµή είναι µοναδική στο διάστηµα [, ). Από α) και β) προκύπτει ότι η δοσµένη εξίσωση έχει ακριβώς θετικές ρίζες. Γ3. Θεωρούµε τη συνάρτηση h() = f () 0. µε (0, ). Η h είναι συνεχής στο [, ] ως αποτέλεσµα πράξεων συνεχών συναρτήσεων. Η h είναι παραγωγίσιµη στο (, ) ως αποτέλεσµα πράξεων παραγωγίσιµων h ( ) = f ( ) f( ) 0. συναρτήσεων µε ( ) h f ( ) = ( ) 0 = 0 0 = 0 h ( ) = f( ) 0 = 0 0 = 0 Άρα ισχύουν οι προϋποθέσεις του Θ. Roll για την h στο [, ], οπότε υπάρχει 0 (, ), ώστε h ( 0 ) = 0 0 0 0 ( f 0 f 0 ) f 0 f 0 ( ) ( ) 0 = 0 ( ) ( ) 0 = 0. B τρόπος Θεωρούµε τη συνάρτηση h ( ) = f ( ) f( ) 0 µε > 0. Η f είναι συνεχής στο (0, ) ως γινόµενο συνεχών. H f είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο (0, ) ως άθροισµα συνεχών. Άρα η h είναι συνεχής στο [, ]. Γ h( ) = f ( ) f( ) 0 = f ( ) 0 0 = f ( ) < 0, αφού από το Γ για (0, ) είναι f ( ) < 0. Γ h( ) = f ( ) f( ) 0 = f ( ) 0 0 = f ( ) > 0, αφού από το Γ για (0, ) είναι f ( ) > 0. ηλαδή είναι h ( ) h ( ) < 0. Από το Θεώρηµα Bolzano θα υπάρχει ένα τουλάχιστον 0 (, ) ώστε: h( ) = 0 f ( ) f( ) 0 = 0 f ( ) f( ) = 0. 0 0 0 0 0 8

Γ4. Είναι: g ( ) = f( ) = ( )ln = ( )ln> 0 για κάθε (0, ). Άρα: ΕΩ ( ) = ( )lnd = lnd ln d ( ) ln d ( ) lnd = = = ln d [ ln ] d d [ ] = = 3 3 = τ.µ. 4 = = = 4 4 4 4 4 ΘΕΜΑ. Θεωρούµε τη συνάρτηση G ( ) = ftdt ( ), (0, ). f () tdt = Η( ), όπου Η() = () f t dt. H f είναι συνεχής στο (0, ) άρα η Η() είναι παραγωγίσιµη στο στο (0, ). Επίσης η y = είναι παραγωγίσιµη στο (0, ) ως πολυωνυµική, άρα και η Η( ) είναι παραγωγίσιµη ως σύνθεση παραγωγίσιµων συναρτήσεων. Επίσης παραγωγίσιµη είναι και η ως πολυωνυµική. Έτσι η G είναι παραγωγίσιµη ως άθροισµα παραγωγίσιµων µε G ( ) = f( )( ) ( ), για κάθε (0, ). Η δοσµένη σχέση f() t dt επειδή G() = 0 γράφεται ισοδύναµα: f() t dt 0 G( ) G(), για κάθε (0, ). Η συνάρτηση G είναι συνεχής και παραγωγίσιµη στο (0, ) και παρουσιάζει τοπικό ελάχιστο για = που είναι εσωτερικό σηµείο του (0, ). Από το θεώρηµα Frmat προκύπτει τότε ότι G () = 0 f() =. Επειδή η f συνεχής στο (0, ) και f( ) 0 για κάθε (0, ), η f διατηρεί σταθερό πρόσηµο στο (0, ) και επειδή f () = < 0, είναι f( ) < 0, (0, ). Έτσι f( ) = f( ) και από τη δοσµένη σχέση προκύπτει ln t t ln = dt ( f( ) ). f() t ln t t Για τη συνάρτηση h ( ) = dt ισχύει h ( ) 0 για κάθε > 0, διότι αν f() t υπήρχε ξ (0, ) ώστε h(ξ) = 0 τότε θα ήταν ln ξ ξ = 0. Αυτό όµως είναι άτοπο επειδή για τη συνάρτηση φ() = ln ισχύει ϕ ( ) < 0 για κάθε (0, ) (σύµφωνα µε τη γνωστή εφαρµογή στη σελ.66 του σχολ. βιβλίου) αλλά 9

µπορεί και να αποδειχθεί: ϕ ( ) = = οπότε όπως προκύπτει από τον πίνακα µεταβολών της φ είναι ϕ ( ) < 0 για κάθε (0, ). 0 φ ( ) φ( ) ma φ() = - ln (*) Η συνάρτηση f( ) = είναι παραγωγίσιµη ως πηλίκο ln t t dt f() t ln ln t t παραγωγίσιµων συναρτήσεων, ενώ προκύπτει = dt f( ). f( t) Οι συναρτήσεις και στα δύο µέλη είναι παραγωγίσιµες οπότε: ln lnt t ln ln = dt, f( ) άρα =. f( t) f ( ) f( ) ln Αν θέσουµε g ( ) = έχουµε g ( ) = g( ) για κάθε (0, ), οπότε f( ) σύµφωνα µε την εφαρµογή της σελίδας 5 του σχολικού βιβλίου είναι: g( ) = c, δηλαδή ln = c. f( ) Για = προκύπτει = c = c c=. f () Άρα τελικά f () = ln (ln ) =, (0, ). (*) Παρατήρηση: Από το σηµείο αυτό θα µπορούσε να ακολουθηθεί και η εξής πορεία: lnt t Για την συνάρτηση h() = dt έχουµε ότι είναι παραγωγίσιµη στο (0, ) f() t διότι η ln t t είναι συνεχής ως πηλίκο συνεχών. Είναι h () = ln, οπότε από f() t f( ) ln t t την σχέση ln = dt ( f( ) ) f() t ln = h() h () = h(), (0, ). Τότε όµως είναι h() = c. f( ) Επειδή h() = προκύπτει c =, άρα h() =. προκύπτει ln = h() f() 0

ηλαδή ln f( ) = f() = (ln ), (0, ).. Είναι: Άρα = =, lim ln =, lim ( ) = 0. 0 lim 0 0 0 lim (ln ) =. 0 Τότε όµως lim = 0. 0 f( ) Αν θέσουµε u f( ) = έχουµε u < 0 και 0 0 ηµ u u συνu lim f ( )ηµ f( ) lim ηµ u lim lim ( ) 0 f( ) = u 0 u u = = = u 0 u u 0 u συνu = lim ( ) = 0 = 0. u 0 u 3. Η F είναι δύο φορές παραγωγίσιµη στο (0, ) µε F ( ) = f( ) και F ( ) = f ( ) = (ln ) ( ) = ( ln ). Επειδή ln 0 και > 0, για κάθε >0 είναι ( ) 0 F >, για κάθε >0. Άρα η F είναι κυρτή στο (0, ). Η σχέση τώρα F( ) F(3 ) > F( ), >0 γράφεται: F(3 ) F( ) F( ) F( ) F(3 ) F( ) > F( ) F( ), > 0 >, > 0. 3 Από Θ.Μ.Τ. για την F στα διαστήµατα [, ] και [, 3] αντίστοιχα υπάρχουν F( ) F( ) F(3 ) F( ) ξ (, ) και ξ (, 3) ώστε F ( ξ) = και F ( ξ) =, 3 οπότε αρκεί να δειχθεί ότι F ( ξ) > F ( ξ) µε < ξ < < ξ < 3. Η τελευταία είναι αληθής διότι η F είναι κυρτή και άρα η F γνησίως αύξουσα στο (0, ). 4. Θεωρούµε τη συνάρτηση h() = F() F(β) F(3β), [β, β]. Η F είναι συνεχής και παραγωγίσιµη στο (0, ) άρα και η h. h(β) = F(β) F(3β) h(β) = F(β) F(β) F(3β). Επειδή F () = f() < 0 για κάθε (0, ) η F είναι γνησίως φθίνουσα στο (0, ). Έτσι από β < 3β έπεται: F(β) > F(3β) F(β) F(3β) > 0 h(β) > 0. Λόγω τώρα του 3 είναι h(β) = F( β ) F( β) F(3 β) < 0. Άρα h( β ) h( β ) < 0, οπότε λόγω του θεωρ. Bolzano προκύπτει ότι υπάρχει ξ ( β, β) ώστε h( ξ) = 0 F( β) F(3 β) = F( ξ). Η τιµή ξ είναι µοναδική διότι η συνάρτηση h είναι γνησίως φθίνουσα και άρα, αφού h () = F () = f() < 0, για κάθε (0, ).