Εφαρμοσμένα Μαθηματικά ΙΙ

Σχετικά έγγραφα
Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Μαθηματική Ανάλυση ΙI

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

lim Δt Δt 0 da da da dt dt dt dt Αν ο χρόνος αυξηθεί κατά Δt το διάνυσμα θα γίνει Εξετάζουμε την παράσταση

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

Εφαρμοσμένα Μαθηματικά ΙΙ

Συστήματα συντεταγμένων

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Παράδειγμα/πρόβλημα ( ) = y 1. O x. V = y 2. Να βρεθούν οι συντεταγμένες (x,y) συναρτήσει των ( x, y ) του περιστρεφόμενου συστήματος συντεταγμένων Y

Συναρτήσεις Πολλών Μεταβλητών. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

Μαθηματική Ανάλυση ΙI

Διανύσματα. x = rcos! y = rsin! r = x 2 + y 2 x. q Ο απλούστερος ορισμός διανύσματος είναι ότι μετρά μετατοπίσεις

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος

( () () ()) () () ()

V. Διαφορικός Λογισμός. math-gr

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

( () () ()) () () ()

Εφαρμοσμένα Μαθηματικά ΙΙ

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital:

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

b proj a b είναι κάθετο στο

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

Εφαρμοσμένα Μαθηματικά ΙΙ

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

Κεφάλαιο 6 Παράγωγος

x (t) u (t) = x 0 u 0 e 2t,

Καρτεσιανό Σύστηµα y. y A. x A

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

Ανασκόπηση-Μάθημα 14 Όρια και Συνέχεια συναρτήσεων στο R 2

ΤΕΣΤ Β2.λύσεις ΟΜΑΔΑ Ι

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Μ8 Η µερική παράγωγος

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Εφαρμοσμένα Μαθηματικά ΙΙ

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ 2/11/2018

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Κεφάλαιο 4 Συναρτήσεις πολλών μεταβλητών και οι παράγωγοί τους.

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ds ds ds = τ b k t (3)

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

Μαθηματική Ανάλυση Ι

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματική Εισαγωγή - Διανύσματα 25/7/2014

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος

11. Βαθµίδα, Απόκλιση, Στροβιλισµός

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΔΕΥΤΕΡΑ ΑΙΘ.ΖΑ

ΔΙΑΓΩΝΙΣΜΑ 13. A παραπλεύρως σχήματος. Να βρεθούν τα πρόσημα των μερικών

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Μαθηματικά Γενικής Παιδείας Κεφάλαιο 1ο Ανάλυση ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΝΑΛΥΣΗ

Transcript:

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Βαθμωτές Συναρτήσεις Πολλών Μεταβλητών : : 3 π.χ. (, ) 3 = Αναπαριστά μία επιφάνεια στο χώρο 3D (1, ) = 1 3() = 5 π.χ. g (,, z) = 4 + z g(, 4, 1) = 4()(3) + ( 1) = 3 Γενική γραφή μιας συνάρτησης πολλών μεταβλητών w= ( v) µε v=, ήv=,,z

Πεδίο Ορισμού Το σύνολο D των τιμών των,,z που δίνουν πραγματική τιμή στη συνάρτηση π.χ. (, ) = + + 1 1 { (, ) : 1 0, 1} D= + +

Αναπαράσταση Συναρτήσεων Δύο Μεταβλητών z= Ως τιμές πάνω σε μία ευθεία (, ) Ως επιφάνεια στο χώρο (3D)

Ισοϋψείς/Ισοσταθμικές καμπύλες z = (, ) Ισοϋψείς καμπύλες (, ) = για διάφορες σταθερές τιμές z 0 z0 του z Ισοσταθμικές καμπύλες Η προβολή των Ισοϋψών στο επίπεδο

Ισοσταθμικές καμπύλες Παράδειγμα (, ) = e Καμπύλες που δεν περιέχουν άλλες δηλώνουν ελάχιστα ή μέγιστα Σαγματικό σημείο Όσο πιο πυκνές οι καμπύλες, τόσο μεγαλύτερη μεταβολή παρουσιάζει η (μεγαλύτερη κλίση)

Ισοσταθμικές επιφάνειες Παράδειγμα (,, z) (,, z) = + + z = const

Όριο Συνάρτησης Δύο Μεταβλητών Ορισμός lim (, ) (,) ( ab, ) = L Αν δοθέντος ενός ε > 0, υπάρχει δ > 0 τέτοιο ώστε για κάθε (, ) D να ισχύει: 0 ( ) ( ) δ (, ) < a + b < L< ε Παρατήρηση: Το σημείο ( ab, ) μπορεί να μην ανήκει στο D

Ιδιότητες Ορίου Συνάρτησης Δύο Μεταβλητών lim = a, lim = b, lim k = k (,) ( ab, ) (,) ( ab, ) (,) ( ab, ) Έστω : lim (, ) = L, lim g(, ) = M, k (,) ( ab, ) (,) ( ab, ) τότε lim [ g ] (,) ( ab, ) lim [ g ] (,) (, ) ab lim [ k ] (,) ( ab, ) ± = L± M = L M = kl ΠΡΟΣΟΧΗ Αν η (,) έχει διαφορετικά όρια κατά μήκος δύο διαφορετικών διαδρομών καθώς (, ) ( ab, ) τότε δεν υπάρχει το όριο lim (, ) (,) ( ab, ) L lim =, M 0 g M (,) ( ab, ) lim (,) ( ab, ) mn [ ] / / = L mn

Όριο Συνάρτησης Δύο Μεταβλητών Παράδειγμα 1 lim (,) (,1) 3 3 4 4()(1) 8 = = + () + (1) 6 Παράδειγμα lim (,) (0,0) + =? Προσέγγιση κατά μήκος του άξονα (=0) + = 0 lim lim 1 (,) (0,0) 0 Προσέγγιση κατά μήκος του άξονα (=0) + = 0 lim lim 1 (,) (0,0) 0 = = Επομένως το όριο δεν υπάρχει

Όριο Συνάρτησης Δύο Μεταβλητών Χρήση πολικών συντεταγμένων Αντί να υπολογίσουμε το όριο lim (, ) μερικές φορές (,) (0,0) είναι πιο βολικό να υπολογίσουμε σε πολικές συντεταγμένες το όριο lim ( rcos θ, rsin θ) r 0 Αν το όριο αυτό εξαρτάται από τη γωνία θ τότε το αρχικό όριο δεν υπάρχει. Αν το όριο αυτό δεν εξαρτάται από τη γωνία θ και είναι ίσο με L, τότε αν η (, ) είναι συνεχής σε μια περιοχή του (0,0), εκτός ίσως από το σημείο (0,0), τότε και το αρχικό όριο υπάρχει και είναι ίσο με L. Αντίστοιχα δουλεύουμε με το όριο στη μορφή lim ( uv, ) ( uv, ) (0,0) lim (, ) (,) ( ab, ) αφού το φέρουμε πρώτα εφαρμόζοντας την αλλαγή μεταβλητών: = u+ a, = v+ b

Όριο Συνάρτησης Δύο Μεταβλητών Διαδοχικά όρια Τα όρια ( ) lim lim (, ) a b και ονομάζονται διαδοχικά της ( ) lim lim (, ) b a (, ) στο σημείο ( ab, ) Αν το όριο lim (, ) υπάρχει και υπάρχουν και τα (,) ( ab, ) διαδοχικά όρια της στο (α,b), τότε αυτά είναι ίσα μεταξύ τους και ισχύει: ( ) = ( ) = (,) (, ) lim lim (, ) lim lim (, ) lim (, ) a b b a a b Το αντίστροφο δεν ισχύει πάντα.

Συνέχεια Η (, ) είναι συνεχής στο σημείο ( ab, ) αν ( ab, ) D Το όριο lim (, ) Ισχύει (, ) ( ab, ) lim (, ) = ( ab, ) (, ) ( ab, ) Κανόνες συνέχειας Η a + b είναι συνεχής παντού υπάρχει Το άθροισμα και το γινόμενο συνεχών συναρτήσεων είναι συνεχής συνάρτηση Το πηλίκο συνεχών συναρτήσεων είναι συνεχής συνάρτηση για τιμές που δεν μηδενίζουν τον παρονομαστή Η σύνθεση συνεχών συναρτήσεων είναι συνεχής συνάρτηση

Συνέχεια Παράδειγμα (, ) +, (, ) (0,0) = = 0, (, ) (0,0) H (, ) συνεχής παντού εκτός από το σημείο (0,0) γιατί m m lim (, ) = lim = + m 1+ m (, ) (0,0) 0 κατ ά µ ήκος της = m δηλ. το όριο στο (0,0) δεν υπάρχει (διότι εξαρτάται από το m) Παρατήρηση: Η συνέχεια μίας συνάρτησης σε ένα σημείο (a,b) συνεπάγεται την ύπαρξη του ορίου της σε αυτό το σημείο, το οποίο σε αυτή την περίπτωση, υπολογίζεται απλά ως (a,b)

Μερικές παράγωγοι Μερική Παράγωγος ως προς d = (, ) = lim 0 0 0 0 0 h 0 (, ) d = h 0 0 0 ( + h, ) (, ) Στιγμιαίος ρυθμός μεταβολής της στην κατεύθυνση î στο σημείο ( 0, 0) Μερική Παράγωγος ως προς d = (, ) = lim 0 0 0 0 0 d h 0 h (, ) = 0 0 0 Το σύμβολο Το σύμβολο (, + h) (, ) προφέρεται dee προφέρεται del Ισούται με την κλίση της εφαπτομένης της καμπύλης z = (, 0) στο σημείο P(,, (, )) 0 0 0 0 Στιγμιαίος ρυθμός μεταβολής της στην κατεύθυνση ĵ στο σημείο ( 0, 0) Ισούται με την κλίση της εφαπτομένης της καμπύλης z = ( 0, ) στο σημείο P(,, (, )) d 0 0 0 0

Μερικές Παράγωγοι Ανώτερης Τάξης Συμβολισμός π.χ. Θεώρημα μεικτών παραγώγων (Θεώρημα Schwarz) Αν οι, ορίζονται και είναι συνεχείς στο σημείο (a,b) τότε ισχύει ότι = = Προσοχή: Αντίθετη σειρά (a,b) = ή (a, b) = (a, b) (a,b) Ερμηνεία: Παραγωγίζουμε πρώτα ως προς και έπειτα ως προς 3

Κανόνας Αλυσιδωτής Παραγώγισης Έστω w= ( z,, ), και, z, συναρτ ήσεις του t dw w d w d w dz = + + dt dt dt z dt w z t Έστω w= ( z,, ), και, z, συναρτ ήσεις των rs, w w w w z = + + r r r z r w w w w z = + + s s s z s w w z z r s r s Παραγώγιση Πεπλεγμένης Συνάρτησης Fz (,, ) = 0 = F F z F = F z z F = F z

Κλίση ή Βαθμίδα (Gradient) Σε Καρτεσιανές Συντεταγμένες (, ) = ˆ ˆ ( i, ) + ( j, ) g( z,, ) = giˆ ˆ ˆ + g j+ gk z Σε Πολικές Συντεταγμένες 1 (, r θ) = (, ) ˆ (, ) ˆ r r θ ur + θ r θ u r θ Ισχύουν τα ακόλουθα O ρυθμός μεταβολής της εμφανίζει μέγιστη αύξηση ίση με στη διεύθυνση του O ρυθμός μεταβολής της εμφανίζει μέγιστη μείωση ίση με στη διεύθυνση του Σε κατεύθυνση κάθετη στην κλίση, η μεταβολή της είναι μηδέν. Σε κάθε σημείο του πεδίο ορισμού της (,), το διάνυσμα κλίσης είναι κάθετο στην Ισοσταθμική καμπύλη που διέρχεται από αυτό. Αντίστοιχα: αν (,,z) το διάνυσμα κλίσης είναι κάθετο στην ισοσταθμική επιφάνεια που διέρχεται από το σημείο.

Μερική παράγωγος κατά διεύθυνση Μερική Παράγωγος στο σημείο d ds û, P 0 lim P 0 ( + su, + su ) (, ) s κατά τη διεύθυνση του ( ) uˆ ( ) 0 1 0 0 0 = = = s 0 P P 0 0 uˆ = u, u cosθ Στιγμιαίος ρυθμός μεταβολής της στην κατεύθυνση û στο σημείο ( 0, 0) 1 Ισούται με την κλίση της εφαπτομένης της καμπύλης C στο σημείο P(,, (, )) 0 0 0 0 Μεταβολή της στην κατεύθυνση u d = ( ) uˆ ds P0

Διαφορισιμότητα Η z (, ) διαφορίσιμη στο (, ) αν ισχύει: = 0 0 0 = (, ) + (, ) + ε + ε 1 0 0 0 0 1 µε ε, ε 0 καθώς, 0 Σε αυτή την περίπτωση η τιμή της κοντά στο ( 0, 0) προσεγγίζεται από το εφαπτόμενο επίπεδο της επιφάνειας z= (, ) στο σημείο αυτό. Επομένως (, ) L(, ) = (, ) + (, ) + (, ) 0 0 0 0 0 0 d = d + d (Τοπική) Γραμμικοποίηση της Αντίστοιχα για την w= ( z,, ) ( z,, ) Lz (,, ) = (,, z) + (,, z) + 0 0 0 0 0 0 + (,, z ) + (,, z ) z 0 0 0 z 0 0 0 για μικρά Δ, Δ Ολικό Διαφορικό της Περιγράφει τη μεταβολή της γραμμικοποίησης της που οφείλεται σε μικρές μεταβολές των και Αντίστοιχα για την w ( z,, ) d = d + d + dz = z = = 0

Διαφορισιμότητα Η είναι Συνεχώς Διαφορίσιμη ή 1 δηλ. οι (, ), C υπάρχουν και είναι συνεχείς στο (α,b) Η (, ) είναι Διαφορίσιμη στο (α,b) Η (, ) στο (α,b) είναι Συνεχής Σημαίνει: Όχι αναγκαστικά. Οι, υπάρχουν στο (α,b) Η (, ) μπορεί να είναι διαφορίσιμη χωρίς οι, να είναι συνεχείς, όμως αν οι, είναι συνεχείς, τότε η (, ) είναι σίγουρα διαφορίσιμη.

Διαφορισιμότητα Παραδείγματα Συνάρτηση που έχει πρώτες παραγώγους αλλά δεν είναι διαφορίσιμη: 0, (, ) = (0,0) (, ) =, (, ) (0,0) + Η δεν είναι συνεχής στο (0,0) καθώς δεν υπάρχει το όριο στο σημείο αυτό. Επίσης οι πρώτες παράγωγοι υπάρχουν στο (0,0), όμως δεν είναι συνεχείς εκεί. Διαφορίσιμη συνάρτηση με μη συνεχείς πρώτες παραγώγους 0, (, ) = (0,0) (, ) = ( ) 1 + sin, (, ) (0,0) +

Κλίση και Διαφορισιμότητα ( ) ( 0) + '( 0)( 0) ( ) ( ) + ( ) ( ) 0 0 0 Αλγεβρικές Ιδιότητες Κλίσης ( k ) = k ( + g) = + g ( g) = g ( g ) = g + g g g = g g Για συναρτήσεις μίας μεταβλητής Για συναρτήσεις πολλών μεταβλητών δηλ. Στις συναρτήσεις πολλών μεταβλητών η κλίση παίζει το ρόλο που παίζει η παράγωγος σε συναρτήσεις μίας μεταβλητής

Εφαπτόμενα Επίπεδα Σε ισοσταθμική επιφάνεια ( z,, ) = c στο σημείο P0( 0, 0, z0) ( P)( ) + ( P)( ) + ( P)( z z ) = 0 0 0 0 0 z 0 0 Το είναι κάθετο στα διανύσματα ταχυτήτων όλων των καμπυλών της επιφάνειας που διέρχονται από το σημείο P 0 z = (, ) Στην επιφάνεια στο σημείο 0 0 0 0 0 (, )( ) + (, )( ) ( z z ) = 0 z 0 P(,, (, )) 0 0 0 0 0 0 0 Διανύσματα παράλληλα στο εφαπτόμενο επίπεδο: V = 1, 0, ( 0, 0) V = 0,1, (, ) 0 0

Προσεγγίσεις Ακριβής Τιμή Προσέγγιση Απόλυτη Μεταβολή Σχετική Μεταβολή Ποσοστιαία Μεταβολή (, ) 0 0 100 (, ) 0 0 d d (, ) 0 0 d 100 (, ) 0 0

Ακρότατα Έστω η z = (, ) ορισμένη σε μια περιοχή που περιέχει το σημείο ( ab, ) Τοπικό Μέγιστο ( ab, ) ( ab, ) (, ) για όλα τα (, ) D που βρίσκονται κοντά στο ( ab, ) δηλ. ανήκουν σε ένα ανοιχτό δίσκο Τοπικό Ελάχιστο ( ab, ) με κέντρο το ( ab, ) ( ab, ) (, ) για όλα τα (, ) D που βρίσκονται κοντά στο ( ab, ) 100 Σαγματικό Σημείο ( ab, ) 50 ( ab, ) > (, ) για κάποια(, ) D και 0 ( ab, ) < (, ) για κάποια άλλα(, ) D -50 που βρίσκονται κοντά στο ( ab, ) 0-100 10 5 0-5 -10-10

Κριτήρια Ακροτάτων Εσσιανή της (, ) = Ολικά Ακρότατα της Συνοριακά σημεία Κρίσιμα σημεία (, ) Κρίσιμα Σημεία = 0 = = 0 δεν υπάρχει ή δεν υπάρχει μπορούν να προκύψουν σε Αν οι πρώτες και οι δεύτερες παράγωγοι συνεχείς σε κυκλικό δίσκο με κέντρο το ( ab, ) και ( ab, ) = ( ab, ) = 0, τότε Ε σσιαν ή > 0 και < 0 Τοπικό Μέγιστο > 0 Τοπικό Ελάχιστο Ε σσιαν ή < 0 Σαγµατικό Σηµείο Ε σσιαν ή = 0 Αδύνατο να αποϕανθο ύµε (Χρησιμοποιούμε άλλες τεχνικές όπως π.χ. το γράφημα της )