10. APLICAŢII Determinarea parametrilor statistici neparametrici ai durabilităţii [10, 17, 23, 24]

Σχετικά έγγραφα
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Probleme. c) valoarea curentului de sarcină prin R L şi a celui de la ieşirea AO dacă U I. Rezolvare:

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Formula lui Taylor. 25 februarie 2017

Analiza bivariata a datelor

r d r. r r ( ) Curba închisă Γ din (3.1 ) limitează o suprafaţă de arie S

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

OLIMPIADA NAłIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie Pagina 1 din 5 Subiect 1 ParŃial Punctaj Total subiect 10 a) S 2.

4. CÂTEVA METODE DE CALCUL AL CÂMPULUI ELECTRIC Formule coulombiene

3.5. Forţe hidrostatice

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

Laborator 4 Interpolare numerica. Polinoame ortogonale

Inegalitati. I. Monotonia functiilor

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

sistemelor de algebrice liniarel

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α

Probleme rezolvate. 1. Pe mulţimea matricelor

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

TRANZISTORUL BIPOLAR IN REGIM VARIABIL

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Metode de interpolare bazate pe diferenţe divizate

4. Ecuaţii diferenţiale de ordin superior

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

Capitolul 7. Condensatoare

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Aplicaţii ale principiului I al termodinamicii la gazul ideal

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Metode iterative pentru probleme neliniare - contractii

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE

Verificarea legii lui Coulomb

Curs 4 Serii de numere reale

Modulul 6 FIZICĂ CUANTICĂ

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ

TEMA 10 TESTE DE CONCORDANŢĂ

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Laborator de Fizica STUDIUL EFECTULUI HALL

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică

Metrologie, Standardizare si Masurari

Profesor Blaga Mirela-Gabriela DREAPTA

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008

5.5 Metode de determinare a rezistivităţii electrice a materialelor

lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.

Varianta 1

MARCAREA REZISTOARELOR

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

BAREM DE CORECTARE CLASA A IX A


Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Varianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p

Modele de retele. Reteaua cu comutarea de circuit modelata ca o retea cu pierderi. Reteaua cu comutarea pachetelor modelata ca o retea cu asteptare

Subiecte Clasa a VIII-a

Tema: şiruri de funcţii

Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare

Cursul 14 ) 1 2 ( fg dµ <. Deci fg L 2 ([ π, π]). Prin urmare,

Sisteme diferenţiale liniare de ordinul 1

TIPURI DE DEZINTEGRĂRI NUCLEARE. Dezintegrarea α

3. Serii de puteri. Serii Taylor. Aplicaţii.

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

C10. r r r = k u este vectorul de propagare. unde: k

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

CALCULUL BARELOR CURBE PLANE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

6. Rezolvarea numerică a problemei Cauchy pentru ecuaţii diferenţiale

ELEMENTE DE CALCUL VARIAŢIONAL

Curs 12. Intervale de încredere Intervale de încredere pentru medie în cazul σ cunoscut

STUDIUL MICROSCOPIC AL ECHILIBRULUI TERMIC AL UNUI GAZ BIDIMENSIONAL ÎN CONTACT CU UN TERMOSTAT

MODELAREA MATEMATICĂ A SISTEMELOR CONTINUE

Asupra unei inegalităţi date la barajul OBMJ 2006

Integrala nedefinită (primitive)

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A

Subiecte Clasa a VII-a

riptografie şi Securitate

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

Dinamica sistemelor de puncte materiale

a. 11 % b. 12 % c. 13 % d. 14 %

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII

Varianta 1 - rezolvari mate MT1

Transcript:

0. Aplicaţii 0 0. APLICAŢII 0.. Detemiaea paametilo statistici epaametici ai duabilităţii [0, 7, 3, 4] Scopul detemiăii paametilo statistici epaametici ai duabilităţii este: a) veificaea omogeităţii fabicaţiei de seie foate mae (de eemplu ulmeţi); b) obţieea de idicii pivid tipul legii de epatiţie cae ajustează cel mai bie datele epeimetale. Popietăţi ale uo idicatoi statistici epaametici:. Î cazul epatiţiei epoeţiale egative media este egală cu abateea medie pătatică (σ = m) şi, implicit, coeficietul de vaiaţie C v = (ude C v = σ / m). Î plus, l mediaa de selecţie ae popietatea: t m. m. Repatiţia Poisso ae media apoimativ egală cu dispesia (m = D = D() = σ ). 3. Repatiţiile Weibull bipaametică şi Reyleigh se pot educe la cazul epatiţiei epoeţiale egative, dacă se cuoaşte paametul de fomă β (valoile t i se îlocuiesc cu t β i ). 4. Î cazul epatiţiei Gamma coeficietul de asimetie este dublul coeficietului de vaiaţie (C asim = C V ). 5. Paametii epatiţiei Weibull bipaametice pot fi detemiaţi, ît-o pimă apoimaţie, pi metoda mometelo: utilizâd coeficietul de vaiaţie C V şi asimetia γ. 6. Î cazul epatiţiei omale mometul de odiul 4 ae popietatea: μ 4 = 3 σ. Pelucaea datelo epeimetale Pelimia, cele date (otate i ) se odoează cescăto. Se detemiă idicatoii de localizae, de vaiaţie (împăştiee) şi de fomă (aluă) a epatiţiei.. Idicatoi de localizae:.) media aitmetică = i ; (0.).) media geometică M G = Π i ; (0.) i =.3) media amoică M H = ; (0.3) i.4) media pătatică M P = i ; (0.4).5) mediaa ( + )/ pt. = k + e = + ; (0.5) / + / pt. = k M

0. Aplicaţii mi + () + ma ().6) valoaea cetală c = =. (0.6).7) modul uei epatiţii uimodale adică avâd u sigu maim epezită valoaea coespuzătoae celei mai mai fecveţe f (pot eista şi epatiţii multimodale).. Idicatoi de vaiaţie (de împăştiee):.) dispesia D= (i ) ; (0.7). ) dispesia coectată s = (i ) ; (0.8).) abateea medie pătatică σ = (i ) ; (0.9).3) abateea medie pătatică coectată (estimată cu ajutoul uei selecţii): s = (i ) = σ ; (0.0).4) amplitudiea W = ma mi = (şiul fiid odoat cescăto); σ.5) coeficietul de vaiaţie C V =. (0.) 3. Momete ecetate şi cetate k 3.) mometul absolut (ecetat) de odiul k: m k = i ; (0.) k 3.) momet cetat de odiul k: m k = ( i ). (0.3) 4. Idicatoi de asimetie şi aplatizae: 4.) abateea medie aitmetică faţă de modă α s = Mo ; (0.4) m3 4.) coeficietul de asimetie: γ = β = ; (0.5) 3 / m m4 4.3) coeficietul de eces γ = 3. (0.6) m 5. Repezetaea gafică a epatiţiei empiice 5.) poligoul fecveţelo elative (v. eemplul di fig. 0.): 5..) dacă volumul eşatioului este foate mae, datele se pot gupa î cadul uui aumit umă de itevale N itev de lugime egală, N itev este: N N = + 3,3 lg (Stuges) sau it ev it ev 4 4 0, [( ) / ] = (Ma şi Wald > 00). 5 f 6 4 0 5 0 5 30 6.45 ab (0.7) Fig. 0.. Poligoul fecveţelo elative 9.85

0. Aplicaţii 5..) dacă se utilizează metoda gupăii î itevale, domeiul de vaiaţie al vaiabilei aleatoae se împate la umăul de itevale, datele se gupează şi se umăă apaiţiile acesta î itevale, ezultâd fecveţele elative f i. 5.) poligoul fecvetelo cumulate j 5...) se calculează fecveţele cumulate cu: Φ j = f i. (0.8) 5...) se calculează pobabilităţile de defectae cu uul di estimatoii uzuali. Tabelul 0.. Estimatoi uzuali ai pobabilităţii empiice de defectae Estimatoul Recomadăi de utilizae i F i = Petu eşatioae de volum mae i 0,5 Fi = Petu stabiliea (ecuoaşteea) tipului de lege de epatiţie şi petu pelucaea eşatioaelo distibuite Weibull e i 0,45 Fi = Petu eşatioae de volum mic distibuite Weibull + 0,3 e i 3 / 8 Fi = Petu eşatioae distibuite omal şi log-omal cu >6 + 0,5 e i 0,3 Fi = Petu eşatioae distibuite Weibull (este cosideat de majoitatea + 0,4 epeimetatoilo ca fiid estimatoul cel mai adecvat) e 5..) se costuieşte poligoul fecveţelo. Obsevaţie: Repezetaea gafică a epatiţiei pemite apecieea globală a tipului epatiţiei. Poblema 0. Î vedeea evaluăii duabilităţii eale a ulmetului adial cu bile 604, fabicat de două fime difeite, s-a testat, pi îcecăi pe stadui specializate, cate u lot de 0 de ulmeţi apaet idetici, de Ia fiecae fimă. Îcecaea costă î detemiaea timpului de fucţioae coectă, atuci câd sacia adială Ia cae este supus ulmetul coicide cu capacitatea diamică de îcăcae dată î catalog (C). Petu acest ulmet, ambele fime pesciu capacitatea diamică C = 0 kn. Îcecaea s-a făcut simulta petu fiecae lot de ulmeţi, pe stadui cu tuaţia aboelui de 750 ot/mi. Duabilităţile obţiute (oe) sut pezetate ca vaiabilele, petu ulmeţii fabicaţi de fima si espectiv, petu ulmeţii fabicaţi de fima a doua. := (.50; 8.75; 6.50; 7.75; 9.50; 3.50; 9.5; 4.75; 7.50;.50; 4.75; 6.50;.50; 8.50; 7.75; 9.75; 8.50; 7.50; 5.5; 4.5). := (4.50;.75;.5; 8.50; 9.75; 5.50; 9.75;.50; 5.75; 9.5;.50; 6.75;.00;.75; 5.00; 9.75; 8.5; 9.00; 5.50; 4.5)

0. Aplicaţii 3 Rezolvae Pi aplicaea elaţiilo de calcul (0.)... (0.7) s-au obţiut ezultatele pezetate î tabelul 0.. Tabelul 0.. Rezultatele pelucăii epaametice a duabilităţilo ulmeţilo 604 Fima Fima. Idicatoi de localizae:.) media aitmetică.7375.65.) media geometică.676.8795.3) media amoică.797.5874.4) media pătatică 3.968.4368.5) mediaa.5.875.6) valoaea cetală 3.5.5. Idicatoi de vaiaţie (de împăştiee):.) dispesia.0967.33. ) dispesia coectată.07.8768.) abateea medie pătatică 4.593 3.49757.3) abateea medie pătatică coectată 4.744 3.58843.4) amplitudiea 8.375 7.65.5) coeficietul de vaiaţie 0.0006 0.5785 3. Momete ecetate şi cetate: 3.) mometul cetat de odiul 3.099.0479 3.) mometul cetat de odiul 4 86.968 47.8 4. Idicatoi de asimetie şi aplatizae: 4.) coeficietul de asimetie 0.4788 0.049939 4.3) coeficietul de eces -.0633-0.07934 5. Repezetaea gafică a epatiţiei empiice 5.) umăul de itevale de gupae 5 5 5.) lugimea uui iteval de gupae.675.55 Î figua 0. se pezită poligoul fecvetelo elative costuit petu ulmeţii poduşi de fima. 0. Detemiaea legii de epatiţie [, 7, 0, 4, 7, 0, 4, 5, 3] Legea de epatiţie cae ajustează valoile epeimetale este utilizată la ealizaea de pogoze ale ivelului fiabilităţii, stabiliea iscului, optimizaea costuilo etc. Pocedeul de lucu: ) se detemiă paametii petu mai multe legi de epatiţie (î cazul de faţă, petu legile omală şi Weibull cae sut cele mai des utilizate î pactică); ) se stabilesc domeiile de îcedee ale paametilo detemiaţi la puctul (domeiile sut utilizate petu acopeiea iscului datoat eoii de detemiae a paametilo, pi coectaea acestoa, deoaece paametii legii de epatiţie stabiliţi pe eşatioul de volum mic sut utilizaţi petu caacteizaea populaţiei de volum teoetic ifiit); 3) se detemiă acuateţea apoimăii valoilo epeimetale cu legile teoetice de epatiţie utilizâd testul de cocodaţă Kolmogoov-Smiov (petu a se stabili cae lege

0. Aplicaţii 4 de epatiţie ajustează mai bie valoile epeimetale şi cu ce pobabilitate se poate accepta această lege ca fiid epezetativă petu eşatioul dat); 4) se tasează cuba teoetică (a legii de epatiţie) şi puctele epeimetale pe o eţea pobabilistă (ceea ce pemite evaluaea globală a coectitudiii calculelo ealizate). ) Detemiaea paametilo petu legile de epatiţie omală şi Weibull.a) Petu legea de epatiţie omală ( F() = ( ) Ep d ), î π σ σ cazul eşatioului epuizat se detemiă: ) media aitmetică = i ; (0.) ) abateea medie pătatică coectată: s = ( i ) = σ. (0.0) Obsevaţia : Se ecomadă utilizaea abateii medii pătatice coectate s î locul abateii medii pătatice (stadad) σ. Obsevaţia : Petu legea de epatiţie logomală î locul valoilo i se utilizează lg( i ). β γ.b) Petu legea de epatiţie Weibull, ( F () = Ep petu > γ ), η paametii pot fi detemiaţi pi metoda celo mai mici pătate sau pi cea a veosimilităţii maime (detemiaea acesteia este mai dificilă şi, î mod fecvet, algoitmii au viteză de covegeţă edusă)..b.) Pi metoda celo mai mici pătate se ezolvă sistemul (petu epatiţia bipaametică petu paametul de localizae se pue valoaea γ = 0 şi se calculează doa epesiile β şi η): ll l(i γ) ll l(i γ) Fi Fi β = l (i γ) l(i γ) ll l (i γ) ll l(i γ) l(i γ) Fi Fi η = Ep β l (i γ) l( j γ) j= ll l(i γ) Fi lη + β = 0, (0.9) i γ i γ i γ ude este umăul de elemete defecte (dacă eşatioul este epuizat, atuci = ), F i este estimatoul epatiţiei empiice a pobabilităţii de defectae

0. Aplicaţii 5 i 0,5 F i =, (0. 0) utilizat petu detemiaea tipului de lege de epatiţie. Obsevaţie: Dacă se doeşte o acuateţe mai buă a ajustăii cu legea de epatiţie Weibull, atuci paametii pot fi detemiaţi petu vaiata tipaametică..b.) Pi metoda veosimilităţii maime se ezolvă sistemul de ecuaţii: i = (i ) l(i ) + β ( ) ( ) β i β i η β l( ) i β = 0 (0. ) = 0. (0. ) Obsevaţia : Algoitmii de căutae umeică a soluţiei sistemului au viteză de covegeţă edusă. Ueoi, uii dite algoitmi u sut covegeţi şi, pi umae, u se afişează ici o soluţie. Di acest motiv, u s-au dat epesiile ecuaţiilo utilizabile î vaiata tipaametică. Obsevaţia : Dacă se obţie β =, atuci modelul Weibull se educe la legea de epatiţie epoeţială egativă cu λ = /η. ) Stabiliea domeiilo de îcedee ale paametilo legilo de epatiţie omală şi Weibull. Aceste domeii sut date umai î cazul detemiăii paametilo pi metoda veosimilităţii maime. (Se calculează limitele domeiilo.).a) petu epatiţia omală: σ σ t < mpopulatie < + t, (0. 3) α, α, ( ) / χ α < σpopulatie < σ ( ) / χ α,, σ, (0. 4) ude t, α / şi χ epezită cuatilele epatiţiilo Studet şi Hi-pătat cu - gade, α / de libetate şi ivel de semificaţie α;.b) petu epatiţia Weibull: χ η fiid calculat cu epesia (0.). β i α, β < η < χ β i α, β, (0. 5) 3) Detemiaea acuateţei apoimăii valoilo epeimetale cu legile teoetice de epatiţie utilizâd testul de cocodaţă Kolmogoov-Smiov. Acesta

0. Aplicaţii 6 pemite evaluaea cocodaţei dite valoile epatiţiei teoetice F( i ) (calculată î puctele i cu epesiile date la puctele.a şi.b) şi cea empiică dedusă di ezultatele epeimetale F i, detemiate cu (0.0) sau o altă epesie di tabelul 0.. Dacă se doeşte detemiaea tipului de lege de epatiţie, atuci petu fiecae epatiţie se detemiă: a) difeeţa maimă (î pobabilitate) dite fucţia teoetică de epatiţie şi valoile epatiţiei empiice d = ma ( F( i ) Fi ); (0.6) b) paametul fucţiei Kolmogoov λ = d, (0.7) c) valoaea fucţiei Kolmogoov k = 0 k= 0 k ( k λ ) K( λ) = (-) ep, (0.8) cae epezită pobabilitatea de ecocodaţă a epatiţiilo (teoetică şi epeimetală); d) ivelul de semificaţie sau pobabilitatea de acceptae a cocodaţei α = - K( λ). (0.9) Pi compaaţia valoilo fucţiei Kolmogoov sau a ivelelo de semificaţie se poate stabili cae lege de epatiţie este mai adecvată. Obsevaţie: Dacă se doeşte doa acceptaea sau espigeea (cu u aumit ivel de semificaţie α) a legii de epatiţie, avâd paametii calculaţi ca la puctul, se pocedează astfel: se calculează abateea d = ma ( F( i ) F i ) ); (0.30) petu ivelul de semificaţie α (uzual, α=0. sau =0.05) se calculează K( λ) = - α ; (0.3) di ecuaţia (0.8) se detemiă paametul fucţiei Kolmogoov λ se calculează valoaea citică a abateii λ d a = ; (0.3) dacă d este mai mic decât valoaea citică a abateii, d a, atuci se acceptă ipoteza cocodatei îte fucţia teoetică şi cea empiică. 4) Tasaea cubei teoetice (a legii de epatiţie) şi puctelo epeimetale pe o eţea pobabilistă, î scopul evaluăii globale a coectitudiii calculelo ealizate. 4.a) Realizaea eţelei de pobabilitate de tip Gauss-Laplace (figua 0.) Pe abscisă se iau valoile i (petu legea de epatiţie omală) sau lg i (petu legea de epatiţie logomală) Pe odoată se itoduce pobabilitatea de defectae F, îsă petu liiaizaea legii teoetice de epatiţie scaa este dată de cuatila coespuzătoae a) valoii pobabilităţii afeete epatiţiei empiice a pobabilităţii de defectae F i : Cuatila = Φ (Fi ), (0.33) ude Φ - este ivesa distibuţiei pobabilităţii (adică ivesa fucţiei Laplace);

0. Aplicaţii 7 b) valoii fucţiei teoetice F(): Cuatila =, (0.34) σ cae epezită o deaptă ca î figua 0.. Obsevaţie: Î geeal, pe odoată î locul valoilo cuatilei se tec valoile coespuzătoae ale pobabilităţii de deteioae (astfel, î figua 0. î locul valoii cuatilei a tebui să se scie valoaea pobabilităţii 0,9775). 4.b) Realizaea eţelei de pobabilitate 0 0 30 40 Weibull (figua 0.3) Pe abscisă se dau valoile l( i ). Pe odoată se dă pobabilitatea, îsă Fig. 0.. Repezetaea datelo şi modelului î eţea pobabilistă de tip Gauss-Laplace petu liiaizaea legii teoetice de epatiţie scala se obţie pi dublă logaitmae a: a) valoii pobabilităţii afeete epatiţiei empiice a pobabilităţii de defectae F i : Cuatila = l( l( ) ); - Fi (0.35) b) valoii fucţiei teoetice F() cae devie: Cuatila = β l. η (0.36) Cuatila = Φ - (F) 0 F i F() 5 5 l(l( ) -F 0 F i F() l(l( ) -F 0 F i F() -5.5 3 3.5 l() a) -5.5 3 3.5 l() b) Fig. 0.3. Reţele pobabiliste Weibull petu duabilităţile ulmeţilo poduşi de fima : a) petu modelul obţiut pi metoda celo mai mici pătate; b) petu modelul obţiut pi metoda veosimilităţii maime 5) Cocluzii Se vo compaa cele două legi teoetice detemiate şi se va stabili cae ajustează mai bie ezultatele epeimetale. Se vo face apeciei asupa peciziei detemiăii utilizâd ivelele de semificaţie. Se vo cometa diagamele obţiute făcâd apeciei asupa cocodaţei puctelo epeimetale cu cuba teoetică.

0. Aplicaţii 8 Poblema 0. Să se detemie paametii legilo de epatiţie omală şi Weibull şi să se stabilească legea de epatiţie cae ajustează cel mai bie şiul duabilităţilo obţiute petu eşatioul de ulmeţi poduşi de fima, şi cae a fost dat î poblema 0.. Rezolvae ) Detemiaea paametilo petu legile de epatiţie omală şi Weibull.a) Petu paametii legii de epatiţie omală s-au aplicat elaţiile (0.) şi (0.0) cu cae s-a obţiut: media aitmetică: =,738 oe, abateea medie pătatică stadad σ = 4,593 oe şi abateea medie pătatică coectată s =4,7 oe. Astfel, epatiţia pobabilităţii teoetice de defectae este: (,738),738 F() = Ep d = Φ. (0.37) π 4,7 4,7 4, 7 Obsevaţie: Petu studiul cocodaţei se ecomadă utilizaea modelului î cae s-a utilizat abateea medie pătatică stadad σ: (,738),738 F() = Ep d = Φ. π 4,593 4,593 4, 593.b) Petu legea de epatiţie Weibull, paametii legii de epatiţie au detemiaţi pi metoda celo mai mici pătate şi pi cea a veosimilităţii maime..b.) Pi metoda celo mai mici pătate s-a ezolvat sistemul (0.9) î vaiata bipaametică (adică petu paametul de localizae γ = 0) şi s-au obţiut paametii: β=5,79 şi η=4,568 oe, astfel îcât modelul Weibull devie: 5,79 F () = Ep. (0.38) 4,568.b.) Pi metoda veosimilităţii maime s-a ezolvat sistemul de ecuaţii (0.) şi (0. ) luâd ca valoi iiţiale, î pocesul de căutae a soluţiilo, valoile obţiute ateio pi metoda celo mai mici pătate şi s-au găsit soluţiile: β=5,55 şi η=4,63 oe, cu cae ezultă cel de-al doilea model Weibull: 5,55 F () = Ep. (0.39) 4,63 ) Stabiliea domeiilo de îcedee ale paametilo legilo de epatiţie omală şi Weibull..a) petu paametii epatiţiei omale s-au utilizat valoile cuatilelo epatiţiilo Studet şi χ (cu 0 - = 9 gade de libetate şi ivel de semificaţie α = 0,):

0. Aplicaţii 9 t =., α / = t 0, 0,/,79, χ, α / = χ9, 0,95 = 30,44 şi χ, α / = χ9, 0,05 = 0,7 Itoducâdu-le î elaţiile (0. 3) şi (0. 4) ezultă: 0,96 < m populaţie < 4,54 şi 3,647 < σ populaţie < 6,94..b) petu epatiţia Weibull s-a detemiat domeiul de îcedee petu paametul de scaă η utilizâd cuatilele epatiţiei χ (cu 0 = 40 gade de libetate şi ivel de semificaţie α = 0,): χ, α / = χ40, 0,95 = 55,758 şi χ, α / = χ9, 0,05 = 6,509 cu cae di (0. 5) se obţie: 3,94 < η < 6,535, 3) Detemiaea acuateţei ajustăii valoilo epeimetale cu legi teoetice de epatiţie s-a făcut cu ajutoul testului de cocodaţă Kolmogoov-Smiov utilizâd elaţiile (0.6)... (0.9). Repatiţia empiică, evaluată cu (0. 0), a fost compaată cu valoile teoetice calculate î puctele i cu epesiile (0.37)... (0.39). Rezultatele au fost cetalizate î tabelul 0.3. Tabelul 0.3. Evaluaea compaativă a acuateţei ajustăii duabilităţilo Legea de epatiţie d λ K(λ) α Nomală (Gauss) cu =,738 oe şi σ = 4,593 oe, epesia (0.37) Weibull cu β=5,79 şi η=4,568 oe, obţiuţi pi metoda celo mai mici pătate, epesia (0.38) Weibull cu β=5,55 şi η=4,63 oe obţiuţi pi metoda veosimilităţii maime, epesia (0.39) 0,7 0,55 0,054 0,946 0,6 0,563 0,09 0,909 0,9 0,534 0,06 0,938 Aalizâd ezultatele di tabel, se costată o cocodaţă buă petu toate cele 3 modele evaluate. Totuşi, ivelul de semificaţie al modelului ealizat cu ajutoul legii de epatiţie omală, epesia (0.37), este cel mai bu, astfel că se poate cocluzioa că acesta este modelul cel mai adecvat. Îtucât β, espectiv β, difeă foate mult de, u se pue poblema uei epatiţii epoeţiale egative. Aplicâd pocedeul pezetat petu şiul de date logaitmat (cu logaitmul zecimal),348 se obţi paametii =, 348 (adică media este 0 = 0 =, 68 oe) şi σ = 0,089 (espectiv s = 0,09). Studiul cocodaţei, utilizâd epesiile (0.6)... (0.9), coduce la umătoaele ezultate: d = 0,095; λ = 0,45; K(λ) = 0,0063 şi α = 0,994. Se costată o acuateţe mult mai buă a ajustăii. 4) Tasaea cubei teoetice (a legii de epatiţie) şi puctelo epeimetale pe o eţea pobabilistă, pemite evaluaea globală a coectitudiii calculelo ealizate. Reţelele de pobabilitate de tip Gauss-Laplace şi Weibull pe cae s-au tasat datele şi cubele teoetice sut pezetate î figuile 0. şi 0.3. Se costată o buă cocodaţă îte epatiţiile teoetice şi cea epeimetală.

0. Aplicaţii 30 0.3 Elimiaea valoilo abeate dit-u şi de valoi epeimetale [, 7, 5] Scopul elimiăii valoilo abeate dit-u şi de valoi epeimetale este obţieea (pi pelucaea statistică a datelo) de ezultate coecte, cae să caacteizeze îteaga populaţie statistică di cae s-a etas eşatioul studiat. Apaiţia de valoi abeate poate ae cauze divese, ca de eemplu, eespectaea poceduii de epeimetae. Găsiea valoilo abeate poate fi ealizată, î mod global, pi tasaea datelo ît-o eţea pobabilistă (valoile abeate u se aliiază cu celelalte date) sau cu ajutoul uui test specializat. Modul de lucu: a) Se odoează cescăto sau descescăto şiul de date, îtucât valoile abeate pot fi pea mici sau pea mai. Fie cea mai mică şi cea mai mae dite datele epeimetale şi susceptibile de a fi abeate b) Se detemiă media = i (0.) i = şi abateea medie pătatică espectiv σ = i = (i ) i = (0.9) s = (i ), (0.0) petu toate valoile di şiul de date aalizat. c) Fucţie de testul acceptat se calculează paametul v, λ sau t cu elaţiile di tabelul 0.4. Tabelul 0.4. Epesiile de calcul ale paametilo caacteistici v, λ sau t Testul Gubbs Iwi (testul λ) Romaovski Paametul caacteistic calculat petu valoaea supeioaă Paametul caacteistic calculat petu valoaea ifeioaă v sup v if = = s s λ sup λ if = = σ σ t sup t if = = s s d) Acest paametu (v sau λ sau t) se compaă cu cel citic (v c, λ c sau t c ) ale căui valoi sut tabelate î Aea 3. Dacă v sup > v c sau λ sup > λ c sau t sup > t c, valoaea este abeată şi se elimiă cu ivelul de îcedee α, î caz cota u sut motive suficiete petu elimiae. Aalog se

0. Aplicaţii 3 pocedează petu, cea mai mică valoae di şiul de date. Dacă valoaea sau a fost elimiată, se ecalculează abateea medie pătatică petu cele - valoi ămase şi testul se aplică di ou. Pocesul cotiuă pâă câd u se mai elimiă date ale şiului. Poblema 0.3. Să se aalizeze cele două şiui de valoi ale duabilităţii ulmetului adial cu bile 604, date î poblema 0.. Pobabilitatea afeetă valoilo citice ale testelo este α = 0,90. Rezolvae Aplicâd elaţiile (0.0), (0.9) şi (0.0) petu cele două şiui de date s-au obţiut paametii statistici di tabelul 0.5. Tabelul 0.5. Paametii statistici ai şiuilo PaametPaametul Fima Fima Media aitmetică,7375 oe,65 oe Abateea medie pătatică σ 4,593 oe 3,49757 oe Abateea medie pătatică coectată s 4,744 oe 3,58843 oe Pi aplicaea epesiilo de calcul date î tabelul 0.4 s-au detemiat paametii caacteistici pezetaţi î tabelul 0.6 Tabelul 0.6. Valoile paametilo caacteistici v, λ şi t petu cele două şiui de date Testul Gubbs Iwi (testul λ) Romaovski Petu ulmeţii fabicaţi de fima v sup = 0,44 v if = 0,37 λ sup = 0,435 λ if = 0,38 λ sup = 0,858 λ if =,07 t sup =,859 t if =,695 Petu ulmeţii fabicaţi de fima v sup = 0,836 v if =,045 t sup =,4 t if =,35 Valoile citice obţiute di aea 3, petu = 0 şi α = 0,90, sut: v c =,78, λ c =,03 şi t c =,5. Compaâdu-le cu valoile paametilo caacteistici daţi î tabelul 0.6 se costată că după testul Iwi valoaea cea mai mică a duabilităţii (4.5 oe) di şiul ulmeţilo fabicaţi de fima este abeată şi tebuie elimiată. După elimiaea valoii abeate se ecalculează paametii statistici ai şiului edus: media aitmetică =,566 oe, abateea medie pătatică σ=3,0 oe, abateea medie pătatică coectată s=3,87 oe. Recalculâd paametii caacteistici ai şiului (edus) petu testul Iwi, se obţie: λ sup = 0,967 şi λ if = 0.08, valoi mai mici decât cea citică, deci u mai sut şi alte valoi abeate.

0. Aplicaţii 3 0.4 Calculul fiabilităţii pevizioale a elemetelo compoete Fiabilitatea pevizioală a ogaelo de maşii epezită compoeta de bază a calculului fiabilităţii asamblului uui sistem mecaic. Estimaea fiabilităţii uui elemet costuctiv poate fi ealizată, aşa cum s-a aătat î capitolul 9, î geeal, pi: - calculul cu ajutoul legii de epatiţie epoeţială egativă, cu peluaea di tabele a valoii apoimative a atei defectăilo λ t R(t) = e ; (4.) - calculul duabilităţii (atuci câd se cuoaşte colectivul de îcăcae şi cuba Wöhle, î geeal, sau capacitatea diamică de îcăcae, î cazul paticula al ulmeţilo) şi peluaea di liteatua de specialitate a caacteisticii dispesive: L = N i j m0 m0 k σi σ i + σ σd j+ L η = 0 k ( γ / L [ )] 0 / β σ σ i m0 i, (.8), (9.5) ( l 0,9) ude paametii adimesioali ai epatiţiei Weibull sut daţi î tabelul 9., petu uele ogae de maşii. Î cazul compoetelo supuse la uzae, se detemiă: a) gosimea medie a statului uzat U = U v uh t, (5.7) h h + ude viteza medie de uzae este τf vuh = v f, (0.6) ef paametii fiid luaţi di tabelul 5.6; b) abateea medie pătatică se poate estima cu ajutoul coeficietului de vaiaţie cae poate fi detemiat epeimetal sau, petu calcule apoimative, este luat di liteatua de specialitate, ca valoile di tabelul 0.7 astfel: σ = c U. (0.7) Tabelul 0.7. Valoi oietative ale coeficietului de vaiaţie petu uzae uh N. Mateialele cuplei de fecae Coeficietul de vaiaţie Oţel / boz cu staiu 0,33 Oţel / gaituă uscată de ambeiaj 0,... 0,9 3 Ageaje 0,... 0,3 4 Tasmisii cu laţ 0, 5 Cuzieţi petu motoae cu adee iteă 0,3... 0,63 vuh h

0. Aplicaţii 33 Admiţâd că gosimea statului uzat este epatizată omal, fiabilitatea cuplei este: U h lim Uh R (t) = Φ, (0.8) σuh ude U h lim este valoaea limită admisă a gosimii statului uzat. Aceasta ezultă di aaliza peciziei fucţioale a sistemului mecaic sau este pescisă petu difeite domeii de utilizae. Poblema 0.4 Să se detemie fiabilitatea ulmeţilo şi ageajului uui educto de tuaţie ît-o teaptă de educee ştiid: tuaţiile aboilo =035 ot/mi şi =400 ot/mi, duabilitatea miimă admisibilă L ha = 5000 h; duabilităţile ulmeţilo L ha =30900 h, L hb =60005 h, L hc =6300 h, L hd =8400 h; colectivul de solicitae (tesiui): σ H =550 MPa, σ H =0 MPa, σ H3 =85 MPa, σ H4 =650 MPa, petu solicitaea la pittig şi σ F =550 MPa, σ F = 400 MPa, σ F3 = 90 MPa, σ F4 =30 MPa, σ F =495 MPa, σ F = 360 MPa, σ F3 = 60 MPa, σ F4 =00 MPa petu solicitaea la upeea picioului ditelui, = 0,0 %, = %, 3 = 5 %, 4 = 93,99 %; paametii cubei Wöhle m 0H = 3, N DH = 0 7 ciclui, σ DH =450 MPa, petu solicitaea la pittig şi m 0F = 9, N DF = 3 0 6 ciclui, σ DF =470 MPa, petu solicitaea la upeea diţilo. Rezolvae a) O estimae globală a fiabilităţii se poate face cu ajutoul legii de epatiţie epoeţială egativă. Di tabelul 9. se obţi itesităţile medii de defectae: petu ageaje λ=0,00 0-6 h - şi petu ulmeţii cu ole λ=0,50 0-6 h -. Itoducâd aceste valoi î epesia (4.) şi luâd t = L ha = 5000 h, se obţi valoile fiabilităţii: Petu ulmeţi R ulm =0, 9958, ia petu ageaj R ag =0, 99997. b) Petu evaluaea mai pecisă se va utiliza metoda bazată pe calculul duabilităţii şi peluaea di liteatua de specialitate a caacteisticii dispesive. - calculul duabilităţii se ealizează cu epesia (.8) î cae se itoduc umeele de ciclui N H =4, 0 6 şi N H =0,79 0 6 calculate di cuba Wöhle cu epesia: σd N = N D ; (0.9) σ şi se obţi duabilităţile: L ag, H =3,944 0 0 ciclui, L ag, F =,79 0 9 ciclui, L ag, F =4,3039 0 9 ciclui, cae cu ajutoul tuaţiilo se tasfoma î oe, valoile fiid date cetalizat î tabelul 0.8. Î tabel au mai fost daţi paametii adimesioali ai epatiţiei Weibull obţiuţi di tabelul 9.. Itoducâd valoile medii ale acesto paameti î epesia (9.5) se obţi paametii de scaă η. Valoile fiabilităţilo elemetelo compoete ale eductoului R sut calculate cu epesia (4.9), ezultatele fiid date de asemeea î tabelul 0.8. Se obsevă că valoile obţiute sut apopiate de cele obţiute ateio pi utilizaea legii epoeţiale egative. ezultatele a fi putut îsă să difee mult, îtucât m 0

0. Aplicaţii 34 metoda simplificată u ia î cosideae solicităile efective ale ogaelo de maşii cosideate. Tabelul 0.8. Calculul fiabilităţilo compoetelo eductoului N. Compoeta L h [oe] β γ/l 0 η [oe] R Rulmetul A 30900,35 0,05 6445 0,9969 Rulmetul B 60005,35 0,05 8930 0,99905 3 Rulmetul C 6300,35 0,05 598840 4 Rulmetul D 8400,35 0,05 63390 0,999498 5 6 7 Ageajul solicitat la pittig Roata diţată solicitată la upee Roata diţată solicitată la upee 3803,,5 0,4 0,8; 6360 6300,, 0,8 0,95 66673 79330,, 0,8 0,95 08040 Poblema 0.5 Să se detemie fiabilitatea uui cuziet di CuS us cu usoae ştiid: foţa de apăsae pe lagă F=0000 N, diametul D=70 mm, lăţimea cuzietului B=50 mmm, tuaţia fusului =400 ot/mi, coeficietul de fecae-aluecae μ=0,08, gosimea admisibilă a statului uzat U h lim =0,5 mm, gosimea statului odat este U h =0,0 mm, ia duata de fucţioae ecesaă este 5000 oe. Rezolvae a) Se detemiă tesiuea de fecae μ F 0,08 0000 τf = = = 0,86 MPa D B 70 50 şi viteza tageţială de fecae 6 v f = π D 60 = 5,779 0 mm/h. Itoducâd capacitatea de solicitae tibologică obţiută di tabelul 5.6 ( ef =,5 0 MPa) î epesia (0.6) ezultă itesitatea medie de uzae: τf 0,86 6 6 mm vuh = v f = 5,779 0 = 4,86 0, e,5 0 h f Cu elaţia (5.7) ezultă gosimea medie a statului uzat: 6 Uh = Uh + v uh t = 0, + 4,86 0 5000 = 0,0839 mm. Utilizâd coeficietul de vaiaţie c v Uh =0,33 peluat di tabelul 0.7 se obţie abateea medie pătatică: σuh = c v Uh = 0,33 0,0839 = 0,0789 mm. b) Cu epesia (0.8) se detemiă fiabilitatea cuzietului:

0. Aplicaţii 35 Uh lim Uh 0,5 0,0839 R = Φ = Φ = Φ(,48667) = 0,993553. σuh 0,0789 Obsevaţie: Dacă gosimea admisibilă a statului uzat a fi fost U h lim =0, mm, atuci fiabilitatea a fi fost: R=0,74407, valoae iacceptabilă î codiţii omale. 0.5 Calculul fiabilităţii pevizioale a asamblului uui sistem mecaic Calculul fiabilităţii asamblului se ealizează cofom celo aătate î capitolul 6. Î geeal, sistemele mecaice sut eedudate. Ecepţie fac sistemele de impotaţă deosebit de mae, a căo defectae ae mai implicaţii ecoomice, de mediu etc. Petu estimaea fiabilităţii este ecesa să se ealizeze schema de calcul a asamblului şi să se cuoască fiabilităţile compoetelo. Poblema 0.6 Să se detemie fiabilitatea uui educto de tuaţie ît-o teaptă, ştiid că valoile fiabilităţii ulmeţilo şi ageajului sut cele date î tabelul 0.8, ia fiabilităţile aboilo sut, datoită supadimesioăii impuse de limitaea defomaţiilo elastice. Rezolvae Dacă se deteioează ua di compoetele eductoului, acesta se defectează, pi umae, asamblul ae o schemă stuctuală cu elemete dispuse î seie, ca î figua 6.. Defectaea ageajului se poate face î tei modui: pi pittig, pi upeea datuii piioului (oata ) sau pi upeea datuii oţii. Astfel, ageajul se cosideă fomat di tei elemete. Aplicâd epesia 6. se obţie: Rs = Rulm A Rulm B Rulm C Rulm D Rag pittig R oata upee Roata upee Rab Rab = =0,9969 0,99905 0,999498 =0,995449. Pactic, valoaea fiabilităţii asamblului este dată de valoile fiabilităţii ulmeţilo, compoete mult mai ieftie decât ageajul. Pi umae, dacă este ecesaă ceşteea suplimetaă a fiabilităţii eductoului, aceasta se poate obţie elativ uşo pi îlocuiea ulmeţilo A, B şi D la u iteval de timp mai mic decât duata impusă de 5000 oe. Dacă fiabilităţile compoetelo sut modelate cu legea epoeţială egativă, atuci fiabilitatea asamblului, cu elemete dispuse î seie, se detemiă cu (6.): 7 6 Rs = ep t λi = ep[ 5000 (4 0,5 + 0,00 + 0) 0 ] = 0,97046 ude s-au cosideat valoile medii ale itesităţii de defectae di tabelul 9. petu cei 4 ulmeţi şi petu ageajul cosideat ca u subasamblu ia î cazul aboilo s-au itesităţile de defectae au fost cosideate ule. 0.6 Detemiaea fiabilităţii uui sistem cu ajutoul metodei Mote Calo Metoda Mote Calo este utilă petu calculul fiabilităţii sistemelo cu stuctuă foate complicată şi compoete cu epatiţii de pobabilitate difeite. Pi această metodă se simulează (umeic) detemiaea epeimetală a fiabilităţii sistemului ale căui compoete se defectează aleato, fiecae după legea sa de epatiţie.

0. Aplicaţii 36 Poblema 0.7 Fiabilitatea compoetelo sistemului mecaic di figua 0.4 este modelată cu legea de epatiţie epoeţială egativă avâd umătoaele ate de defectae: λ:=(0.003; 0.000; 0.000; 0.000; 0.000; 0.0003; 0.000; 0.0004; 0.0005; 0.000; 0.000). ) Petu duata L lim =00 oe să se detemie fiabilitatea sistemului pi simulaea fucţioăii cu ajutoul metodei Mote Calo şi să se compae ezultatul cu cel eact, calculat pe baza schemei stuctuale. Detemiaea se va face cu 00; 000 şi 0000 de simulăi. ) Să se taseze gaficul epatiţiei fiabilităţii detemiate pe baza schemei stuctuale î domeiul t [; 300]. 3) Să se detemie duata după cae fiabilitatea sistemului devie 80%. 4) Să se detemie elemetul cu iflueţa cea mai mae asupa fiabilităţii sistemului, petu cae măiea cu 0 % a fiabilităţii a detemia cea mai mae ceştee a fiabilităţii asamblului. E 3 E E E 4 E 7 E 9 E 0 E E 5 E 6 E 8 Fig. 0.4. Schema sistemului de aalizat Rezolvae ) Detemiaea fiabilităţii sistemului Se obsevă că elemetele E,... E 4 şi E 5... E 8 sut dispuse î stuctui idetice. Se defieşte fucţia de stuctuă paţială: SA(e,e,e 3,e 4 ):=e e [-(-e 3 ) (-e 4 )] Se calculează fiabilitatea asamblului pe baza schemei stuctuale: s:= SA(e -λ t,e -λ t,e -λ3 t,e -λ4 t ) s:= SA(e -λ5 t,e -λ6 t,e -λ7 t,e -λ8 t ) s3:= e -λ9 t e -λ0 t e -λ t Se obsevă că asamblul poate fi descis de asemeea pi fucţia SA (pi adăugaea î seie cu subsistemul S3 a uui elemet cu fiabilitatea R=) astfel: R st =SA(s3,,s,s). Se obţie: R s =0,53753; R s =0,9033; R s3 =0,854; R st =0,8075. Se detemiă fiabilitatea asamblului utilizâd metoda Mote Calo astfel: - cu duata L lim = 00 oe se calculează fiabilităţile compoetelo: i = i (Llim ) = ep( λi Llim ); - petu fiecae elemet i se geeează valoi aleatoae ale fiabilităţii i, j cupise îte 0 şi şi epatizate uifom; - se detemiă stăile compoetelo; petu i, j i staea i, j = ; 0 petu i, j > i

0. Aplicaţii 37 Obsevaţia : i, j epezită valoaea efectivă a fiabilităţii populaţiei fomate elemete i (idetice) î cadul simulăii j (j=... s); dacă i, j i atuci Li, j Llim şi elemetul este î stae de fucţioae. Obsevaţia : Staea sistemului poate fi detemiată şi pi utilizaea de umee aleatoae epatizate coespuzăto (î cazul de faţă epatiţia este epoeţială egativă cu ata de defectae λ i ). Acestea au semificaţia duabilităţilo efective L i, j ia staea sistemului este: petu Li, j > 00 = Llim staea i, j =. 0 petu Li, j 00 = Llim - se calculează staea subasambleleo şi sistemului: smj : = SA(staea,j,staea,j,staea3,j,staea4, j ) ; sm3j : = staea9,j staea0,j staea, j smj : = SA(staea5,j,staea6,j,staea7,j,staea8, j ) ; StaeSistem j : = SA(sm3,j,,sm,j,sm, j ); - fiabilitatea sistemului se obţie di apotul umăului de cazui câd sistemul u este defect la umăul total de simulăi, s: s j= StaeSistem Rs = s ; Se obţie: Rs=0,78 (petu s=00); Rs=0,86 (petu s=000) şi Rs=0,89 (petu s=0000). Se costată că ezultatul tide căte valoaea eactă, calculată pe baza schemei stuctuale, R st =0,8075. Se obsevă că valoile Rs difeă, dacă se epetă calculul îsă R st difeeţele scad teptat cu ceşteea umăului de simulăi s. 0,6 ) Gaficul epatiţiei fiabilităţii este pezetat î figua 0.5. 0,4 3) Duata după cae fiabilitatea sistemului devie 80% este: t =,478 oe. 0, 4) Detemiaea elemetului cu iflueţa cea mai mae asupa fiabilităţii sistemului, petu 0 cae măiea cu 0 % a fiabilităţii a detemia cea 0 00 400 600 800 000 t [oe] mai mae ceştee a fiabilităţii asamblului, se ealizează pi ceşteea, pe âd, cu 0 % a Fig. 0.5 Gaficul epatiţiei fiabilităţii fiabilităţii fiecăui elemet şi calculul fiabilităţii sistemului di fig. 0.4 asamblului. S-au obţiut umătoul şi de valoi: {0,844; 0,844; 0,8089; 0,808; 0,8570; 0,8570; 0,8344; 0,806; 0,908; 0,908; 0,908}. Se costată că iflueţa cea mai mae o au elemetele 9, 0 şi a căo ceştee (idividuală) cu 0 % detemiă măiea fiabilităţii asamblului de la 0,8075 la 0,908. j

0. Aplicaţii 38 0.7 Pobleme popuse [, 7, 8, 0, 3, 4, 4, 5] Poblema Să se detemie paametii fucţiei de epatiţie Weibull petu zece compoete electice (=0) cae sut supuse uei îcecăi de duabilitate. Epeimetul este cosideat îcheiat la cădeea a = 7 elemete. Duabilităţile obţiute (epimate î 0³ h) sut: X :=(.5;.5; 3; 3.45;4.4; 5.; 5.8) Poblema Di poducţia cuetă a două stugui automate au fost pelevate câte două eşatioae de =00 de bolţui cae au fost măsuate cu u ototest avâd diviziuea de μm, ezultatele fiid otujite la valoaea uei jumătăţi de diviziue. Î şiul de ezultate sut date valoile abateilo de la cota omială. Să se detemie paametii epatiţiei omale şi să se testeze cocodaţa modelului stabilit utilizâd valoile epeimetale. Să se detemie domeiul î cae se găsesc 90% di piesele ealizate. X :=(;.5; -.5; 0; -.5; ; ; 5; -; -; ; 3; ; -; 5; 4.5; 0.5; 3.5; 8; 5; 4.5; 3.5; 9.5; ; 7.5; 7.5; 0; 8.5; 0; ; 4; ; ; 3; 6; 4.5; 9; 4; 8; 9; 9; 3.5; ; 8.5; 9.5; 7.5; 8; 9.5; 7.5; 5.5; 9.5; ; 3.5; 8.5;.5; 30.5; ; 3.5;.5; 0; 7.5; 8.5; 6.5; 8.5; 5.5; 6;.5; 6.5; 8.5; 7.5;.5; 7; 4.5; -0.5; 4; 5.5; ; 4; 6.5; 5; 4.5; 5; 7.5; 5; 5.5; 6; 6.5; -3; 5; 3.5; -3; -4; 7; -9; -3; -; 8.5; ; 6; 8.5) X :=(0; 7; -; -3; 0.5; 0; -; -4.5; ; -0; -8.5; -3.5; -.5; -.5; -7.5; -.5; -6.5; ; -; -7.5; -5; -5.5;.5; -8; -0; -5; -3; -8; -; -6.5; -8; -3.5; -; -7; -0.5; 4.5; 0; 9.5; 7; 0.5; ; 0.5; 5; 0.5; 4; 0; 0.5; 3.5; 9;.5; ; 7; 7.5; 3.5; 7; 4.5; -4; ; 4; 9; 4.5;.5; 4; 0; 0; 3; 7; ; 7.5; ; ; 5; 0.5; -3; -4.5; 6; 9.5;.5; 9; 3;.5; 0.5; ; 4; 6.5; -9.5; -8; -4.5; 7.5; -4; -9; -9; ; -0.5; 3.5; 0.5; -5.5; -6; -6.5; -8) Poblema 3 La u eşatio de =50 osii poduse pe u stug automat este măsuată abateea de la valoaea omială a uei cote impotate utilizâd u compaato cu diviziuea de μm, ezultatele fiid otujite la valoaea uei jumătăţi de diviziue. Să se detemie paametii epatiţiei omale şi să se testeze cocodaţa modelului stabilit pe baza valoilo epeimetale. Să se detemie pobabilitatea ca piesele ealizate să se găsească î domeiul de toleaţe ± 5 μm. X :=(-4; -; 0.5; 4.5; -.5; -7; -6.5; 8.5; -3; ; 3.5; 0.5; 7; 7; 5; 4; ; 8; ; 0; 9.5; -0; -8; 4.5; -9; -5.5;.5; 8.5; 0.5; -.5; 6; 3; -4; 9.5; 0; 4; 7.5; ; 3.5; -0.5; ; 9; ; 7.5;.5; 4; 5;.5; 6.5; 7) Poblema 4 Diametul uui cablu blidat se supue legii de epatiţie omale cu media μ=7,75 mm şi abateea medie pătatică σ = 0, mm. Să se detemie pobabilitatea ca diametul cablului să fie supeio valoii 7,9 mm. Ce diametu mediu a tebui să aibă cablul petu ca pobabilitatea de a se îtâli o poţiue de cablu mai goasă decât 7,9 mm să fie %?

0. Aplicaţii 39 Poblema 5 Abateile diametului iteio al uei bucşe sut epatizate omal cu media μ=30 μm şi abateea medie pătatică σ = 0 μm. Să se detemie pobabilitatea ca diametul bucşei să aibă abateile cupise îte 0 μm şi 50 μm. Poblema 6 Petu studiul duabilităţii uui bughiu elicoidal cu Φ=6 mm a fost aalizat u eşatio fomat di =4 elemete petu cae s-au detemiat duabilităţile efective epimate î miute. Să se detemie paametii epatiţiei omale şi că se veifice ipoteza de omalitate. X :=(6.0; 9.8; 9.5;.44;.58; 3.0; 4.58; 6.50; 7.; 30.6; 3.8; 33.58; 6.58; 39.55) Poblema 7 Să se detemie paametii epatiţiei Weibull şi să se testeze cocodaţa epatiţiei teoetice cu cea empiică î cazul ezultatelo uo îcecăi de fiabilitate ealizate î laboato pe u eşatio de 68 compoete electoice. Duatele de fucţioae pâă la defectae, epimate î oe, sut: X :=(4; 79; 553; 733; 6; 97; 34; 344; 09; 909; 9; 37;89; 566; 765; 57; 84; 77; 4; 8; 33; 05; 53; 788; 4;69; 87; 89; 36; 8; 45; 99; 3; ; 045; 809; 07;3; 493; 305; 39; 460; 353; 6; 390; 54; 39; 78; 3; 7; 677; 788; 498; 077; 68; 3; 79; 66; ; 45; 9; 944; 873; 988; 886; 8; 5; 045). Poblema 8 S-au supus îcecăilo de laboato u umă de 5 compoete electoice. Să se detemie paametii epatiţiei epoeţiale egative şi să se testeze cocodaţa epatiţiei teoetice cu cea empiică. Valoile î oe ale timpului de fucţioae pâă la cădee se pezită î cotiuae. X :=(30; 0; 33; 55; 095; 45; 970; 05; 790; 466; 87; 605; 898; 460; 80) Idicaţie: Paametul epatiţiei epoeţiale egative λ se detemiă ca şi paametul η al epatiţiei Weibull cu β=, ştiid că λ=/η. Poblema 9 Au fost efectuate pobe de fiabilitate asupa uui umă de 9 tubui fluoescete tip PW, putee 65 W, U 0 V/50 Hz. Să se estimeze şi să se testeze modelul teoetic obţiut, compotametul uo poduse similae făcâd plauzibilă ipoteza de epoeţialitate. Duatele de fucţioae pâă la cădee, epimate î oe, sut: X :=(050; 3450; 975; 700; 4700; 300; 575; 5950; 300) Poblema 0 Rezultatele îcecăilo de laboato pivid fiabilitatea podusului aspiato de paf AP 9 sut date sub foma duatelo de fucţioae pâă la defectae. Eşatioul a fost fomat aleato utilizâd uul dite pocedeele clasice. A ezultat pi utilizaea STAS 360/7 u volum al eşatioului = 5. Se cee estimaea paametilo modelului

0. Aplicaţii 40 epoetial egativ şi testaea cocodatei cu epatiţia empiică. Eşatioul obţiut, epimat î oe este: X :=(80; 898; 460; 45; 605; 87; 30; 466; 0; 095; 790; 970; 05; 55; 33) Poblema S-au supus obsevaţiei î fucţioae u umă de 5 sisteme mecaice petu pelucaea metalelo. S-au îegistat duatele, î zile, pâă la defectae. Tipologia acestei clase de poduse face plauzibilă ipoteza uei epatiţii logomale a duatelo de fucţioae pâă la apaiţia cădeilo. Valoile duatelo obţiute epeimetal sut: X :=(47; 78; 56; 05; 3; 8; 34; 96; 59; 3; 57; 77; 35; 48; 9) Idicaţie: Paametii epatiţiei logomale se detemiă ca şi î cazul celei omale isă se utilizează logaitmii zecimali ai valoilo duabilităţilo. Poblema Să se detemie paametii epatiţiei Weibull şi să se testeze cocodaţa acesteia cu cea empiică î cazul a cici eşatioae de câte = 30 avelope. Rezultatele, epimate î km ulaţi, sut. X :=(6409; 988; 988; 0036; 8033; 6300; 577; 577; 5483; 563; 988; 88766; 03898; 03898; 54394; 5500; 60049; 60049; 8435; 8435; 5397; 5305; 604; 57987; 66; 5856; 57879; 09000; 09000; 54697) X :=(70545; 57004; 66457; 6047; 53863; 00750; 05750; 5433; 7653; 7080; 709; 975; 975; 975; 59946; 07335; 07335; 59946; 59946; 59946; 6784; 5008; 57536; 958; 958; 958; 958; 5693; 5466; 70800) X3 :=(55946; 50000; 84057; 84057; 7463; 50000; 69789; 5035; 76750; 76750; 09545; 5575; 5575; 69; 55033; 893; 5397; 598; 59567; 7663; 5887; 5887; 695; 5887; 5887; 58; 8440; 8440; 8440; 8440) X4 :=(88730; 53684; 5483; 669; 89450; 5887; 086; 086; 54576; 58; 6409; 80005; 53684; 75; 75; 34450; 5483; 979; 5887; 60753; 85500; 85500; 54576; 56875; 79500; 79500; 67066; 7359; 565; 5064) X5 :=(57799; 00475; 505; 793; 793; 537; 669; 59; 7754; 533; 66457; 57033; 5575; 55979; 8700; 8700; 59455; 59455; 60753; 53630; 98890; 55400; 63353; 603; 57600; 9400; 53755; 53755; 88733; 88733) Poblema 3 S-au supus îcecăilo de fiabilitate u umă de = 55 îteupătoae de eţea petu TV, epeimetul fiid sistat la 50000 comutăi. S-au defectat = elemete, estul u. Se cee să se veifice ipoteza pivid la atua epoeţială a pocesului defectăilo. Rezultatele îcecăilo, sub foma umăului de comutăi pâă la cădee sut: X :=(4500; 5750; 455; 775; 430; 6300; 460; 30055; 3496; 3703; 4665; 484).

0. Aplicaţii 4 Poblema 4 S-au obsevat u umă de 74 autovehicule pe duata a 5000 km. Să se detemie paametii epatiţiei Weibull şi să se testeze cocodaţa modelului teoetic cu cel empiic. Să se detemie si să se compae idicatoii de fiabilitate empiici şi teoetici. Datele, epimate î km pacuşi sut: X :=(540; 450; 800; 00; 8430; 7600; 300; 60; 430; 040; 540; 970; 830; 5870; 635; 9000; 5700; 5400; 9; 330; 000; 800; 9300; 80; 4080; 750; 60; 4; 70; 30; 6600; 3900; 7090; 09; 4380; 56; 400; 330; 040; 965; 9400; 750; 700; 700; 00; 450; 963; 590; 5980; 90; 6540; 8; 830; 434; 700; 9400; 5700; 9060; 90; 040; 040; 98; 30; 450; 590; 040; 7600; 5900; 750; 3600; 930; 600; 800; 600) Poblema 5 U eşatio de = 0 compoete mecaice de acelaşi tip ale uo sisteme hidaulice sut supuse uei îcecăi de fiabilitate pe o peioadă de T 0 = 500 oe. Î decusul peioadei espective s-au defectat = 5 elemete. Să se detemie paametii epatiţiei Weibull şi să se testeze cocodaţa modelului teoetic cu cel empiic. Duatele pâă la defectae epimate î oe sut: X :=(050; 50; 90; 60; 575; 00; 330; 80; 50; 80; 460; 00; 0; 000; 680). Poblema 6 Să se detemie paametii modelului Weibull şi să se testeze cocodaţa acestuia cu epatiţia empiică petu u eşatio epuizat fomat di =90 cilidi hidaulici. Duatele de fucţioae pâă la defectae, epimate î oe sut: X :=(05; 8; 8; 9; 47; 49; 50; 87; 93; 3; 7; 488; 497; 499; 57; 57; 59; 530; 548; 548; 550; 55; 57; 585; 587; 597; 607; 608; 6; 64; 65; 66; 68; 6; 67; 639; 64; 650; 660; 66; 67; 683; 687; 690; 69; 69; 77; 747; 748; 749; 75; 75; 757; 759; 76; 767; 77; 778; 78; 793; 800; 85; 88; 847; 85; 865; 868; 874; 884; 89; 90; 94; 99; 95; 937; 948; 948; 95; 005; 07; 034; 048; 05; 05; 058; 8; 83; ; 8; 334). Poblema 7 S-au efectuat îcecăi de laboato asupa compotametului podusului eleu cotact petu u eşatio de = 30 elemete. Să se detemie paametii epatiţiei Weibull şi să se testeze cocodaţa acesteia cu cea empiică. Rezultatele îcecăilo (epimate pi acţioăi 0 3 ) sut: X :=(7.5; 6.3; 9.; 8.; 6.;.; 8.3; 9.4; 8.7; 8.5; 8.8; 0.; 9.8; 8.8; 9.9; 7.; 8.7; 0.5; 8.3;.9; 9.; 4.; 7.6; 7.9; 9.5;.; 8.6; 9.; 6.6;.5). Poblema 8 Pe timpul epeimetăilo uui lot de 0 autocamioae de tee s-au îegistat upei la aa plaetaă di deapta faţă. Să se detemie paametii legii Weibull cae modelează această distibuţie a defecţiuilo. Mometele defectăilo sut epimate î km pacuşi. X :=(4803; 847; 493; 458; 38033; 3387; 400; 375; 479; 35338).

0. Aplicaţii 4 Poblema 9 Să se detemie paametii epatiţiei omale şi să se testeze cu ajutoul citeiului χ cocodaţa modelului cu epatiţia empiică a timpului maim de utilizae a uui lot de 0 autocamioae. Rezultatele sut cetalizate î tabelul umăto. Rulaj maşii î ai Numă auto casate 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 7 6 3 6 6 6 4 4 3 Poblema 0 U eşatio fomat di =0 aboi au fost îcecaţi la îcovoiee otativă cu tesiuea σ i =380 MPa. Să se detemie paametii epatiţiilo log-omală şi Weibull şi, utilizâd testul Kolmogoov-Smiov, să se afle cae epatiţie modelează mai bie ezultatele epeimetale: X :=(00000; 7000; 5000; 3000; 90000; 77000; 8000; 97000; 59000; 98000; 99000; 87000; 80000; 58000; 86000; 69000; 6000; 07000; 66000; 09000). Poblema Să se detemie paametii epatiţiilo logomală şi Weibull şi să se stabilească utilizâd testul Kolmogoov-Smiov, epatiţia cae modelează mai bie ezultatele epeimetale î cazul uei îcecăi la pittig cu σ H =58 MPa: X :=(0.; 7.9; 7.3; 30.5; 8.; 5.; 4.6;.; 4.3; 3.5). Poblema Dit-u eşatio de = elemete supuse la o îcecae de fiabilitate au fost obţiute = defectăi pâă la sistaea epeimetului. Să se detemie paametii epatiţiilo logomală şi Weibull şi să se testeze cocodaţa celo două modele cu epatiţia empiică. X :=(5 33.8; 3.; 3.7; 9.5; 3.5; 4.5; 33.9; 7.5; 5.5; 0.6; 6.5;.8; 6.5; 6.5; 5.6) Poblema 3 Petu detemiaea paametilo epatiţiei omale cae modelează distibuţia ezisteţei la oboseală a oţelului cabo XC 60 s-a utilizat metoda pobits, ezultatele fiid cetalizate î tabelul umăto. Numă de epuvete Tesiuea palieului de upte pâă la îcecae σ i [MPa] îcecate 7 0 6 ciclui Podeea uptuilo [%] 30 50 0 0 330 50 5 30 340 50 6 5 350 50 3 64 360 50 4 8

0. Aplicaţii 43 Poblema 4 S-au supus obsevaţiei pivid fucţioaea î timp a 6 bateii auto tip R-45. Să se veifice ipoteza cu pivie la epatiţia cădeilo pesupusă a fi, î baza fizicii pocesului de degadae a bateiilo, de tip logomal. Rezultatele pobelo de fucţioae epimate î km 0 3 faţă de mometul cădeii au fost umătoaele: X :=(85, 5, 75, 53, 4, 89, 47, 9,, 56, 09, 77,, 99, 3, 94). Poblema 5 Petu u eşatio compus di =0 de compoete idetice supuse la uzae s-a studiat ieşiea di uz ca umae a depăşiii uzuii admisibile. Să se detemie paametii epatiţiei Weibull cae modelează pocesul de defectae al acesto compoete şi să se studieze cocodaţa modelului cu epatiţia empiică. Duatele î oe pâă la ieşiea di uz sut: X :=(00; 700; 950; 300; 600; 000; 50; 000; 800; 500; 680; 700; 900; 00; 400; 90; 600; 350; 00; 700). Poblema 6 Petu u eşatio fomat di =36 de cuple de fecae a fost detemiată epeimetal uzua î fucţie de timp petu cuple cu fomă şi mateiale idetice, î aceleaşi codiţii de fucţioae. Să se detemie paametii epatiţiei omale şi să se veifice cocodaţa modelului astfel obţiut cu epatiţia empiică. Jocul maim admisibil, codiţioat fucţioal, a fost atis î umătoaele duate de timp (î oe): X :=(88; 345; 370; 36; 30; 330; 360; 350; 340; 334; 330; 90; 365; 36; 345; 350; 390; 380; 370; 350; 30; 380; 360; 355; 38; 345; 338; 330; 350; 35; 334; 338; 34; 335; 370; 335)