REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE
|
|
- Διόδωρος Βέργας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE Forma geerală a ecuaţiei: cu : I R R Î particular poliom / adus la o ormă poliomială dar şi ecuaţiile trascedete Rezolvarea ecuaţiei găsirea zerourilor ucţiei adică a valorilor c care satisac Categorii de metode de rezolvare umerică a ecuaţiilor algebrice eliiare: a metode de separare sau localizare a soluţiilor ecuaţiei de izolare a uor subdomeii ale domeiului de deiiţie I care să coţiă câte uul di zerourile ucţiei a se vedea şirul lui Rolle; b metode de determiare cu o precizie a priori iată a uei soluţii care a ost izolată î prealabil porid de la o valoare aproimativă a acesteia; c metode de determiare a tuturor soluţiilor aplicabile de regulă î cazul î care este u poliom
2 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare Soluţie aproimativă Se presupue că c este valoarea eactă a uei soluţii a ecuaţiei iar c' o valoare aproimativă a acestei soluţii Soluţia aproimativă se poate deii: o valoare c': c' c < ε cu ε > şi c; o valoare c': c' < ε cu ε > şi c Modul : Modul :
3 Metode de calcul al uei soluţii reale a uei ecuaţii algebrice eliiare Metode de calcul al uei soluţii reale a uei ecuaţii algebrice eliiare Soluţia reală a ecuaţiei separată î prealabil î itervalul [a b]: [a b] Două metode de partiţioare a itervalului: Metoda bisecţiei îjumătăţirii itervalului Este destiată rezolvării ecuaţiei petru care s-a separat î prealabil o soluţie î itervalul [a b]: a b < Se cosideră cotiuă pe [a b]; soluţia va i determiată cu erorile admise ε petru soluţie şi ε petru ucţie Trăsătură caracteristică: porid de la [a b] la iecare pas se restrâge domeiul î care se caută soluţia pri îjumătăţirea itervalului de la pasul aterior pâă la atigerea preciziei dorite Avataj: simplă Dezavataj: slab covergetă Algoritmul metodei bisecţiei etape:
4 4 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare I Se iiţializează limitele itervalului de căutare r şi s cu valorile limitelor itervalului î care s-a separat soluţia: r a s b idicele superior iteraţia curetă II La pasul de calcul se determiă oua valoare a soluţiei: r s 4 III La acelaşi pas se calculează şi r - oile limite ale itervalului de căutare: dacă r - < r r - şi s ; 5 dacă r - > r şi s s - ; 6 dacă r - calcul termiat şi c ; 7 IV Procesul de calcul se cosideră termiat câd sut îdepliite codiţiile 8 şi / sau 9: s r ε ; 8 ε 9 Iterpretarea geometrică a metodei bisecţiei:
5 Metode de calcul al uei soluţii reale a uei ecuaţii algebrice eliiare 5 Eemplu: Se cosideră ecuaţia: tg petru care s-a separat o soluţie î itervalul [ ] Să se determie soluţia ecuaţiei utilizâd metoda bisecţiei erorile admise iid ε - şi ε - Soluţie: Se parcurg etapele metodei bisecţiei: I Iiţializări: r s r s Iteraţia : r s II ; III r 9885 r > r s s
6 6 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare Se veriică dacă sut îdepliite codiţiile de termiare 8 şi 9: r s > ε şi > ε Nu sut îdepliite algoritmul se cotiuă cu: Iteraţia : r s II 5 ; III r r < r r s 5 r s 5 > ε şi 974 > ε Se trece la iteraţia următoare: Iteraţia : r s II 5 ; III 5 r r > r 5 s s 5 r s 5 > ε şi > ε Algoritmul se cotiuă Iteraţia 4: 4 r s II 75 ;
7 Metode de calcul al uei soluţii reale a uei ecuaţii algebrice eliiare 7 III r 5 4 r > r s 4 s 5 r 4 s 4 5 > ε şi 4 75 > ε Erorile au scăzut îsă u suiciet de mult petru ca cele două codiţii de termiare să ie îdepliite alte iteraţii Metoda alsei poziţii metoda coardei metoda secatei metoda împărţirii itervalului î părţi proporţioale Avataj: mai rapid covergetă Trăsătură caracteristică: porid de la [a b] la iecare pas se restrâge domeiul de căutare a soluţiei pri împărţirea itervalului de la pasul aterior î raportul valorilor ucţiei la capetele itervalului Iterpretarea geometrică:
8 8 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare Coarda: b a a b a a abscisa puctului de itersecţie cu O: a b b a b a Algoritmul metodei alsei poziţii etape: I Se iiţializează limitele itervalului curet de căutare r şi s : r a s b şi se calculează r şi s II La u pas oarecare al procesului iterativ de calcul se calculează oua valoare a soluţiei: r s s s r r III La acelaşi pas se calculează rezultâd oile limite ale itervalului de căutare r şi s coorm 5 7 împreuă cu r şi s IV Calculul se termiă câd sut îdepliite codiţiile 8 şi / sau 9
9 Metode de calcul al uei soluţii reale a uei ecuaţii algebrice eliiare 9 Eemplu: Se cosideră ecuaţia de la eemplul aterior; să se rezolve utilizâd metoda alsei poziţii Soluţie: Se aplică metoda alsei poziţii: I Iiţializări: r s şi se calculează valorile ucţiei î r şi s : r 9885 s 885 Petru se repetă etapele II IV pâă câd codiţiile etapei IV sut îdepliite: Iteraţia : II Se determiă cu : r s s s r r III Se determiă valoarea ucţiei î : r < di 5: r r s 457 şi valorile corespuzătoare ale ucţiei : r 9855 s Se veriică codiţiile de termiare a algoritmului: r s 457 > ε 46 > ε 8 şi 9 u sut satisăcute iteraţia următoare:
10 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare Iteraţia : II Se determiă : r s s r s r III Se determiă : r > di 6: r 764 s s 457 r s Se veriică di ou codiţiile de termiare a calculelor: r s 587 > ε 65 > ε 8 şi 9 u sut satisăcute iteraţia următoare: Erorile au scăzut semiicativ scăderea lor iid mai rapidă decât î cazul metodei bisecţiei îsă îcă u s-a ajus la îdepliirea codiţiilor de termiare a calculelor algoritmul se cotiuă Geeralităţi privid soluţioarea umerică a sistemelor de ecuaţii algebrice eliiare Fora implicită a uui sistem de ecuaţii algebrice eliiare de ordiul îtodeaua posibilă:
11 Geeralităţi privid soluţioarea umerică a sistemelor de ecuaţii algebrice eliiare! """"""""!! de variabile cotiue Notaţii matriceale: # # orma compactă a sistemului: : D R R Forme itermediare: i i 4 Determiarea uei soluţii a sistemului găsirea uui set de valori: c c c c # 5 care satisac c Categorii de metode umerice: I metode de separare a uei / uor soluţii de iteres;
12 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare II metode de determiare cu o precizie iată a priori a uei soluţii separate î prealabil Î categoria II: a metode bazate pe eprimarea eplicită ecivaletă a ecuaţiilor sistemului metode de aproimaţii succesive; b metode care utilizează derivatele parţiale ale ucţiilor i metode de tip Newto; c metode de descreştere sau de coborâre sau de gradiet Doar a şi b Metode bazate pe eprimarea eplicită ecivaletă a ecuaţiilor sistemului Se cere să se determie o soluţie c a sistemului separată î prealabil î domeiul D [ a i b i ] R i cu erorile maim admise ε petru valorile variabilelor şi ε petru valorile ucţiilor Trăsătură caracteristică: îlocuirea eprimărilor implicite ale ecuaţiilor sistemului cu eprimările eplicite ecivalete:
13 Metode bazate pe eprimarea eplicită ecivaletă a ecuaţiilor sistemului g g g! """""""""!! cu g i i cotiue Notaţie: g g g g # eprimarea matriceală: D R g cu orma itermediară: i g i i 4 Eprimările eplicite sut îtotdeaua posibile şi î plus ueori sut posibile mai multe variate! Algoritmul metodei aproimaţiilor succesive î versiuea Jacobi I Se iiţializează cu D idicele superior iteraţia curetă: # 5
14 4 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare II La u pas oarecare al procesului iterativ de calcul se determiă oile valori ale variabilelor: i g i! i 6 III Calculul este termiat atuci câd sut îdepliite codiţiile 7 şi / sau 8: i i ε i 7 i ε i 8 Codiţiile de covergeţă suiciete: g i j < i j 9 Metoda aproimaţiilor succesive î versiuea Gauss- Seidel Diereţă: relaţia 6 care devie: i g i! i i! i apar valorile oi ale variabilelor care au ost recalculate deja la iteraţia Eemplu: Să se rezolve sistemul algebric eliiar:
15 Metode bazate pe eprimarea eplicită ecivaletă a ecuaţiilor sistemului 5 8 l 5 cu metoda Gauss-Seidel cu erorile maime admise ε şi ε cuoscâd că s-a separat o soluţie î domeiul D [; ] [; ] [; ] Soluţie: Rescrierea sistemului îtr-o ormă cu eprimarea eplicită a variabilelor de orma : 8 l 5 5 Iteraţia : I Se iiţializează de eemplu cu: Valorile ucţiilor şi petru valorile iiţiale ale variabilelor: 5 5 l
16 6 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare Observaţie: Iiţializarea se poate ace şi cu alte valori şi se pot urmări eectele asupra evoluţiei covergeţei procesului de calcul î ucţie de aceste valori iiţiale Iteraţia : II Se utilizează : l 86 l Se calculează erorile: > ε > ε > ε 786 > ε 6 > ε 7 > ε Codiţiile de termiare a calculelor u sut îdepliite ecesară cotiuarea algoritmului cu iteraţia următoare: Iteraţia : II Se calculează utilizâd :
17 Metode bazate pe eprimarea eplicită ecivaletă a ecuaţiilor sistemului l 65 l Se determiă erorile: > ε > ε > ε 4 > ε 6 > ε 9 > ε Erorile au scăzut dar u sut îcă îdepliite codiţiile de termiare a procesului de calcul etapele II şi III ale algoritmului se repetă petru 4 Iteraţia : II Se calculează : l 45 l Se determiă erorile:
18 8 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare ε 9 9 ε ε 8 ε ε 4 ε Erorile calculate sut mai mici sau cel mult egale cu erorile maim admisibile algoritmul se opreşte soluţia aproimativă: Metode de tip Newto Versiuea clasică a metodei lui Newto utilizează eplicit derivatele parţiale de ordiul I ale ucţiilor i i Se presupue că s-a ajus la pasul al procesului iterativ de calcul ultima valoare aproimativă a soluţiei iid - Se doreşte determiarea uei corecţii - care adăugată la - să coducă la soluţia eactă c:
19 4 Metode de tip Newto 9 c Dezvoltâd î serie Taylor ucţiile i i î veciătatea lui - ic i - - i i i i i " " 4 Dacă di această dezvoltare se reţi doar termeii care coţi derivatele de ordiul I restul termeilor se eglijează se poate aproima acea valoare a lui - care u va mai coduce la soluţia eactă c ci la oua valoare aproimativă a soluţiei evidet mai buă decât - î cazul covergeţei relaţiile 4 coduc la sistemul liiar de ordiul î ecuoscutele! : " """""""""""""""""""" " " 4
20 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare ude toate derivatele sut calculate î - Matricea Jacobia: J " " " " " " " 44 sistemul 4 se poate rescrie sub ormă restrâsă: J 45 Algoritmul versiuii clasice a metodei lui Newto: I Se iiţializează cu D idicele superior iteraţia curetă II La u pas oarecare al procesului iterativ de calcul se calculează elemetele vectorului - şi matricea J - petru - III La acelaşi pas se rezolvă sistemul 45 oile valori ale variabilelor: 46 Calculul este termiat câd sut îdepliite codiţiile 47 şi / sau 48:
21 4 Metode de tip Newto i i ε 47 i i ε 48 Eemplu: Să se rezolve sistemul de ecuaţii di eemplul aterior utilizâd metoda clasică a lui Newto cu erorile maim admise ε şi ε cuoscâd că s-a separat o soluţie î domeiul D [; ] [; ] [; ] Soluţie: Se parcurg etapele algoritmului: I Se ace iiţializarea: Iteraţia : II Se calculează elemetele vectorului : l 5 şi elemetele matricei Jacobia: J
22 Rezolvarea umerică a ecuaţiilor şi sistemelor de ecuaţii algebrice eliiare sistemul 45 devie: III Se rezolvă sistemul oile valori ale lui : Îsă 445 > ε > ε > ε u sut îdepliite codiţiile de termiare a calculelor algoritmul se cotiuă cu iteraţia următoare: Iteraţia : II Se calculează elemetele vectorului şi ale matricei Jacobia: l 5
23 4 Metode de tip Newto J sistemul 45: III Rezolvarea sistemului oile valori ale lui : Îsă di ou 498 > ε > ε > ε calculele se cotiuă cu iteraţia următoare Alte variate ale metodei lui Newto: elimiarea calculului derivatei
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Διαβάστε περισσότερα4. Ecuaţii diferenţiale de ordin superior
4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã
Διαβάστε περισσότεραa) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.
Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)
Διαβάστε περισσότεραREZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE
REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII DIFERENŢIALE ORDINARE. Aspecte itroductive Studiul comportametului diamic al sistemelor fizice modele matematice sub forma ecuaţiilor sau sistemelor
Διαβάστε περισσότεραMetode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Διαβάστε περισσότεραsistemelor de algebrice liniarel
Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris
Διαβάστε περισσότερα7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE
7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se
Διαβάστε περισσότεραLaborator 4 Interpolare numerica. Polinoame ortogonale
Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode
Διαβάστε περισσότεραMinisterul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Διαβάστε περισσότερα5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
Διαβάστε περισσότεραSisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Διαβάστε περισσότεραCapitole fundamentale de algebra si analiza matematica 2012 Analiza matematica
Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport
Διαβάστε περισσότερα(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Διαβάστε περισσότεραUniversitatea Dunărea de Jos METODE NUMERICE. Gabriel FRUMUŞANU
Uiversitatea Duărea de Jos METODE NUMERICE Gabriel FRUMUŞANU Galaţi - 8 Departametul petru Îvăţămât la Distaţă şi cu Frecveţă Redusă Facultatea de Mecaica Specializarea Igierie ecoomica si idustriala Aul
Διαβάστε περισσότεραSEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Διαβάστε περισσότεραECUATII NELINIARE PE R
ANALIZA NUMERICA-ECUATII NELINIARE PE R. http://bavaria.utcluj.ro/~ccosmi ECUATII NELINIARE PE R. CONSIDERATII GENERALE Se vor studia urmatoarele probleme:. Radaciile uei ecuatii eliiare de orma. Radaciile
Διαβάστε περισσότεραSEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Διαβάστε περισσότερα6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Διαβάστε περισσότεραCurs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
Διαβάστε περισσότεραStatisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
Διαβάστε περισσότεραCOMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi
OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete
Διαβάστε περισσότεραAnaliza matematica Specializarea Matematica vara 2010/ iarna 2011
Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila
Διαβάστε περισσότεραCurs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Διαβάστε περισσότεραCURS 11. Rădăcină unei ecuatii: Cum se defineste o rădăcină aproximativă?
CURS 11 Rezolvarea ecuaţiilor transcendente Fie ecuatia: f(x)=0 algebrică - dacă poate fi adusă la o formă polinomială transcendentă dacă nu este algebrică Ecuaţii algebrice: 3x=9; 2x 2-3x+2=0; x5=x(2x-1);
Διαβάστε περισσότεραSeminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Διαβάστε περισσότεραMetode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Διαβάστε περισσότεραOlimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
Διαβάστε περισσότεραSala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ
Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit
Διαβάστε περισσότεραFunctii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Διαβάστε περισσότεραAnaliza bivariata a datelor
Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele
Διαβάστε περισσότεραMetode iterative pentru rezolvarea sistemelor de ecuatii liniare
Metode iterative pentru rezolvarea sistemelor de ecuatii liniare 1 Metode iterative clasice Metodele iterative sunt intens folosite, in special pentru rezolvarea de probleme mari, cum sunt cele de discretizare
Διαβάστε περισσότεραFormula lui Taylor. 25 februarie 2017
Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =
Διαβάστε περισσότεραREZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita
REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem
Διαβάστε περισσότεραCurs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Διαβάστε περισσότεραSUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare
SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.
Διαβάστε περισσότεραInegalitati. I. Monotonia functiilor
Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite
Διαβάστε περισσότερα5.1. ŞIRURI DE FUNCŢII
Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.
Διαβάστε περισσότεραMETODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare
METODE NUMERICE: Laborator #5 Metode iterative pentru rezolvarea sistemelor: Jacobi, Gauss-Siedel, Suprarelaxare Titulari curs: Florin Pop, George-Pantelimon Popescu Responsabil Laborator: Mădălina-Andreea
Διαβάστε περισσότεραSubiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Διαβάστε περισσότεραRezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare. Cuprins. Prof.dr.ing. Gabriela Ciuprina
Rezolvarea ecuaţiilor şi sistemelor de ecuaţii diferenţiale ordinare Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică Suport didactic pentru disciplina Metode numerice,
Διαβάστε περισσότερα2. Metode de calcul pentru optimizarea fără restricţii
. Metode de calcul petru optimizarea fără restricţii Problemele de optimizare îtâlite î practică sut probleme cu restricţii, dar metodele de calcul petru optimizarea fără restricţii sut importate pri faptul
Διαβάστε περισσότεραEcuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)
Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.
Διαβάστε περισσότερα5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Διαβάστε περισσότεραCURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică
Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul
Διαβάστε περισσότεραPROBLEME CU PARTEA ÎNTREAGĂ ŞI
PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre
Διαβάστε περισσότεραIII. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Διαβάστε περισσότεραEcuatii trigonometrice
Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos
Διαβάστε περισσότεραSubiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Διαβάστε περισσότεραActivitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale
Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere
Διαβάστε περισσότεραCurs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Διαβάστε περισσότεραTEMA 1: FUNCȚII LINIARE. Obiective:
TEMA : FUNCȚII LINIARE TEMA : FUNCȚII LINIARE Obiective: Defiirea pricipalelor proprietăţi matematice ale fucţiei, ecuaţiei şi iecuaţiei de gradul Cuoaşterea uor elemete de geometrie aalitică a dreptei
Διαβάστε περισσότεραR R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Διαβάστε περισσότεραMETODE NUMERICE. Note de curs
MARILENA POPA ROMULUS MILITARU METODE NUMERICE Note de curs . REZOLVAREA NUMERICĂ A SISTEMELOR DE ECUAŢII LINIARE Itroducere. Rezolvarea sistemelor algebrice liiare şi operaţiile de calcul matriceal (evaluarea
Διαβάστε περισσότεραLaborator 6. Integrarea ecuaţiilor diferenţiale
Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul
Διαβάστε περισσότεραBAREM DE CORECTARE CLASA A IX A
ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +
Διαβάστε περισσότεραAplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Διαβάστε περισσότεραCap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II)
Cap.2. Sisteme de ecuaţii algebrice liniare - metode directe (II) Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic
Διαβάστε περισσότεραPlanul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Διαβάστε περισσότεραConice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Διαβάστε περισσότεραCap2. Sisteme de ecuaţii algebrice liniare - metode iterative
Cap2. Sisteme de ecuaţii algebrice liniare - metode iterative Prof.dr.ing. Universitatea "Politehnica" Bucureşti, Facultatea de Inginerie Electrică, Departamentul de Electrotehnică Suport didactic pentru
Διαβάστε περισσότεραCurs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Διαβάστε περισσότεραDISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Διαβάστε περισσότεραVarianta 1
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Διαβάστε περισσότεραSunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.
86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că
Διαβάστε περισσότεραToate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Διαβάστε περισσότερα3. Serii de puteri. Serii Taylor. Aplicaţii.
Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă
Διαβάστε περισσότεραCLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea
EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.
Διαβάστε περισσότεραTema: şiruri de funcţii
Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..
Διαβάστε περισσότεραMetode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy
Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,
Διαβάστε περισσότεραVarianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p
Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări
Διαβάστε περισσότεραIntegrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Διαβάστε περισσότεραIV. Rezolvarea sistemelor liniare
IV. Rezolvarea sistemelor liiare IV.. Elemete de aaliză matriceală Fie V u spaţiu vectorial (liiar peste corpul K (K=R sau K=C. Reamitim o serie de defiiţii şi teoreme legate de spaţiile ormate şi spaţiile
Διαβάστε περισσότεραAsupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Διαβάστε περισσότεραAnaliza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Διαβάστε περισσότεραCOLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Διαβάστε περισσότεραCursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate
Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs
Διαβάστε περισσότεραIV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI
V. POL S FLTE ELETE P. 3. POL ELET reviar a) Forma fundamentala a ecuatiilor cuadripolilor si parametrii fundamentali: Prima forma fundamentala: doua forma fundamentala: b) Parametrii fundamentali au urmatoarele
Διαβάστε περισσότεραDefiniţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Διαβάστε περισσότεραRĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Διαβάστε περισσότεραSeminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.
Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu
Διαβάστε περισσότερα1. ŞIRURI ŞI SERII DE NUMERE REALE
. ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este
Διαβάστε περισσότεραI. Noţiuni introductive
Metode Numerice Curs 1 I. Noţiuni introductive Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate astfel încât să fie rezolvate numai prin operaţii aritmetice. Prin trecerea
Διαβάστε περισσότερα1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...
Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,
Διαβάστε περισσότεραa. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Διαβάστε περισσότεραExamenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].
Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea
Διαβάστε περισσότεραŞIRURI ŞI SERII DE FUNCŢII
Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.
Διαβάστε περισσότεραa n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Διαβάστε περισσότερα5. Sisteme cu mai multe grade de libertate dinamică
Diamica Structurilor şi Igierie Seismică. [v.04] http://www.ct.upt.ro/users/aurelstrata/ 5. Sisteme cu mai multe grade de libertate diamică 5.. Ecuaţii de mişcare, formularea problemei, metode de rezolvare
Διαβάστε περισσότεραMODELAREA MATEMATICĂ A SISTEMELOR CONTINUE
MODELAREA MATEMATICĂ A SISTEMELOR CONTINUE OBIECTIVE Aaliza sistemelor de ordiul doi folosid modele matematice Calculul polilor şi zerourilor fucţiei de trasfer Reducerea schemelor bloc 41 Itroducere Aaliza
Διαβάστε περισσότεραConcursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008
Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot
Διαβάστε περισσότεραConcurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Διαβάστε περισσότεραMARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Διαβάστε περισσότερα1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...
1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale
Διαβάστε περισσότεραCurs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE
Curs 9: METODE NUMERICE UTILIZATE ÎN SIMULAREA SISTEMELOR DINAMICE Noțiunea de sistem dinamic Clasificări Noțiunea de simulare Un sistem dinamic este o entitate care se caracterizează printr-un mod specific
Διαβάστε περισσότεραComponente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Διαβάστε περισσότεραCiprian Deliu METODE NUMERICE ŞI STATISTICĂ
Cipria Deliu METODE NUMERICE ŞI STATISTICĂ 06 Cupris I Metode umerice Metode de aproximare a rădăciilor uei ecuaţii elieare 3. Metoda iterativă de puct fix................... 4. Metoda bisecţiei...........................
Διαβάστε περισσότεραTEMA 10 TESTE DE CONCORDANŢĂ
TEMA 0 TESTE DE CONCORDANŢĂ Obiective Cuoaşterea coceptelor reritoare la testele de cocordaţă Aaliza pricipalelor teste de cocordaţă Aplicaţii rezolvate Aplicaţii propuse Cupris 0. Cocepte reritoare la
Διαβάστε περισσότεραLaborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Διαβάστε περισσότερα