Poročilo detektorja podobnih vsebin

Σχετικά έγγραφα
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

1. Splošno o koordinatnih sistemih

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Tretja vaja iz matematike 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Gimnazija Krˇsko. vektorji - naloge

Radioteleskop za vodikovo črto 21 cm

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

p 1 ENTROPIJSKI ZAKON

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Booleova algebra. Izjave in Booleove spremenljivke

S53WW. Meritve anten. RIS 2005 Novo Mesto

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Koordinatni sistemi v geodeziji

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Delovna točka in napajalna vezja bipolarnih tranzistorjev

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

1. Trikotniki hitrosti

IZPIT IZ ANALIZE II Maribor,

PONOVITEV SNOVI ZA 4. TEST

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

Kotne in krožne funkcije

8. Diskretni LTI sistemi

Kotni funkciji sinus in kosinus

Numerično reševanje. diferencialnih enačb II

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

IZVODI ZADACI (I deo)

slika: 2D pravokotni k.s. v ravnini

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnove elektrotehnike uvod

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

CM707. GR Οδηγός χρήσης SLO Uporabniški priročnik CR Korisnički priručnik TR Kullanım Kılavuzu

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

STANDARD1 EN EN EN

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004

1. Έντυπα αιτήσεων αποζημίωσης Αξίωση αποζημίωσης Έντυπο Πίνακας μεταφράσεων των όρων του εντύπου...

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

- Geodetske točke in geodetske mreže

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

5. PARCIJALNE DERIVACIJE

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik

Ispitivanje toka i skiciranje grafika funkcija

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Slika 5: Sile na svetilko, ki je obešena na žici.

Ocenjevanje oddaljenosti Lune

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Osnove matematične analize 2016/17

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

7. VAJA IZ MEHANIKE TRDNIH TELES. (tenzor deformacij II) (tenzor majhnih deformacij in rotacij, kompatibilitetni pogoji)

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

Το άτομο του Υδρογόνου

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

GEOMETRIJA V RAVNINI DRUGI LETNIK

POPIS DEL IN PREDIZMERE

Ne vron ske mre že vs. re gre sij ski mo de li na po ve do va nje pov pra še va nja na treh vr stah do brin

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

rs r r â t át r st tíst Ó P ã t r r r â

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

18. listopada listopada / 13

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

œj œ œ œ œ œ œ b œ œ œ œ œ œ w

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

Prividni položaji nebeskih tela

MERITVE LABORATORIJSKE VAJE

Elementi spektralne teorije matrica

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

INTELIGENTNO UPRAVLJANJE

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

Αλληλεπίδραση ακτίνων-χ με την ύλη

Univerza na Primorskem Pedagoška fakulteta Koper. Geometrija. Istvan Kovacs in Klavdija Kutnar

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

primer reševanja volumskega mehanskega problema z MKE

41. Jednačine koje se svode na kvadratne

Transcript:

Poročilo detektorja podobnih vsebin z dne 14.01.2017 13:31 za dokument z naslovom: Radioteleskop za vodikovo črto 21cm Tadeja Saje, 64130378, Matjaž Vidmar (mentor), Magistrsko delo/naloga, Elektrotehnika-MAG-2.ST, Fakulteta za elektrotehniko Dokument: 64130378-20170114132743-magistrska-naloga-Saje.pdf Pokritost dokumenta z besednimi zvezami podobnih dokumentov je 1.74 %. Dokumenti s podobno vsebino so: 1. Nebesni koordinatni sistem [Crawler] Slovenska Wikipedia (vir) 2. Galaktični koordinatni sistem [Crawler] Slovenska Wikipedia (vir) 0.80 % 0.45 % 3. (Dokument je v zasebnem viru ali embargo!) 0.22 % 4. (Dokument je v zasebnem viru ali embargo!) 0.16 % 5. (Dokument je v zasebnem viru ali embargo!) 0.16 % 6. (Dokument je v zasebnem viru ali embargo!) 0.11 % 7. IZBOLJŠANJE ENERGETSKE UČINKOVITOSTI ELEKTRIČNIH POGONOV V PODJETJU TALUM Aleš Bele, Jožef Ritonja (mentor), Fakulteta za elektrotehniko, računalništvo in informatiko, 2016 8. AVTOMATIZACIJA MERITVE MOTILNE MOČI Luka Selič, Janez Pogorelc (mentor), Fakulteta za elektrotehniko, računalništvo in informatiko, 2014 0.07 % 0.07 % 1

V nadaljevanju zgoraj naveden dokument imenujemo»dokument "A"«. Program, ki preverja podobnost med besedili na osnovi primerjave povedi, odkrije podobne povedi v obeh besedilih, ki so daljše od štiridesetih znakov. Na zgornjem seznamu so prikazani samo tisti dokumenti, ki prispevajo dovolj, da pokrijejo vsaj 95 % podobnega besedila v dokumentu A. Podobnost med posameznima dokumentoma preverimo s programom, ki išče najdaljše skupne podnize med dvema besediloma (znakovna primerjava). Omejili smo se na skupne podnize znakov, ki so daljši od 19 znakov. Odstotek podobnosti dokumenta "A" predstavlja odstotek podobne vsebine z do 50 najbolj podobnimi dokumenti, med katerimi so dodani tudi dokumenti z zgornjega seznama. Program za ugotavljanje podobnosti ne upošteva referenc, zato citatov ne odkriva! Če ste poročilo o podobnosti prejeli prvič, lahko dodatno obrazložitev tega poročila dobite na https://dpv.openscience.si/obrazlozitevpodobnosti.pdf. Prosimo, da si obrazložitev preberete, preden se z vprašanji obrnete na e-poštni naslov ali pokličete zaposlene v referatu vaše fakultete. Če želite pogledati podrobnosti glede podobnosti vašega dokumenta z drugimi dokumenti, se morate prijaviti v vaš študentski informacijski sistem ali repozitorij Univerze v Ljubljani (zaposleni). Na naslednjih straneh je izpisana vsebina, kjer so z barvo, ki označuje posamezen dokument, označeni podobni nizi iz zgoraj naštetih dokumentov. 2

Univerza v Ljubljani Fakulteta za elektrotehniko6 Tadeja Saje Radioteleskop za vodikovo c rto 21 cm MAGISTRSKO DELO S TUDIJSKI PROGRAM DRUGE STOPNJE ELEKTROTEHNIKA Mentor:7 prof. dr. Matjaz Vidmar 2016 Zahvaljujem se mentorju prof. dr.3 Matjaz u Vidmarju za potrpez ljivost, strokovne nasvete in pomoc pri izdelavi magistrskega dela. S svojim izje mnim in neprecenljivim znanjem mi je dolgoletne z elje: razumevanje in postavitev lastnega radioteleskopa. Dr. Borutu Jurc ic u Zlobcu se zahvaljujem za pregled magistrskega dela. Kazalo Povzetek Abstract 1 Uvod3 v radioastronomijo 1 1.1 Sevanje c rnega telesa....................... 3 1.2 Obc utljivost teleskopa............ ni galaksije........ 44 4.3 Dopplerjevo slikanje Rimske ceste s programom HDSDR..... 48 5 Zakljuc ek 53 Seznam uporabljenih kratic kratica angles ko slovensko LNA low noise amplifier nizkos umni ojac evalnik3 BPF band pass filter pasovno prepustno frekvenc no sito LPF low pass filter nizko pasovno prepustno frekvenc no sito ISM interstellar medium medzv 3

do doloc enega poloz aja v obeh oseh vrtenja po azimutu in elevaciji. Za doloc anje poloz aja nebesnih teles uporabljamo nebesni koordinatni sis tem. Uporabljajo se razli1c ni nebesni koordinatni sistemi, vsi pa uporabljajo1 preslikavo zelo (neskonc no) oddaljenih nebesnih teles na nebesno kroglo. Med1 seboj se razlikujejo samo po izbrani ravnini, ki razdeli nebesno kroglo na dva1 dela (dve polobli). Na nebesno kroglo preslikamo tudi koordinatni sistem,1 ki je podoben zemljepisnem koordinatnem sistemu. Nebesne koordinatne1 sisteme imenujemo po izbrani ravnini. Uporabljajo se:1 Horizontni koordinatni sistem1 uporablja krajevno ravnino, ki je za opazovalca pravokotna na smer proti zenitu. Koordinati sta azimut in elevacija. Azimut 0 je smer sever. 18 POGLAVJE 2. NAC RTOVANJE RADIOTELESKOPA ZA VODIKOVO C RTO Ekvatorski koordinatni sistem1 uporablja ravnino ekvatorja Zemlje. Koordinati sta rektascenzija in deklinacija. Rektascenzija 0 je v smeri pomladi sc a. Galaktic ni koordinatni sistem1 uporablja ravnino nas e Galaksije. Koordinati sta galaktic na dolz ina in s irina. Galaktic na dolz ina 0 je v smeri sredi sc a Rimske ceste. [28] Koordinate nebesnih teles v horizontnem koordinatnem sistemu so odvisne1 od poloz aja opazovalca (glej sliko 2.3). Slika 2.3: Definicija horizontnih koordinat [29] Ekvatorialni (nebesni) koordinatni sistem je1 desnoroc ni (x, y, z) in je od visen od precesije osi Zemlje, ki ima periodo 26000 let. Izhodi sc e je v tez i sc u Zemlje. Os z je v smeri osi vrte u ob pomladanskem enakonoc ju) in se oznac uje z γ. Koordinati 19 v tem sistemu sta rektascenzija (ura ali kot) in deklinacija (kot). Ekvatorski koordinatni sistem je pri2kazan na sliki 2.4 severni nebesni tecaj juzni nebesni 4

tecaj ekliptika nebesni ekvator pomladisce Slika 2.4: Definicija ekvatorskih koordinat [30] Galaktic ni koordinatni sistem2 se uporablja za doloc anje lege nebesnih teles znotraj nas e galaksije. Referenc na ravnina je galaktic na ravnina. Ta ravnina gre skozi sredi 2sc e Rimske ceste tako, da vsa nebesna telesa2 Rimske ceste lez ijo c im bliz e ravnini. Ravnina torej poteka skozi te2z i sc e Rimske ceste. Presek te ravnine z nebesno kroglo2 je galaktic ni ekvator. Sonce trenutno lez i blizu galaktic ne ravnine, kaks nih 100 svetlobnih let stran. Sonce potrebuje za pot okoli sredi sc a galaksije od 225 do 250 milijonov let. Galaktic na ravnina tvori z ravnino ekvatorja Zemlje kot2 62.8. Toc ka kjer sta galakti2c na s irina in galaktic na dolz ina enaki nic (smer proti sredi 2sc u Rimske ceste) je moc ni izvor radijskega sevanja z imenom S2agittarius A.[32] 20 POGLAVJE 2. NAC RTOVANJE RADIOTELESKOPA ZA VODIKOVO C RTO P G P' G' R δ'=27.4 B=smer središča galaksije C Q Q' o, da se oddajna antena od sprejemnika nahaja v Fraunhoferjevem podroc ju. Razdalja mora biti vec ja od rmin r > rmin = 2d2 λ (3.1) Smernost (D directivity) antene je definirana kot razmerje med gostoto sevane mo4c i v z eljeni smeri in celotno sevano mo4c jo vseh smereh. Da je rezultat neimenovano s tevilo, ga je treba pomnoz iti s e s polnim prostorskim kotom.[18]. Izmerili smo smerni diagram z ar str534/radiometers.html http://www.cv.nrao.edu/course/astr534/radiometers.html 5

56 LITERATURA [10] Matjaz Vidmar, S53MV, Rezonatorsko sito za 23cm. Dostopno na: http://8lea.hamradio.si/~s53mv/archive/a360.pdf [11] Matjaz Vidmar, Visokofrekvenc na tehnika. Dostopno na http:// antena.fe.uni-lj.si/literatura/vt.pdf [12] The HI 21 cm Line. Dostopno na: http://www.cv.nrao.edu/course/ astr534/hiline.html [13] Feed horn. Dostopno na: http8s://en.wikipedia.org/wiki/feed_ horn [14] Matjaz Vidmar, Antene in razs irjenje valov 9. Dostopno na http: //antena.fe.uni-lj.si/literatura/ar.z 6