Kmitavý pohyb telesa zaveseného na pružine (Aktivity súvisiace s kmitaním uskutočnené pomocou programu Coach 6) Michal Kriško FMFI UK
|
|
- Ῥέα Ιωαννίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Kmitavý pohyb telesa zaveseného na pružine (Aktivity súvisiace s kmitaním uskutočnené pomocou programu Coach 6) Michal Kriško FMFI UK Určovanie koeficientu tuhosti pružiny V praxi sa často stretávame s kmitaním telies na pružine, takisto s využitím pružín pri ich stláčaní alebo naťahovaní. Využívajú sa v rôznych mechanizmoch, pri tlmení nárazov a nerovností povrchu v dopravných prostriedkoch a pod. Nemožno zabudnúť na využitie pružiny v silomeroch. Pružina je zhotovená obyčajne z pružnej ocele a vyznačuje sa vlastnosťami. Pri deformáciach pri pevných látkach platí priama úmernosť medzi vznikajúcim normálovým napätím σ (vnútorným pnutím, resp. tlakom) a pomerným relatívnym predĺžením ε. Tento fakt opisuje pre lineárnu oblasť Hookov zákon. Podobný vzťah priamej úmernosti platí aj medzi pôsobiacou silou F na pružinu a jej predĺžením l (pri natiahnutí pružiny sa drôt pružiny v tvare špirály pri každom závite ohne o určitú hodnotu, nejedná sa preto o deformáciu ťahom): F ~ l Tento fakt, samozrejme, platí len pre obmedzené predĺženia pružiny l. Jeho jednoduché a pohodlné overenie možno uskutočniť pomocou silomeru. Pokiaľ pružinu naťahujeme príliš silno alebo dlho, môže dôjsť k trvalej deformácii pružiny. To, aká veľká sila musí pôsobiť na pružinu, aby došlo k jej trvalému zdeformovaniu, závisí od vlastností látky, z ktorej je pružina vyrobená. Experimentálne by sme mohli jednoducho navrhnúť, aká veľká sila je potrebná na natiahnutie pružiny o určitú, pevne stanovenú dĺžku. Konštanta úmernosti medzi konkrétnou silou a predĺžením pružiny by malo byť číslo vyjadrujúce, aká veľká sila musí pôsobiť, aby sme natiahli pružinu o jednotku dĺžky. Toto číslo nazvime tuhosť pružiny, označme k a platí preto: F = k l. Konštantu úmernosti tuhosti k pružiny je možné experimentom zistiť viacerými spôsobmi. Pokúsime sa určiť ju pomocou nasledujúceho pokusu. Úloha 1.: Pomocou silomeru určite tuhosť pružinky. Pomôcky: školský silomer, pravítko, pružina s neznámym koeficientom tuhosti. Návod: Na stôl položíme silomer a pružinku, navzájom spolu uchytené. Označíme na podložke miesta, kde sa nachádzajú začiatky oboch pružín pred meraním. Náš silomer meria do 500 1
2 mn, má stupnicu s väčšími dielikmi po 50 mn, čomu zodpovedá 1 cm dĺžky na stupnici. (Obr.1.) Obr.1.: Pružina silomeru aj pokusná pružinka nie sú namáhané silou. Sú vyznačené začiatočné polohy pružiniek. Pri pôsobení rôznych síl na pružinku silomeru a pružinu, ktorej tuhosť chceme zistiť, sa natiahnú obidve pružinky, každá, samozrejme, o inú dĺžku l. Využijeme zákon akčnej a reakčnej sile. Pri ťahu pôsobí sila F, ktorú priamo môžeme namerať silomerom. Výhodou pri meraní bolo, že dielik na silomery zodpovedajúci 0,5N meral 1 cm. Veľmi pohodlne tak môžeme odmerať predĺženia pružín pri rozličných pôsobiacich silách. Namerané hodnoty sú uvedené v tabuľke: Tab.: Namerané hodnoty síl F pôsobiacich na pružinky a predĺžení l 1 a l 2. F / N 0,5 1,0 1,5 2,0 2,5 3,0 l 1 / cm k 1 / Nm l 2 / cm 4, , ,5 k 2 / Nm -1 11, ,8 13,9 Z nameraných výsledkov vidno, že konštanta k = F / l je pre rôzne natiahnutia pružinky stála. Na základe merania sme vypočítali tuhosti oboch pružín. Pružina silomeru má tuhosť k 1 =50 Nm -1, pokusná pružinka má približnú tuhosť k 2 =13,5 Nm -1. Na Obr.2 je znázornený princíp merania. 2
3 Obr.2.: Pri pôsobení určitej sily na pružinky môžeme odmerať predĺženia pružín. Určenie tuhosti pružiny k má napr. význam pri úlohách o kmitaní. Nechajme na pružine kmitať teleso s hmotnosťou m. Potom na základe odvodenej rovnice pre výslednú silu F= -ky = ma a vzťahu pre zrýchlenie pri kmitaní a= -ω 0 2 y môžeme poslednú rovnicu vynásobiť hmotnosťou m, čím dostávame nasledovnú rovnicu: ma = -mω 0 2 y a teda F= -ky = -mω 0 2 y. Preto ω 0 2 = k / m. To je dôležitý vzťah prepájajúci frekvenciu vlastného kmitania s tuhosťou pružiny. Čiže ak napr. poznáme tuhosť pružiny a hmotnosť závažia, ktoré necháme voľne kmitať, vieme ľahko vypočítať frekvenciu resp. periódu kmitania. Skúmanie časovej závislosti polohy a rýchlosti kmitajúcehp telesa a výslednej sily Zisťovanie frekvencie kmitania Úloha 2.: Zistite frekvenciu alebo periódu kmitov pružiny so závažím známej hmotnosti a) meraním stopkami a výpočtom periódy (napríklad odmerajte časový interval vykonania 10 kmitov a určite periódu) b) meraním pomocou počítača (použili sme program Coach 6). c) priamym výpočtom frekvencie 3
4 Obr. 3.: Aparatúra pri meraní frekvencie kmitov. Opíšeme stručne meranie frekvencie kmitania pomocou počítačového programu Coach 6. Aparatúra je zobrazená na obr. 3. Okrem frekvencie sme skúmali aj závislosť pôsobiacej sily F a polohy od času. Závažie (100g) vykonáva vlastné tlmené kmity. Zospodu závažia je pripevnený kus polystyrénu určený na lepšie snímanie polohy (senzor polohy je umiestnený na dlážke, pružina je zavesená na senzore sily). Na obr. 4. je zobrazený výstup merania pri kmitavom pohybe našej pružinky so 100 g závažím pri použití programu Coach 6. V hornom ľavom okne je tabuľka hodnôt výslednej pôsobiacej sily a polohy x od polohového senzora. Hodnoty meraných veličín nie sú úplne presné, nakoľko senzory nemusia byť presne nakalibrované. V programe je možné názorne ukázať, že pôsobiaca sila závisí priamo úmerne od aktuálnej výchylky kmitajúceho telesa v každom momente kmitania (viď pravú dolnú časť obr.4.). V grafickom diagrame vpravo hore je zobrazený priebeh pôsobiacej sily od času a taktiež ako sa menila poloha závažia v čase. Z grafu je jasne viditeľné, že obidve veličiny sa menili úmerne funkcii sint. Na základe tohoto poznatku ľahko odčítame periódu kmitania. Perióda kmitania T vychádza podľa grafu okolo 0,6 s (f = 1,7 Hz). Uvedieme len pre zaujímavosť, že v uvedenom programe je možné graficky zobraziť aj priebeh časovej derivácie polohy - rýchlosť pohybu od času. V ľavom spodnom okne obr.4 sme zobrazili rýchlosť pohybu, tiež je tu znázornená sila. Bez problému nahliadneme (pri vhodnom posune osi), aký je vzťah medzi hodnotami sily a rýchlosti. V krajných polohách je rýchlosť nulová, pôsobiaca sila je však maximálna. A naopak pre rovnovážnu polohu. Taký istý vzťah platí aj pre okamžitú výchylku (polohu x) a rýchlosť v. 4
5 Obr. 4: Grafický výstup merania na obrazovke (COACH 6) Teraz prejdime k samotnému výpočtu frekvencie f vlastného kmitania. Keďže ω 2 = k / m, a ω = 2πf, frekvenciu vypočítame 1 k f =. 2π m Po dosadení známej hodnoty tuhosti pružiny k = 1,35 Nm -1 a hmotnosti závažia 100g = 0,1 1 13,5 Nm -1 kg, vychádza frekvencia f = = 1,85 Hz. 2π 0,1kg Len pre porovnanie: frekvencia kmitania určená z grafu závislosti sily od času vyšla 1,66 Hz. Nakoľko skutočné kmitanie bolo ovplyvňované trením pružinky (tepelné straty), odporom vzduchu pri pohybe polystyrénovej dostičky a nakoľko sme pri výpočte nezarátali aj hmonosť polystyrénu, je odklon teórie od experimentu minimálny. (M. Kriško) 5
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA
54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Ročník: šiesty. 2 hodiny týždenne, spolu 66 vyučovacích hodín
OKTÓBER SEPTEMBER Skúmanie vlastností kvapalín,, tuhých látok a Mesiac Hodina Tematic ký celok Prierezo vé témy Poznám ky Rozpis učiva predmetu: Fyzika Ročník: šiesty 2 hodiny týždenne, spolu 66 vyučovacích
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Úloha č.:...viii... Název: Meranie momentu zotrvačnosti kolesa Vypracoval:... Viktor Babjak... stud. sk... F 11.. dne...
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Úloha č.:...xviii... Název: Prechodové javy v RLC obvode Vypracoval:... Viktor Babjak... stud. sk... F.. dne... 6.. 005
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Tematický výchovno - vzdelávací plán
Tematický výchovno - vzdelávací plán Stupeň vzdelania: ISCED 2 Vzdelávacia oblasť: Človek a príroda Predmet: Fyzika Školský rok: 2016/2017 Trieda: VI.A, VI.B Spracovala : RNDr. Réka Kosztyuová Učebný materiál:
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Modul pružnosti betónu
f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Matematické kyvadlo
Názov projektu: CIV Centru Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 005/1-046 ITMS: 113010011 Úvod Mateatické kvadlo Miroslav Šedivý FMFI UK Poje ateatické kvadlo sa síce nenachádza v povinných
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
SKUPINOVÁ PRÁCA ŽIAKOV GYMNÁZIA, VEDENIE ŽIAKOV K TAKEJTO PRÁCI PROSTREDNÍCTVOM METODICKÝCH MATERIÁLOV
SKUPINOVÁ PRÁCA ŽIAKOV GYMNÁZIA, VEDENIE ŽIAKOV K TAKEJTO PRÁCI PROSTREDNÍCTVOM METODICKÝCH MATERIÁLOV Bianka Gergeľová, Klára Velmovská Katedra teoretickej fyziky a didaktiky fyziky FMFI UK v Bratislave
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI
ÚLOHA Č.8 ODCHÝLKY TVARU A POLOHY MERANIE PRIAMOSTI A KOLMOSTI 1. Zadanie: Určiť odchýlku kolmosti a priamosti meracej prizmy prípadne vzorovej súčiastky. 2. Cieľ merania: Naučiť sa merať na špecializovaných
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Matematický model robota s diferenciálnym kolesovým podvozkom
Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom
UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia
Priezvisko: Ročník: Katedra chemickej fyziky. Krúžok: Meno: Dátum cvičenia: Dvojica:
Katedra chemickej fyziky Dátum cvičenia: Ročník: Krúžok: Dvojica: Priezvisko: Meno: Úloha č. 7 URČENIE HUSTOTY KVPLÍN Známka: Teória Tabuľka Výpočet Zaokrúhľovanie Záver Meranie 1. Úlohy: a) Určte hustotu
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Učebné osnovy FYZIKA. FYZIKA Vzdelávacia oblasť. Názov predmetu
Učebné osnovy FYZIKA Názov predmetu FYZIKA Vzdelávacia oblasť Človek a príroda Stupeň vzdelania ISCED 2 Dátum poslednej zmeny 4. 9. 2017 UO vypracovala RNDr. Janka Schreiberová Časová dotácia Ročník piaty
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
10 Kmitanie Harmonický pohyb
149 10 Kmitanie S kmitavými pohbmi sa stretávame všade okolo nás. Nieked je kmitanie žiaduce (chvenie v prípade hudobných nástrojov), inoked je nežiaduce (napr. kmitanie auta, práčk). Nieked ho vnímame
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.
Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra
Laboratórna práca č.1. Meranie dĺžky telesa. Úloha : Odmerajte priemer a výšku valcového telesa posúvnym meradlom s nóniom
Laboratórna práca č.1 Meranie dĺžky telesa Princíp : Určovanie rozmerov telies, meranie dĺžok môžeme previesť rôznymi spôsobmi a s rôznou presnosťou. V tejto práci sa naučíte používať dve meradlá a určovať
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
II. SILA A POHYB. PRÁCA. ENERGIA. Skúmanie pôsobenia sily. 2.1 Telesá pôsobia na seba silou. Účinky sily
II. SILA A POHYB. PRÁCA. ENERGIA Skúmanie pôsobenia sily Stáva sa, že víchor poláme stromy či zničí strechy domov. Prúd vody pri povodni odplaví autá, zeminu, mosty. Zvykneme hovoriť, že silný vietor či
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
4 Dynamika hmotného bodu
61 4 Dynamika hmotného bodu V predchádzajúcej kapitole - kinematike hmotného bodu sme sa zaoberali pohybom a pokojom telies, čiže formou pohybu. Neriešili sme príčiny vzniku pohybu hmotného bodu. A práve
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Laboratórna úloha č. 4. Matematické kyvadlo
Laboratórna úloha č. 4 Matematické kyvadlo Úlohy: A Zmerať periódu malých kmitov matematického kyvadla a určiť pomocou nej tiažové zrýchlenie v laboratóriu. B C Teoretický úvod Zmerať závislosť doby kmitu
1 Meranie dĺžky posuvným meradlom a mikrometrom Meranie hustoty tuhej látky Meranie veľkosti zrýchlenia priamočiareho pohybu 23
Obsah 1 Laboratórny poriadok 5 2 Meranie fyzikálnych veličín 7 2.1 Metódy merania.............................. 8 2.2 Chyby merania.............................. 9 2.3 Spracovanie nameraných hodnôt.....................
Zložené funkcie a substitúcia
3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
1. Určenie tiažového zrýchlenia reverzným kyvadlom
1. Určenie tiažového zrýchlenia reverzným kyvalom Autor pôvoného textu: ozef Lasz Úloha: V mieste fyzikálneho laboratória experimentálne určiť veľkosť tiažového zrýchlenia Teoretický úvo Kažé teleso upevnené
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
MERANIE OSCILOSKOPOM Ing. Alexander Szanyi
STREDNÉ ODBORNÁ ŠKOLA Hviezdoslavova 5 Rožňava Cvičenia z elektrického merania Referát MERANIE OSCILOSKOPOM Ing. Alexander Szanyi Vypracoval Trieda Skupina Šk rok Teoria Hodnotenie Prax Referát Meranie
5 Trecie sily. 5.1 Šmykové trenie
79 5 Trecie sily S trením sa stretávame doslova na každom kroku. Bez trenia by nebola možná naša chôdza, pohyb auta či bicykla, nemohli by sme písať perom, prípadne ho držať v ruke. Skrutky by nespĺňali
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Chemickotechnologická fakulta Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I Zbierka príkladov a problémov Predslov Cieľom výpočtových cvičení z fyziky
PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO
ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
21. Planckova konštanta Autor pôvodného textu: Ondrej Foltin
. Planckova konštanta Autor pôvodného textu: Ondrej Foltin Úloha: Určiť Planckovu konštantu pomocou vonkajšieho fotoelektrického javu Teoretický úvod Pri vonkajšom fotoelektrickom jave sa uvolňujú elektróny
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ, ANALÝZA MECHANICKÝCH VLASTNOSTÍ PEROVÉHO HRIADEĽOVÉHO SPOJA ANALYSIS OF MECHANICAL PROPERTIES OF A SHAFT TONGUE JOINT Bakalárska práca Študijný program:
Model redistribúcie krvi
.xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele
Goniometrické substitúcie
Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať
Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií
Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Laboratórna úloha č. 24. Magnetický moment tyčového magnetu
Laboratórna úloha č. 24 Úloha: Magnetický moment tyčového magnetu Určiť magnetický moment permanentného tyčového magnetu pomocou buzoly a metódou torzných kmitov. Teoretický úvod Magnetické pole charakterizujeme
Školský vzdelávací program Ţivá škola
6. ročník Tematické okruhy: 1. Skúmanie vlastností kvapalín, plynov, pevných látok a telies 1.1 Telesá a látky 1.2 Vlastnosti kvapalín a plynov 1.3 Vlastnosti pevných látok a telies 2. Správanie sa telies
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Pohyb vozíka. A. Pohyb vďaka tiaži závažia. V tomto prípade sila, ktorá spôsobuje rovnomerne zrýchlený pohyb vozíka je rovná tiaži závažia: F = G zav.
Phyb vzíka Rvnmerný phyb vzíka sa uskutčňuje pri knštantnej rýchlsti v, ktrá sa nemení s časm. Pri takmt phybe vzík za určitý čas t prejde dráhu s s = v t (). V prípade, že rýchlsť vzíka rastie rvnmerne
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Fyzika nižšie stredné vzdelávanie FYZIKA
ÚVOD FYZIKA Vzdelávací štandard je pedagogický dokument, ktorý stanovuje nielen výkon a obsah, ale umožňuje aj rozvíjanie individuálnych učebných možností žiakov. Pozostáva z charakteristiky a cieľov predmetu,
Riadenie elektrizačných sústav
Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Kinematika hmotného bodu
Kinematika hmotného bodu 1. Automobil potrebuje na vykonanie cesty dlhej 120 km spolu s 15-minútovou prestávkou celkove 2h 40 min. Časť cesty išiel rýchlosťou v 1 = 40 km/h a časť rýchlosťou v 2 = 60 km/h.
Vlastnosti regulátorov pri spätnoväzbovom riadení procesov
Kapitola 8 Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Cieľom cvičenia je sledovať vplyv P, I a D zložky PID regulátora na dynamické vlastnosti uzavretého regulačného obvodu (URO). 8. Prehľad
3 Kinematika hmotného bodu
29 3 Kinematika hmotného bodu Pohyb vo všeobecnosti zahŕňa všetky zmeny a procesy, ktoré prebiehajú vo vesmíre. Je neoddeliteľnou vlastnosťou hmoty. Časť fyziky, ktorá sa zaoberá popisom pohybu telies,
Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým vyhodnotením.
Priezvisko a meno študenta: 216_Antropometria.xlsx/Pracovný postup Študijná skupina: Ročník štúdia: Antropometria Cieľ: Určite vybrané antropometrické parametre vašej skupiny so základným (*úplným) štatistickým
KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU
DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave,
-550 Technická mechanika I 9. rednáška Kinematika bodu, translačný, rotačný a všeobecný pohyb telesa Ciele v kinematike. remiestňovanie súradnicovej sústavy po priestorovej krivke. riamočiary pohyb bodu.
Spriahnute oscilatory
Spriahnute oscilatory Juraj Tekel 1 Tema spriahnutych oscilatorov je na strednej skole vacsinou vynechana. Je vsak velmi zaujimava a velmi dolezita. Ide o situaciu, ked sa sustava sklada z viacerych telies,