doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "doc. Ing. František Palčák, PhD., Ústav aplikovanej mechaniky a mechatroniky, Strojnícka fakulta STU v Bratislave,"

Transcript

1 -550 Technická mechanika I 9. rednáška Kinematika bodu, translačný, rotačný a všeobecný pohyb telesa Ciele v kinematike. remiestňovanie súradnicovej sústavy po priestorovej krivke. riamočiary pohyb bodu. Translačný pohyb a rotačný pohyb telesa. Stred otočenia telesa o konečný uhol, okamžitý stred pootočenia. Riadiace krivky (polódie) všeobecného pohybu telesa. Nahradenie všeobecného pohybu telesa valením polódií a ich využitie v mechanizmoch. Ako Cauchy-oisson navrhli nahradiť všeobecný rovinný pohyb telesa. Všeobecný vzťah na deriváciu vektora v rôznych priestoroch. Rovnice na výpočet tvaru polódií.. Ciele v kinematike. V Kinematike sa zaoberáme opisom polohy, rýchlosti a zrýchlenia nehmotných a nedeformovateľných útvarov (voľný a viazaný bod, voľné a viazané teleso, sústava viazaných telies) pri nasledovných druhoch pohybu: druhy pohybu bodu: - priamočiary, - krivočiary: v rovine, v priestore, druhy pohybu telesa: - translačný: priamočiary (posuvný), krivočiary, - rotačný, - všeobecný v rovine: rozklad a) Cauchy-oisson (translačný (A) + rotačný (okolo A), b) súčasné pohyby (unášavý, lokálne relatívny, výsledný) - sférický, - všeobecný v priestore: rozklad a) Cauchy-oisson (translačný (A) + sférický (okolo A), b) Mozzi-Chasles (skrutkový),. remiestňovanie súradnicovej sústavy s jednotkovými vektormi t, n, b po priestorovej krivke (a) Súradnicová sústava t, n, b ri zváraní dverí automobilu treba polohovať zváracie elektródy E, E tak, aby sa stred A zváracej hlavice premiestňoval po priestorovej krivke (a), (krivočiary priestorový pohyb bodu A) a aby elektródy E, E vždy ležali na hlavnej normále n krivky (a) (obr.) (všeobecný priestorový pohyb zváracej hlavice).

2 Obr. Súradnicová sústava A ( t, n, b ) zváracej hlavice. Okamžitá rýchlosť Okamžité zrýchlenie Okamžitú rýchlosť v koncového bodu A polohového vektora r môžeme vyjadriť ako limitu lim Δr dr r v Δt 0 Δt Uvažujme s AA ako oblúkovú súradnicu polohy bodu A voči bodu A, potom ds je nekonečne malá lim Δr veličina ds Δr 0 okamžitá rýchlosť bude potom dr dr ds v t v ds dr kde t je jednotkový tangenciálny vektor t ds vektor K krivosti z diferenciánej geometrie K K n ds, K n R kde R je polomer oskulačnej kružnice, ktorá nahrádza dráhu (a) v okolí normály dráhy (a) bodu A. Stred krivosti S A nekruhovej dráhy (a) bodu A pri všeobecnom pohybe telesa je stred oskulačnej kružnice. Okamžité zrýchlenie koncového bodu A polohového vektora r je dv d( st ) a s t + s a t + an ds s K s n s, a t s t, an n ds R R

3 3. riamočiary pohyb bodu telesa ríklad. V čase t 0 sa automobil na obr. rozbieha z nulovej rýchlosti v v0 konštantným zrýchlením a ac (priamočiary rovnomerne zrýchlený pohyb bodu T 0 ). Integráciou vzťahu dv ac treba získať rovnicu pre výpočet rýchlosti a dráhy v čase t. Riešenie: re okrajové podmienky t 0, v v0, s s0 bude v c v0 0 t dv = a, v - v0 a c(t - t 0), v = v s s0 0 a t 0 c t ds = (v + a t), s = s + v t 0 c 0.5a t 0 0 c Vo všeobecnosti pre krivočiaru dráhu koncového bodu dv A polohového vektora r platí a at (obr.5). re tangenciálne zrýchlenie bodu na priamočiarej dráhe platí dv dv ds d(v ) a t, a t ds v dv ds ds Obr. riamočiary pohyb bodu T 0 Obr.3 priebehy dráhy, rýchlosti a zrýchlenia

4 4. Translačný pohyb telesa Translačný pohyb Translačný pohyb telesa (priamočiary pohyb automobilu na obr. aj krivočiary pohyb hojdačky na obr.4) môžeme reprezentovať jedným bodom, lebo všetky body majú rovnaký tvar dráhy, rovnakú okamžitú rýchlosť aj rovnaké okamžité zrýchlenie. Obr.4 Translačný krivočiary pohyb telesa AB Obr. 5 Rotačný pohyb sprievodiča 5. Rotačný pohyb telesa Rotačný pohyb Nech sa polohový vektor r, ktorý na obr.6 predstavuje rameno zváracieho robota pootočí z východiskovej polohy r do konečnej polohy r okolo kolmej osi s jednotkovým vektorom e. Dráha koncového bodu A sprievodiča r je kružnica (a), pričom r r a r r. Obr.6 ootočenie ramena Obr.7 ootočenie ramena o o konečný uhol. nekonečne malý uhol d

5 Obvodová rýchlosť Zrýchlenie Ak zmenšíme konečný uhol pootočenia polohového vektora r na nekonečne malú hodnotu d (obr.7), potom nositeľka vektora dr bude dotyčniva t kolmá na hlavnú normálu n ktorá je nositeľkou polohového vektora r. Orientovaný uhol d s veľkosťou d uhla pootočenia je kolmý na polohový vektor r. odľa pravidiel vektorového súčinu je dr d r () Nakoľko nekonečne malé veličiny dr a d sa za nekonečne malý čas zmenia ale konečná veličina r sa za nekonečne malý čas nezmení, potom dostaneme dr d r () Ľavá strana rovnice () je vektor v okamžitej rýchlosti koncového bodu A sprievodiča na obr. 7 a nekonečne malá časová zmena orientovaného uhla d je vektor okamžitej uhlovej rýchlosti rotácie polohového vektora r, teda v r (3) Rovnicu (3) pre výpočet vektora v okamžitej rýchlosti koncového bodu A sprievodiča r odvodil Euler. Vektor a okamžitého zrýchlenia koncového bodu A sprievodiča r získame deriváciou vektorového súčinu v rovnici (3) dv d( r) d dr a r (4) Označme vektor okamžitého uhlového zrýchlenia rotácie polohového vektora r, potom a r v (5) rvý člen v rovnici (5) vyjadríme v tvare r e r rt a t (6) t Ak v druhom člene rovnice (5) za v dosadíme z rovnice (3) dostávame dvojnásobný vektorový súčin ( r) (.r) r (. ) r r n a n (7) o dosadení (6), (7) do rovnice (5) dostaneme vektor a r v okamžitého uhlového zrýchlenia rotácie polohového vektora r a rt r n (8) n

6 6. Stred otočenia telesa o konečný uhol, okamžitý stred pootočenia Druhy pohybov Vstupný hnací člen (kľuka) na obr.8 v kľukovom mechanizme koná voči rámu rotačný pohyb /, piest 4 koná voči rámu posuvný pohyb 4/, a spojovací člen 3 (ojnica) koná voči rámu všeobecný pohyb 3/ (nie je to ani rotácia ani posuvný pohyb). Obr.8 Kľukový mechanizmus vo východiskovej polohe (O A B ) a konečnej polohe (O A B ). Konečný uhol pootočenia Okamžitý stred otočenia ohyblivú rovinu so spojovacím členom AB môžeme otočiť z východiskovej polohy AB do konečnej polohy AB okolo stredu otočenia So o o (priesečník osí úsečiek) s konečným uhlom (A S A ) (B S B ). o o Ak zmenšíme konečný uhol otočenia na nekonečne malý uhol d, potom rovina so spojovacím členom AB sa premiestni z východiskovej polohy AB do nekonečne blízkej polohy pootočením okolo priesečníka S normál n A,n B k dráham (a), (b) bodov A, B, S n A n B.

7 riesečník S, ktorý je bodom z nepohyblivej roviny rámu, sa prekrýva s bodom K zo spojovacieho člena 3, ktorý má v tejto polohe nulovú okamžitú rýchlosť voči a nazývame ho okamžitý stred otočenia S (OSO 3) 3 K spojovacieho člena 3 do nekonečne blízkej polohy. Ak je spojovací člen mechanizmu v polohe AB, potom príslušný priesečník S (OSO 3) n A nb je nový okamžitý stred otočenia S spojovacieho člena 3 do nekonečne blízkej polohy. 7. Riadiace krivky (polódie) všeobecného pohybu telesa Nepohyblivá polódia Spojnicu okamžitých stredov otáčania S i pri všeobecnom pohybe 3/ spojovacieho člena 3 voči rámu zakreslenú v nepohyblivej rovine nazývame nepohyblivá polódia k. ohyblivá polódia Keď trojuholník (ABS ) s úsečkou AB na obr.8 Riadiace krivky premiestnime do východiskovej polohy úsečky AB, na mieste pôvodného bodu S dostaneme bod K, ktorý je bodom pohyblivej roviny spojovacieho člena K, ktoré získame 3 (ojnice) a spojnicu bodov i zovšeobecnením premiestňovania trojuholníkov (AiBiS i) (AB K i) nazveme pohyblivá polódia k, ktorá je súčasťou spojovacieho člena 3. Všeobecný pohyb 3/ spojovacieho člena 3 voči rámu môžeme nahradiť valením pohyblivej polódie k, ktorá je súčasťou spojovacieho člena 3 po nepohyblivej polódii k (riadiace krivky všeobecného pohybu 3/ spojovacieho člena 3 voči rámu ). Rýchlosť u Dotyčnica t polódií k a k je nositeľka okamžitej rýchlosti u premiestňovania dotykových bodov S a K po polódiách, pričom dotykový bod S nie je bodom nepohyblivej roviny rámu a dotykový bod K nie je bodom pohyblivej roviny spojovacieh člena 3. Stred krivosti dráhy Stred krivosti S nekruhovej dráhy (a) bodu A pri A všeobecnom pohybe telesa je stred oskulačnej kružnice, ktorá nahrádza dráhu (a) v okolí normály dráhy (a) bodu A, pričom stred krivosti dráhy nie je zhodný s okamžitým stredom otáčania S A OSO.

8 Keď je dráha bodu (a) kružnica, potom stred S A krivosti dráhy (a) je totožný so stredom tejto kružnice aj s okamžitým stredom otáčania OSO. Keď je dráha bodu (a) priamka, potom stred S A krivosti dráhy (a) je nevlastný bod na normále, ako aj okamžitý stred otáčania OSO. 8. Využitie riadiacich kriviek v mechanizmoch Využitie valenia pohyblivej polódie po (nepohyblivej) pevnej polódii v praxi. Ortocykloida pohyblivá polódia: pastorok, pevná polódia: ozubený hrebeň Obr. 9 Valenie kolesa (pohyblivej polódie k ) po ceste (nepohybivá polódia k ), dráha bodu kolesa pri valení: ortocykloida. Obr. 0 Mechanizmus s výdržou, odvaľovanie planétového kolesa (pohyblivej polódie k ) po korunovom kolese (nepohybivá polódia k ).

9 Obr.0 Mechanizmus presného uzatváracieho ventila 9. Ako Cauchy-oisson navrhli nahradiť všeobecný rovinný pohyb telesa fiktívnym posunutím a fiktívnym pootočením. oloha olohový vektor r B3 bodu B zo spojovacieho člena 3 voči rámu môžeme zapísať ako súčet rb3 ra3 rba () Rýchlosť Vo všeobecnosti platí, že časová derivácia polohového a, v tom istom vektora so súradnicami v priestore priestore a, je vektor okamžitej rýchlosti so súradnicami v tom istom priestore a. V rovnici (): B3 A3 BA3 r r r majú všetky vektory súradnice v priestore.

10 Obr. Zobrazenie nahradenia všeobecného rovinného pohybu telesa fiktívnym posunutím a fiktívnym pootočením. Deriváciou rovnice () r r r získame B3 A3 BA3 rovnicu () pre okamžité rýchlosti v v v () B3 A3 BA3 Rovnicu () navrhli Cauchy (87) a oisson (834) na nahradenie všeobecného rovinného pohybu 3/ telesa 3 vzhľadom na rám fiktívnym posunutím ktoré reprezentuje zvolený vzťažný bod A z úsečky AB, ktorá sa premiestni z východiskovej polohy AB do prechodnej polohy A (B ) T a do konečnej polohy AB sa premiestni fiktívnym pootočením okolo vzťažného bodu A. Časová derivácia polohového vektora r BA so súradnicami v priestore 3 je odľa Eulera okamžitá obvodová rýchlosť v ω r (3) BA3 3 BA bodu B vzhľadom na bod A pri fiktívnej rotácii úsečky A (B ) T okolo vzťažného bodu A v polohe A.

11 Obr. Znázornenie vektorovej rovnice v B3 v A3 v BA3. Grafická konštrukcia re danú rýchlosť v A3 zostrojíme rýchlosť vb3 va3 vba3 (obr.). Zrýchlenie Zrýchlenie a B3 bodu B získame deriváciou podľa času vb3 va3 ω3 rba a a α r ω v (4) B3 A3 3 BA 3 BA 0. Všeobecný vzťah na deriváciu vektora v rôznych priestoroch. oloha pólu Spojovací člen 3 kľukového mechanizmu na obr.3 koná vzhľadom na rám všeobecný pohyb 3/. V okamžitej polohe AB bod C zo spojovacieho člena 3, C 3 je na rovnakom mieste ako okamžitý stred otáčania C 3 a preto má nulovú okamžitú rýchlosť v 0. olohový vektor pólu (okamžitého stredu C3 otočenia) voči začiatku O globálnej súradnicovej sústavy telesa je daný súčtom

12 r ra3 r3 () Obr.3 Kľukový mechanizmus s pevnou polódiou k. olohový vektor (r ) určuje začiatočnú polohu odpovedá konečnej polohe AB spojovacieho člena 3. k a pohyblivou polódiou S voči O, a (r ) Rýchlosť pólu Na získanie okamžitej rýchlosti premiestňovania pólu pozdĺž pevnej polódie k a pohyblivej k polódie je potrebné derivovať rovnicu () v priestore : r r r () A3 3 olohový vektor 3 3 r 3 (r3 i 3 )i 3 (r3 j 3 )j3 (3) reto derivácia r 3 polohového vektora r 3 v inom priestore vyžaduje aby sme odvodili všeobecný vzťah na deriváciu vektora v rôznych priestoroch. Označme r r i (4) 3 x 3 3 r má súradnice v priestore r 3 y r3 j3 (5) súradnice vektora r 3. Derivácie súradníc r 3x a r 3y polohového vektora r 3 (ako súčin) budú súradnice v 3x v, and v 3y okamžitej rýchlosti v 3 bodu d r (6) 3x 3x

13 d v3y r3y (7) potom d di3 d dj3 r 3 ( r 3x ) i3 r 3x ( r 3y)j3 r 3y (8) Derivácia jednotkových vektorov i 3 a j 3 rotujúcich uhlovou rýchlosťou ω 3 je vektorový súčin di3 ω3 i3 (9) resp. dj3 ω3 j3 (0) otom môžeme písať rovnicu (8) v tvare r r ω r () nakoľko r v () a ako vidíme z obr. ω r = - v (3) 3 3 A3 o dosadení (3) do () získame rovnicu pre vektor okamžitej rýchlosti v v v - v (4) A3 3 A3 z ktorej vyplýva, že rýchlosti v, resp. v 3 premiestňovania dotykového bodu pozdĺž polódií sú v priestore rovnaké. v v u (5) 3 Nositeľka okamžitej rýchlosti u je dotyčnica polódiám k a k. Zovšeobecnenie Všeobecný vzťah pre deriváciu vektora r a v inom a v ktorom má priestore b ako je priestor vyjadrené súradnice zovšeobecníme podľa vzťahu r r ω r do tvaru () r r ω r (6) a b a a ab a kde deriváciu vektora ako súčet derivácie vektora t r a v priestore r v priestore a k b vyjadríme a v ktorom má vyjadrené súradnice a vektorového súčinu b s vzájomnej uhlovej rýchlosti priestorov a, r so súradnicami v priestore a. vektorom a

14 . Rovnice na výpočet tvaru pohyblivej k a pevnej k polódie Rovnice k, k Využime rovnicu vb3 va3 vba3 podľa toho ako Cauchy a oisson navrhli nahradiť všeobecný pohyb 3/ teraz pre bod C 3: v v v (7) C3 A3 CA3 Vzhľadom na C 3 je okamžitá rýchlosť v 0 (8) C3 a obvodvá rýchlosť v CA3 podľa Eulera pri fiktívnej rotácii r 3 okolo vzťažného bodu A bude vca3 ω3 r3 (9) Ak vynásobíme vektorove rovnicu (7) ω 3 zľava 0 ω 3 va3 ω 3 (ω3 r 3) (0) po úprave dvojnásobného vektorového súčinu dostaneme vektor r 3 ω3 va3 r3 () ω 3 Ak budú mať všetky vektory v rovnici () súradnice v priestore 3, potom spojnica koncových bodov vektora r 3 je pohyblivá polódia k (obr.3) a rovnica () v maticovom zápise vektorového súčinu je rovnicou pohyblivej polódie k : i3 j3 k3 r 0 0 ω.k () ω3 v A3. i3 v A3.j3 0 Ak dosadíme vektor r 3 z rovnice () do rovnice r ra3 r3 a všetky vekory budú mať súradnice v priestore i j k r r 0 0 ω.k (3) A3 3 ω3 v A3. i v A3.j 0 potom spojnica koncových bodov vektora r (obr.3) je pevná polódia k a rovnica (3) je rovnicou pevnej polódie k.

Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava;

Ústav aplikovanej mechaniky a mechatroniky, SjF STU Bratislava; Ústav aplikovanej mechaniky a mechatroniky, SjF SU Bratislava; wwwatcsjfstubask echnická mechanika 0 3 BEK, 0 0 BDS pre bakalárov, zimný sem docingfrantišek Palčák, PhD, ÚAMM 000 7 Cvičenie: Dynamika všeobecného

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

3 Kinematika hmotného bodu

3 Kinematika hmotného bodu 29 3 Kinematika hmotného bodu Pohyb vo všeobecnosti zahŕňa všetky zmeny a procesy, ktoré prebiehajú vo vesmíre. Je neoddeliteľnou vlastnosťou hmoty. Časť fyziky, ktorá sa zaoberá popisom pohybu telies,

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

2 Základy vektorového počtu

2 Základy vektorového počtu 21 2 Základy vektorového počtu Fyzikálne veličíny sa dajú rozdeliť do dvoch skupín. Prvú skupinu fyzikálnych veličín tvoria tie, pre ktorých jednoznačné určenie postačí poznať veľkosť danej fyzikálnej

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Chemickotechnologická fakulta Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I Zbierka príkladov a problémov Predslov Cieľom výpočtových cvičení z fyziky

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

Škola pre mimoriadne nadané deti a Gymnázium. Teória 2 Mechanika hmotného bodu 2.1 Kinematika

Škola pre mimoriadne nadané deti a Gymnázium. Teória 2 Mechanika hmotného bodu 2.1 Kinematika Meno a priezvisko: Škola: Školský rok/blok: Predmet: Skupina: Trieda: Dátum: Škola pre mimoriadne nadané deti a Gymnázium Teória 2 Mechanika hmotného bodu 2.1 Kinematika 2.1.0 Úvod do kinematiky Najstarším

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Mechanika hmotného bodu

Mechanika hmotného bodu Meno a priezvisko: Škola: Školský rok/blok: Skupina: Trieda: Dátum: Bilingválne gymnázium C. S. Lewisa, Beňadická 38, Bratislava 2008-2009 / B Teória Mechanika hmotného bodu Kinematika Dynamika II. Mechanika

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006

FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006 FYZIKA DUŠAN OLČÁK - ZUZANA GIBOVÁ - OL GA FRIČOVÁ Apríl 2006 2 Obsah 1 o-g-f:mechanický pohyb tuhého telesa 5 1.1 Kinematika hmotného bodu......................... 6 1.1.1 Rýchlost a zrýchlenie pohybu....................

Διαβάστε περισσότερα

Povrch a objem ihlana

Povrch a objem ihlana Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.

Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie. Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

AFINNÉ TRANSFORMÁCIE

AFINNÉ TRANSFORMÁCIE AFINNÉ TRANSFORMÁCIE Definícia0..Zobrazenie f: R n R m sanazývaafinné,ak zachováva kolinearitu(t.j. priamka sa zobrazí buď na priamku alebo na jeden bod), zachovávadeliacipomer(t.j.akprekolineárnebody

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Obvod a obsah rovinných útvarov

Obvod a obsah rovinných útvarov Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

stereometria - študuje geometrické útvary v priestore.

stereometria - študuje geometrické útvary v priestore. Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa

Διαβάστε περισσότερα

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA

URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA 54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.

Διαβάστε περισσότερα

Kapitola K2 Plochy 1

Kapitola K2 Plochy 1 Kapitola K2 Plochy 1 Plocha je množina bodov v priestore, ktorá vznikne spojitým pohybom čiary u, ktorá nie je dráhou tohto pohybu, pričom tvar čiary u sa počas pohybu môže meniť. Čiara u sa nazýva tvoriaca

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Zhodné zobrazenia (izometria)

Zhodné zobrazenia (izometria) Zobrazenie A, B R R (zobrazenie v rovine) usporiadaná dvojica bodov dva body v danom poradí (záleží na poradí) zápis: [a; b] alebo (a; b) karteziánsky (kartézsky) súčin množín množina všetkých usporiadaných

Διαβάστε περισσότερα

Matematika 2. Lineárna algebra. (ver )

Matematika 2. Lineárna algebra. (ver ) Matematika 2 Lineárna algebra (ver.01.03.2011) 1 Úvod Prehľad. Tieto poznámky obsahujú podklady k prednáške Matematika 2 na špecializácii Aplikovaná informatika: jedná sa o 12 dvojhodinových prednášok

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

Dostredivá sila. Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila

Dostredivá sila. Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila Dostredivá sila Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila kde r je polomer krivosti trajektórie. Keby nepôsobila dostredivá sila, častica

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Smernicový tvar rovnice priamky

Smernicový tvar rovnice priamky VoAg1-T List 1 Smernicový tvar rovnice priamk RNDr.Viera Vodičková U: Medzi prevratné objav analtickej geometrie patrí to, že s priamkou nenarábame ako s geometrickým objektom, ale popisujeme ju rovnicou.

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a )

Margita Vajsáblová. ρ priemetňa, s smer premietania. Súradnicová sústava (O, x, y, z ) (O a, x a, y a, z a ) Mrgit Váblová Váblová, M: Dekriptívn geometri pre GK 101 Zákldné pom v onometrii Váblová, M: Dekriptívn geometri pre GK 102 Definíci 1: onometri e rovnobežné premietnie bodov Ε 3 polu prvouhlým úrdnicovým

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika

UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky. Dua lne c ı sla. Bakala rska pra ca. S tudijny odbor: Matematika UNIVERZITA KOMENSKE HO V BRATISLAVE Fakulta matematiky, fyziky a informatiky Dua lne c ı sla Bakala rska pra ca S tudijny odbor: Matematika Vedu ci bakala rskej pra ce: RNDr. Pavel Chalmoviansky, PhD.

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Povrch a objem zrezaného ihlana

Povrch a objem zrezaného ihlana Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Východ a západ Slnka

Východ a západ Slnka Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že

Διαβάστε περισσότερα

ANULOID GEOMETRICKÉ VARIÁCIE NA TÉMU ANULOID

ANULOID GEOMETRICKÉ VARIÁCIE NA TÉMU ANULOID ANULOID ÚVOD Matematická analýza a deskriptívna (prípadne konštrukčná) geometria sú dva rôzne predmety, ktoré úzko spolu súvisia. Anuloid a guľová plocha sú plochy technickej praxe.v texte sú z geometrického

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

-h sα + h sψ + h sψ - p sα 0

-h sα + h sψ + h sψ - p sα 0 Technická mechanika II 0 3 BEK, 0 0 BDS re bakalárov, imný sem docingfrantišek Palčák, PhD, ÚAMM 000 Cvičenie: Vektorová metóda kinematickej analýy olohy členov rovinných mechaniov Numerická Newton-Rahson-Simsonova

Διαβάστε περισσότερα

9 Planimetria. 9.1 Uhol. Matematický kufrík

9 Planimetria. 9.1 Uhol. Matematický kufrík Matematický kufrík 89 9 Planimetria 9.1 Uhol Pojem uhol patrí k najzákladnejším pojmom geometrie. Uhol môžeme definovať niekoľkými rôznymi spôsobmi, z ktorých má každý svoje opodstatnenie. Jedna zo základných

Διαβάστε περισσότερα

5 Trecie sily. 5.1 Šmykové trenie

5 Trecie sily. 5.1 Šmykové trenie 79 5 Trecie sily S trením sa stretávame doslova na každom kroku. Bez trenia by nebola možná naša chôdza, pohyb auta či bicykla, nemohli by sme písať perom, prípadne ho držať v ruke. Skrutky by nespĺňali

Διαβάστε περισσότερα

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,

9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, 9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky

Διαβάστε περισσότερα

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

CABRI GEOMETRY TM II PLUS

CABRI GEOMETRY TM II PLUS CABRI GEOMETRY TM II PLUS Inovačné nástroje matematiky KURZ PRE POKROČILÝCH VITAJTE! Vitajte v kurze pre pokročilých užívateľskej príručky Cabri Geometry. V tejto časti uvádzame v troch kapitolách niektoré

Διαβάστε περισσότερα

[ v 0 = at r + (at r ) 2 + 2as = 16,76 m/s ]

[ v 0 = at r + (at r ) 2 + 2as = 16,76 m/s ] Posledná aktualizácia: 22. mája 202. Čo bolo aktualizované (oproti predošlej verzii zo 6. marca 2009): Rozsiahle zmeny, napr.: Dodané postupy riešení ku niektorým príkladom. Dodané niektoré nové príklady.

Διαβάστε περισσότερα

Osnovy pre slovensko-francúzske sekcie gymnázií Matematika

Osnovy pre slovensko-francúzske sekcie gymnázií Matematika Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA. Martin Samuelčík UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY RIGORÓZNA PRÁCA Martin Samuelčík BRATISLAVA 2004 UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Elektromagnetické pole

Elektromagnetické pole Elektromagnetické pole Elektromagnetická vlna. Maxwellove rovnice v integrálnom tvare a diferenciálnom tvare. Vlnové rovnice pre E a. Vjadrenie rýchlosti elektromagnetickej vln. Vlastnosti a znázornenie

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

0. Úvod, obsah kap. 1 kap. 2 kap. 3 kap. 7-9 kap. 5 pojednanie o excentricite kap. 5 kap. 6

0. Úvod, obsah kap. 1 kap. 2 kap. 3 kap. 7-9 kap. 5 pojednanie o excentricite kap. 5 kap. 6 Vypracoval: Jakub Imriška Dátum: 9.9.008 0. Úvod, obsah Tento text vznikol na základe otázok, ktoré si autor kládol a nechcelo sa mu hľadať odpovede na ne cez vešticu Google. Všetko to začalo jedným príkladom

Διαβάστε περισσότερα

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov

STATIKA STAVEBNÝCH KONŠTRUKCIÍ I Doc. Ing. Daniela Kuchárová, PhD. Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov Priebeh vnútorných síl na prostom nosníku a na konzole od jednotlivých typov zaťaženia Prostý nosník Konzola 31 Príklad č.14.1 Vypočítajte a vykreslite priebehy vnútorných síl na nosníku s previslými koncami,

Διαβάστε περισσότερα

G. Monoszová, Analytická geometria 2 - Kapitola III

G. Monoszová, Analytická geometria 2 - Kapitola III text obsahuje znenia viet, ktoré budeme dokazovat na prednáškach text je doplnený aj o množstvo poznámok, ich ciel om je dopomôct študentom k lepšiemu pochopeniu pojmov aj súvislostí medzi nimi text je

Διαβάστε περισσότερα

Teoretická mechanika

Teoretická mechanika Univerzita Komenského, Bratislava Fakulta matematiky, fyziky a informatiky Teoretická mechanika Bratislava, 4 B. Rabatin Obsah Úvod Matematický aparát teoretickej mechaniky. Einsteinova sumačná konvencia.....................................

Διαβάστε περισσότερα

TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,

TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,

Διαβάστε περισσότερα

6 Gravitačné pole. 6.1 Keplerove zákony

6 Gravitačné pole. 6.1 Keplerove zákony 89 6 Gravitačné pole Pojem pole patrí k najzákladnejším pojmom fyziky. Predstavuje formu interakcie (tzv. silového pôsobenia) v prostredí medzi materiálnymi objektmi ako sú častice, atómy, molekuly a zložitejšie

Διαβάστε περισσότερα

4 Dynamika hmotného bodu

4 Dynamika hmotného bodu 61 4 Dynamika hmotného bodu V predchádzajúcej kapitole - kinematike hmotného bodu sme sa zaoberali pohybom a pokojom telies, čiže formou pohybu. Neriešili sme príčiny vzniku pohybu hmotného bodu. A práve

Διαβάστε περισσότερα

Diferenciálne rovnice

Diferenciálne rovnice Diferenciálne rovnice Juraj Tekel Katedra teoretickej fyziky a didaktiky fyziky FMFI UK Mlynska Dolina 842 48 Bratislava juraj(a)tekel(b)gmail(c)com http://fks.sk/~juro/phys_teaching.html Aktualizované

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Zložené funkcie a substitúcia

Zložené funkcie a substitúcia 3. kapitola Zložené funkcie a substitúcia Doteraz sme sa pri funkciách stretli len so závislosťami medzi dvoma premennými. Napríklad vzťah y=x 2 nám hovoril, ako závisí premenná y od premennej x. V praxi

Διαβάστε περισσότερα

3. ročník. 1. polrok šk. roka 2016/2017

3. ročník. 1. polrok šk. roka 2016/2017 Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických

Διαβάστε περισσότερα

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2

1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Objem a povrch rotačného valca

Objem a povrch rotačného valca Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika

Διαβάστε περισσότερα

Potrebné znalosti z podmieňujúcich predmetov

Potrebné znalosti z podmieňujúcich predmetov Potrebné znalosti z podmieňujúcich predmetov Matematika 1: 1. Trigonometria (riešenie trojuholníkov - Pythagorova veta, Euklidove vety, sinusová a kosinusová veta, podobnosť trojuholníkov, výška, ťažnica,

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα