- prirodnih znanosti (matematika, kemija, fizika, biologija, biokemija) - tehničkih znanosti

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "- prirodnih znanosti (matematika, kemija, fizika, biologija, biokemija) - tehničkih znanosti"

Transcript

1 Uvod - potrebna znanja: - prrodnh znanost (matematka, kemja, fzka, bologja, bokemja) - tehnčkh znanost AKO NEŠTO NE ZNAŠ NAPRAVITI, NI RAČUNALO TI U TOME NE MOŽE POMOĆI! (A. D. Noel) - karakterstke oblk matematčkh modela procesa ovsn o: - prostornoj ovsnost karakterstčnh velčna procesa (proces sa raspodjeljenm usredotočenm parametrma) - vremenskoj ovsnost (dnamc) karakterstčnh velčna procesa (staconarn nestaconarn proces) - namjen - složenost opsa procesa

2 Uvod prostorna ovsnost karakterstčnh velčna procesa proces sa usredotočenm parametrma proces sa raspodjeljenm parametrma staconarn nestaconarn staconarn nestaconarn parabolčne l hperbolčne parcjalne dferencjalne jednadžbe elptčne parcjalne dferencjalne jednadžbe dferencjalne l algebarske jednadžbe nelnearne algebarske jednadžbe

3 Staconarn nestaconarn matematčk model procesa - staconarn matematčk model procesa: - protočn kotlast reaktor lm t ( ) X t = X S X karakterstčna velčna procesa (koncentracja, gustoća, tlak, temperatura ) X S vrjednost karakterstčne velčne procesa u staconarnom stanju t - vrjeme ( ) S < ε za sve 0 X t X t t ε - dozvoljena promjena vrjednost karakterstčne velčne procesa d X dt - nestaconarn (dnamčk) matematčk model procesa: - kotlast reaktor, promjena vremena zadržavanja protočno kotlast d X dt 0 reaktor

4 Dferencjalne jednadžbe matematčk model procesa ZBOG ČEGA JE POTREBNO REALNI PROCES OPISATI DIFERENCIJALNIM JEDNADŽBAMA? - clj matematčkog modela procesa je analtčka veza zmeđu karakterstčnh ulaznh zlaznh velčna procesa ZAŠTO PRI RAZVOJU MATEMATIČKOG MODELA PROCESA NE TEŽIMO POSTAVLJANJU ALGEBARSKIH VEZA IZMEĐU ULAZNIH I IZLAZNIH VELIČINA PROCESA? - neophodna temeljna znanja o procesu - složene numerčke metode rješavanja matematčkog modela procesa (dferencjalne jednadžbe) SVRHA MODELIRANJA!!!

5 Dferencjalne jednadžbe matematčk model procesa Prmjer Praćenje tjeka procesa želmo opsat matematčkm zrazom u oblku algebarske jednadžbe koja opsuje ovsnost procesnh velčna x y. - z grafčkog prkaza sljed polnomna ovsnost procesnh velčna - statstčkom metodom najmanjh kvadrata y Model Polynomal Adj. R-Square x Value Standard Error B Intercept B B B B y= x x+ 0,0338, ,79 - ekspermentaln model procesa vrjed za: - dano područje procesnh velčna - dane procesne uvjete - dan proces - moguće nterpolacje, nemoguće ekstrapolacje - zbor tpa algebarskog modela (stupanj polnoma, članov polnoma)? - dferencjalna jednadžba - fzčka slka procesa - rješenje daje algebarsku vezu ulaznh zlaznh velčna procesa

6 Razne razvoja matematčkh modela procesa - detaljnost opsa promatranog procesa (svrha modelranja) - brojnost fzkalno-kemjskh mehanzama uključenh u ops procesa - molekularn l atomsk - mkroskopsk - makroskopsk makroskopsk mkroskopsk molekularn

7 Razne razvoja matematčkh modela procesa Molekularn model - duboka analza procesa - detaljna slka procesa temeljena na prrodnm zakontostma potvrda teorjskh spoznaja - nekorsn u procesnom nženjerstvu Makroskospk model - globalna slka procesa Mkroskopsk model - proučavanje prrodnh pojava uz zanemarvanje međudjelovanja na molekularnom nvou - dnamčka slka procesa u trodmenzonalnom prostoru

8 Matematčk model procesa - kombnacja mkroskopskh makroskopskh modela - zakon očuvanja temelj za zvođenje dferencjalnh blančnh jednadžb prjenosa tvar, toplne kolčne gbanja - pregled temeljnh nekh posebnh dferencjalnh blančnh jednadžb shodšta pr razvoju modela (dferencjaln element volumena u prostoru zamšljena kocka volumena ΔV (Δx, Δy, Δz) u kojoj promjena svojstava karakterstčnh velčna sustava sljed lnearnu ovsnost) PRIJENOS TVARI PRIJENOS ENERGIJE PRIJENOS KOLIČINE GIBANJA

9 Prjenos tvar 1. Temeljna jednadžba δc δn A A, x δ NA, y δna, z = ra δt δx δy δz δc uur A + NA ra δt. Posebn oblc a) gustoća dfuzvnost su konstantn N A molarn protok komponente A D AB koefcjent dfuzvnost v brzna strujanja c koncentracja t - vrjeme r brzna reakcje δc δc δc δc c c c δt δx δy δz x y z A A A A A A A + vx + vy + vz DAB + + r A b) gustoća dfuzvnost su konstantn, nema kemjske reakcje n gbanja (II. Fckov zakon dfuzje) δca = DAB ca δt

10 Prjenos energje 1. Temeljne jednadžbe a) preko temperature fluda (kapljevna l pln) δt δt δt δt r δ p r r ρ cv + vx + vy + vz = q T v τ : v δt δx δy δz δt V b) za všekomponentn flud n δ 1 r r ur ρ U + v = e + n g ( ) ( ) δ t = 1 ( ) ( ) ( ) akumulacja specfčne unutarnje knetčke energje u defnranom prostornom elementu ukupna gustoća toka energje kroz zatvoreu površnu promatranog sustava zbog konvekcje, vođenja toplne djelovanja vskoznh sla energetsk učnak djelovanja vanjskh gravtacjskh sla na defnran prostorn element T temperatura; ρ - gustoća; c v specfčn toplnsk kapactet pr konstantnom volumenu; q gustoća toplnskog toka; U unutarnja energja; v brzna; p tlak; τ - tenzor površnske napetost; n gustoća toka tvar; g gravtacja; e ukupna gustoća toka energje

11 Prjenos energje. Posebn oblc a) blanca energje za jednokomponentn Newtonsk flud pr konstantnom tlaku zanemarvom utjecaju vskoznh sla δt δt δt δt T T T ρ cp + vx + vy + vz = λ + + r + A ΔHr δt δx δy δz x y z b) za všekomponentn flud (smjesa Newtonskh fluda, konstantan tlak, bez utjecaja vskoznh sla, bez kemjske reakcje) r n r e λ T + n ΔH = 1 ( ) c p specfčn toplnsk kapactet pr konstantnom tlaku, λ - koefcjent toplnske vodljvost, ΔH r reakcjska entalpja, ΔH parcjalna entalpja -te komponente

12 Razvoj matematčkh modela procesa na mkroskopskoj razn Pojednostavljenja - ρ, µ, λ, D AB, c p konstantn - Newtonsk flud - utjecaj unutarnjeg trenja na ukupnu energju procesa zanemarv - utjecaj vanjskh sla jednak na svaku točku promatranog procesnog prostora Odstupanja od dealnost - turbulentn tokov - kompleksn profl strujanja pr mješanju - vskozne kapljevne s nenewtonskm svojstvma - kompleksn matematčk model procesa ogrančene prmjenjvost

13 Prmjer 1. Istovremen prjenos tvar energje pr dfuzj pare kroz mrujućeg flma do hladne površne na kojoj para kondenzra. 1. Ops problema Vruća plnovta lako hlapljva komponenta A dfundra u staconarnm uvjetma kroz mrujuć flm nertnog plna B do hladne površne z na kojoj kondenzra. Zadane su koncentracje temperature na oba ruba mrujućeg flma z z = δ. T=T 0, x A =x A,0 Flm kondenzata T(z) x A (z) T=T δ, x A =x A,δ rub mrujućeg flma Smjer gbanja komponente A Izračunat koncentracjsk profl zražen u molnm udjelma komponente A, x A, temperaturn profl pr stovremenom prjenosu tvar energje. δ z z =

14 Prmjer Defnranje mehanzama skupljanje nformacja o sustavu Pretpostavke: - stovremen prjenos tvar energje uzrokovan postojanjem koncentracjskh temperaturnh gradjenata - prjenos tvar energje se odvja kroz mrujuć prostor sključen konvektvn mehanzm prjenosa - smjesa plnova se ponaša kao dealn pln - tlak fzkalna svojstva smjese plnova su konstantn u svm točkama promatranog prostora - prjenos toplne radjacjom zanemarv Mehanzm: - prjenos tvar: dfuzja kao posljedca koncentracjskog gradjenta (tlačna, prslna termčka dfuzja zanemarve) - prjenos energje: vođenje toplne

15 Prmjer Postavljanje modela rješavanje modela (sustava jednadžb) - zavsne procesne velčne, T x A, funkcja udaljenost z (nezavsne procesne velčne) - staconarn proces - jednodmenzjsk proces dferencjalne jednadžbe - mkroskopske blančne jednadžbe za prostorn blančn element smješten u pravokutnom koordnatnom sustavu Prjenos tvar c uur A + N r = δt δ A A 0 - staconarn proces - nema kemjske reakcje - dfuzja samo u smjeru os z δc A δt r A uur N A = d N d z A, z

16 Prmjer 1. d N d z A, z = 0* - Fckov zakon za bnarne smjese N A, z c D d x (1 x ) d z AB = A A ** - Kombnacjom * **, te ntegrranjem u grancama x A,z=δ = x A,δ x A,z=0 = x A,0 uz konstantnu gustoću toka tvar, N A,z, sljed analtčko rješenje za koncentracjsk profl 1 e x = x + x x ( ) A, z A,0 A, δ A,0 1 e N cd N cd A, z AB A, z AB z δ x A moln udo komponente A, c ukupna koncentracja komponenata, D AB bnarna dfuzvnost, δ debljna mrujućeg flma

17 Prmjer 1. Prjenos energje - blanca energje všekomponentnog sustava n δ 1 r r ur ρ U + v = ( e) + ( n ) g δ t = 1 - staconarn proces - nema djelovanja vanjskh gravtacjskh sla - nema prjenosa toplne konvekcjom - nema prjenosa toplne radjacjom d dt e z = 0*** - konstantna gustoća toka energje, e z, po cjelom mrujućem flmu - gustoća toka energje za všekomponentne smjese Newtonskh fluda pr konstantnom tlaku, bez djelovanja vskoznh sla - prjenos toplne samo vođenjem r n r e λ T + n ΔH = 1 ( )

18 Prmjer 1. Prjenos energje - za bnarn sustav prjenos energje u smjeru os z dt e = λ + N Δ H + N ΔH d z ( ) z A, z A B, z B - ako nertna komponenta B mruje (N B,z ) dt e = λ + N C T T d z ( ) z A, z p,a 0 **** Δ H = C ( T T ) A p,a 0 - Kombnacjom *** ****, te ntegrranjem u grancama T z=δ = T δ T z=0 = T 0 sljed analtčko rješenje za temperaturn profl 1 e T = T + T T ( ) A, z p,a z 0 δ 0 N C λ 1 e N C λ A, z p,a z δ C p,a molarn toplnsk kapactet pr konstantnom tlaku, ΔH A ΔH B standardne molarne entalpje komponenata A B

19 Prmjer 1. - prjenos tvar neposredno utječe na prjenos energje pr stovremenom prjenosu tvar energje - prjenos tvar nje ovsan o prjenosu energje (zanemarena termčka dfuzvnost) - blanca tvar energje analtčko rješenje (nužne numerčke metode za složenje modele) - numerčke metode prblžna rješenja - mkroskopsk model jasnja (detaljnja) slka zbvanja u procesu bolje razumjevanje procesa - međuovsnost ključnh velčna sustava parametara procesa (zavsnost C p od T) - provjera modela ocjena valjanost modela nužn korac bez kojh je modelranje procesa besmsleno - procjena parametara modela na temelju ekspermentalnh podataka - složenost modela

20 Prmjer 1. Uobčajene pretpostavke pr prjelazu z mkroskopskog u makroskopsk ops procesa: - osnovne jednadžbe dferencjalne jednadžbe održanja - blanca održanja kolčne gbanja se zanemaruje - staconarn proces - korelacjske jednadžbe (efektvn koefcjent dfuzje umjesto molekularnog koefcjenta dfuzje) - čepolko strujanje -

21 Makroskopsk model procesa Blanca tvar -te komponente - mkroskopska blanca tvar δc δt ( vz c) ( t) δ + = r + m δz brzna prjenosa -te komponente kroz grancu sustava akumulacja -te komponente u blančnom prostornom elementu prjenos tvar (-te komponente) tokom fluda u blančnom prostornom elementu brzna na(ne)stajanja -te komponente kemjskom reakcjom Blanca tvar -te komponente - makroskopska blanca tvar d m dt = Δ w + r akumulacja -te komponente u blančnom prostornom elementu razlka brzna ulaza zlaza tvar z blančnog prostornog elementa brzna na(ne)stajanja -te komponente kemjskom reakcjom

22 Makroskopsk model procesa Blanca energje - mkroskopska blanca energje δt δt ρ Cp + vz =Δ Hr + E δt δz ( t) akumulacja tok toplne s tokom fluda u blančnom prostornom elementu reakcjska entalpja gubtak toplne u okolnu, prjenos toplne kroz grancu sustava Blanca tvar -te komponente - makroskopska blanca tvar d d E ( ) U p V K P q Q W Q m t = Δ E ukupna energja, U unutarnja energja, p V - energja potrebna za dovod odvođenje fluda z sustava, K knetčka energja, P potencjalna energja, q m masen protok, Q tok toplne kroz grancu sustava, W rad sustava na okolnu, Q m tok toplne zbog prjenosa tvar kroz grancu sustava m

23 Prmjer. Mkroskopsk makroskopsk model procesa Blance tvar energje za kemjsku reakcju koja se odvja u cjevnom reaktoru - turbulentno strujanje - staconarn proces - sve komponentne brzne, osm brzne strujanja u smjeru os z, v z, su jednake nul - komponente reakcjskog sustava su nestlačv flud - clndrčn koordnatn sustav

24 Prmjer. Model 1. - koefcjent aksjalnog radjalnog povratnog mješanja koefcjent aksjalnog radjalnog prjenosa toplne su ovsn o radjalnoj dmenzj, uspostavljeno vektorsko polje brzna strujanja određeno ekspermentalno (brzna strujanja u radjalnom smjeru promjenjva) Blanca tvar D z = D z (r), D R = D R (r), v z = v z (r) δc c 1 δ δc v r D r r D r r δz z r δx δr z( ) = z( ) + R( ) + - rubn uvjet - rubn uvjet δ c ( 0, r) () = ( ) ( 0, ) ( ) v () r T v ( r) T( 0, r) v r c v r c r D r z,0 z z δ c δ c δ c ( L, r) ( z,0) ( z, R) Blanca energje λ z = λ z (r), λ R = λ R (r), v z = v z (r) δt T 1 δ δt p z( ) z( ) R( ) r ρ C v r = λ r + r λ r +ΔH r δz z r δz δr z z 0 = z ρ Cp (, ) δt L r δt z (,0) δt z R (, ) δz U = TS T( z, R) λ R ( r) λ ( r) δt( 0, r) δz

25 Prmjer. Model. - koefcjent aksjalnog radjalnog povratnog mješanja koefcjent aksjalnog radjalnog prjenosa toplne su konstantn, uspostavljeno vektorsko polje brzna strujanja određeno ekspermentalno (brzna strujanja u radjalnom smjeru promjenjva) Blanca tvar D z = konst., D R = konst., v z = v z (r) δc c D δ δc v r D r r δz z r δx δr R z( ) = z rubn uvjet - rubn uvjet δ c ( 0, r) () = ( ) ( 0, ) v () r T v ( r) T( 0, r) v r c v r c r D z,0 z z δ c δ c δ c ( L, r) ( z,0) ( z, R) Blanca energje λ z = konst., λ R = konst., v z = v z (r) λ ρ C v r = + r +ΔH r δz z r δz δr z δt T R δ δt p z( ) λz r z 0 = z ρ Cp (, ) δt L r δt( z,0) δt( z, R) U = T S T ( z, R ) δz λ R λ δt ( 0, r) δz

26 Prmjer. Model 3. - koefcjent aksjalnog radjalnog povratnog mješanja koefcjent aksjalnog radjalnog prjenosa toplne su konstantn, brzna strujanja konstantna Blanca tvar D z = D L = konst., D R = konst., v z = v z (r) Blanca energje λ z = λ L = konst., λ R = konst., v z = v z (r) δc c D δ δc v D r r δz z r δx δr R z = z + + λ ρ C v = + r +ΔH r δz z r δz δr δt T R δ δt p z λz r - rubn uvjet - rubn uvjet δ c ( 0, r) = ( 0, ) v T v T( 0, r) v c v c r D z,0 z L δ c δ c δ c ( L, r) ( z,0) ( z, R) L z 0 = z ρ Cp (, ) δt L r δt( z,0) δt( z, R) U = T S T z R δz λ R λ (, ) δt ( 0, r) δz

27 Prmjer. Model 4. - zanemarv radjaln gradjent (temperatura koncentracja u svakoj točk poprečnog presjeka jednake), jednodmenzonaln model dferencjalne jednadžbe, brzna strujanja konstantna Blanca tvar D L = konst., v z = konst. dc d c v D r dz dz z = z + Blanca energje λ L = konst., v z = konst. dt d T λ p z z r S ( ) ρ C v = +ΔH r + U T T dz dz R - rubn uvjet - rubn uvjet dc ( 0) = ( 0) v T v T( 0) v c v c D z,0 z L d c ( L) d z d z z ( ) ( ) λ dt 0 L 0 = z ρ C d z dt L d z p

28 Prmjer. Model 5. - zanemarvo povratno mješanje prjenos toplne čepolko strujanje fluda, najuobčajenj model prjenosa tvar energje u cjevnom reaktoru Blanca tvar v z = konst. v c z d c = r d z ( ),0 = c 0 Blanca energje v z = konst. - rubn uvjet - rubn uvjet ρ dt C p v z Hr r U TS T d z =Δ + R T ( ) 0 = T 0 ( )

29 Prmjer. Model 6. - makroskopska blanca tvar energje u cjevnom reaktoru, poznata ukupna (srednja konverzja), model procesa algebarske jednadžbe (black box model) Blanca tvar v z = konst. vz c A= r Blanca energje v z = konst. ρ Cp vz T =ΔHr r V + U A TS T R ( ) - rubnh uvjeta nema - model uzet u obzr ovsnost konstantne brzne reakcje o temperatur (Arrhenusova jednažba) nelnearn model

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA

OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE Hemjska termodnamka proučava promene energje (toplotn efekat) pr odgravanju hemjskh reakcja. MATERIJA ENERGIJA? Energja je dskontnualna

Διαβάστε περισσότερα

Uvod. B. Zelić: Analiza i modeliranje ekoprocesa, Sustavni pristup modeliranju

Uvod. B. Zelić: Analiza i modeliranje ekoprocesa, Sustavni pristup modeliranju Uvod - modeliranje preuzima vodeću ulogu u razvoju procesa - modelima pokušavamo razumjeti, mijenjati, projektirati i voditi realne procese - pri razvoju modela moramo sagledati cjelovitost problema zajedno

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Protok., tada je relativna brzina gibanja čestica fluida u odnosu na površinu w i., a protok Q je definiran izrazom Q= wnds = v u nds

Protok., tada je relativna brzina gibanja čestica fluida u odnosu na površinu w i., a protok Q je definiran izrazom Q= wnds = v u nds EHNIK FLUI I Što valja zapamtt 0 Protok olumensk protok l jenostao protok Q jest volumen čestca flua koje u jenčnom vremenu prođu kroz promatranu površnu orjentranu jenčnm vektorom normale n ko se čestce

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

VJEŽBE IZ TERMODINAMIKE

VJEŽBE IZ TERMODINAMIKE SVEUČILIŠTE U SPLITU KEMIJSKO-TEHOLOŠKI FAKULTET Zavod za termodnamku Vanja Martnac Jelena Jakć VJEŽBE IZ TERMODIAMIKE Splt, 00. Recenzent: dr. sc. Renato Tomaš, doc. prof. dr. sc. edjeljka Petrc PREDGOVOR

Διαβάστε περισσότερα

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove

Διαβάστε περισσότερα

DVOFAZNI TOK FLUIDA KROZ HETEROGENU POROZNU SREDINU. UVJETI NA GRANICI RAZLIČITIH TIPOVA STIJENA

DVOFAZNI TOK FLUIDA KROZ HETEROGENU POROZNU SREDINU. UVJETI NA GRANICI RAZLIČITIH TIPOVA STIJENA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Manuela Koštroman DVOFAZNI TOK FLUIDA KROZ HETEROGENU POROZNU SREDINU. UVJETI NA GRANICI RAZLIČITIH TIPOVA STIJENA Dplomsk rad

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12. Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje

Διαβάστε περισσότερα

). Po njemu najveći hemijski afinitet imaju supstance čijim sjedinjavanjem dolazi do najvećeg smanjenja slobodne energije.

). Po njemu najveći hemijski afinitet imaju supstance čijim sjedinjavanjem dolazi do najvećeg smanjenja slobodne energije. HEMIJSKA RAVNOTEŽA HEMIJSKI AFINITET SUPSTANCI: težnja da stupe u hemjsku reakcju. Ranje se smatralo da je krterjum afnteta brzna. Kasnje se ocena hemjskog afnteta davala na osnovu kolčne oslobođene toplote

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

SVRHA ULTRAFILTRACIJA FAKTOR RETENCIJE NAČIN RADA FAKTOR REJEKCIJE SVOJSTVA MEMBRANA R =

SVRHA ULTRAFILTRACIJA FAKTOR RETENCIJE NAČIN RADA FAKTOR REJEKCIJE SVOJSTVA MEMBRANA R = SRHA ULTRAILTRACIJA Služ za koncentrranje komponent velke molekularne težne. Takve molekule ne prolaze kroz membranu, gdje prolaz samo permeat s manjm molekulama. Ne dolaz do promjena u topln nt faz. NAČIN

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

() () 5.2 Osnovni zakoni dinamike fluida. - Sile dodira između čestica unutar V () t su unutarnje sile. - Zakon očuvanja mase

() () 5.2 Osnovni zakoni dinamike fluida. - Sile dodira između čestica unutar V () t su unutarnje sile. - Zakon očuvanja mase 8. preaanje z Mehanke fla 73 5. Osnon zakon namke fla Mehanka Ssta materjalnh točaka Mehanka fla Materjaln olmen z x y - Sle ora zmeđ čestca ntar V () t s ntarnje sle. M - Zakon očanja mase N k m k 0 D

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

Hamilton-Jacobijeva jednadžba

Hamilton-Jacobijeva jednadžba Klasčna mehanka 2 p. 1/26 Hamlton-Jacobjeva jednadžba - faznm portretom u blo kojem vremenskom trenutku odre den je fazn portret u svm ranjm kasnjm vremenma - svaka točka faznog portreta prpada odre denoj

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Matematički modeli realnih sustava 1. i 2. dio

Matematički modeli realnih sustava 1. i 2. dio Matematički modeli realnih sustava 1. i 2. dio Realni sustavi promatraju se sustavi koji su česti u praksi matematički modeli konačne točnosti Pretpostavke za izradu matematičkog modela: dostupan realni

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

Dinamika rotacije (nastavak)

Dinamika rotacije (nastavak) Dnaka rotacje (nastaak) Naučl so: Moent sle: M r F II Njutno zakon za rotacju krutog tela oko nepokretne ose: Analogno sa: F a I je skalarna elčna analogna as predstalja nertnost tela prea rotacj. Zas

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Ovdje će se prikazati dva primjera za funkciju cilja sa dvije varijable: kružnicu i elipsu.

Ovdje će se prikazati dva primjera za funkciju cilja sa dvije varijable: kružnicu i elipsu. Neke metode z nelnearnog programranja Od metoda nelnearnog programranja koje se korste za rješavanje nekh problema sa specfčnom funkcjom clja zdvojt će se sljedeće: a) grafčka metoda, b) metoda neposrednog

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

OSNOVE FIZIKALNE KEMIJE

OSNOVE FIZIKALNE KEMIJE OSNOVE FIZIKALNE KEMIJE PREDAVANJA Za smjerove: Cjelovt reddlomsk dlomsk studj bologje kemje Preddlomsk studj bologje Preddlomsk studj molekularne bologje Preddlomsk studj znanost o okolšu V. Tomšć, T.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Popis zadataka. a. Računski pronađi nultočke tih dviju funkcija. b. Koja od zadanih funkcija raste brže? 4.,,, 5. Pojednostavi izraz:

Popis zadataka. a. Računski pronađi nultočke tih dviju funkcija. b. Koja od zadanih funkcija raste brže? 4.,,, 5. Pojednostavi izraz: Pops zadataka. Kolko su u koordnantnom sustavu udaljene točke A(, ) B(-, -)?. Izračunaj sve za koje vrjed jednadžba:. Zadane su funkcje. a. Računsk pronađ nultočke th dvju funkcja. b. Koja od zadanh funkcja

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

). Po njemu najveći hemijski afinitet imaju supstance čijim sjedinjavanjem dolazi do najvećeg smanjenja slobodne energije.

). Po njemu najveći hemijski afinitet imaju supstance čijim sjedinjavanjem dolazi do najvećeg smanjenja slobodne energije. HEMIJSKA RAVNOTEŽA HEMIJSKI AFINITET SUPSTANCI: težnja da stupe u hemjsku reakcju. Ranje se smatralo da je krterjum afnteta brzna. Kasnje se ocena hemjskog afnteta davala na osnovu kolčne oslobođene toplote

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Kombinovanje I i II zakona termodinamike

Kombinovanje I i II zakona termodinamike Kombnovanje I II zakona termodnamke Gbsove jednačne Maksvelove relacje Džul-omsonov efekat Džul-omsonov koefcjent Džul-omsonova nverzona temperatura 1 11.3.00 3:3 M Kombnovanje I II zakona- Gbsove jednačne

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

DINAMIKA FLUIDA Osnovni zakoni dinamike fluida

DINAMIKA FLUIDA Osnovni zakoni dinamike fluida MEHANIKA FLUIDA K DINAMIKA FLUIDA Osnon zakon dnamke fluda Dnamka plnoa se temel na osnonm zakonma klasčne fzke u koe spadau. Zakon očuana mase,. Zakon očuana kolčne gbana, 3. Zakon očuana momenta kolčne

Διαβάστε περισσότερα

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.

Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

DODATAK IZ KINEMATIKE FLUIDA

DODATAK IZ KINEMATIKE FLUIDA MEHANIKA FLUIDA II Što vala zapamtt 5 DODATAK IZ KINEMATIKE FLUIDA Nastavak na sažetak 6 z Mehanke fluda I Prv Helmholtzov teorem Gbane krutog tela (kod koeg e relatvn međusobn položa čestca stalan) moguće

Διαβάστε περισσότερα

Korelacijska i regresijska analiza

Korelacijska i regresijska analiza Korelacjska regresjska analza Odnos među pojavama Odnos među pojavama može bt: determnstčk l funkconaln stohastčk l statstčk Kod determnstčkoga se odnosa za svaku vrjednost jedne pojave točno zna vrjednost

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

#6 Istosmjerne struje

#6 Istosmjerne struje #6 Istosmjerne struje I Jednadžbe za istosmjerne struje II Gibbsov potencijal u vodičima predavanja 20** Drudeov model za vodljive elektrone Jouleov zakon Makroskopske jednadžbe za istosmjerne struje Gibbsov

Διαβάστε περισσότερα

Izbor prenosnih odnosa teretnog vozila - primer

Izbor prenosnih odnosa teretnog vozila - primer FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

FORMULACIJSKO INŽENJERSTVO

FORMULACIJSKO INŽENJERSTVO Kolegj FORMULACIJSKO INŽENJERSTVO kemkalje kao što su prevlake, farmaceutc, kozmetka prehramben prozvod prozvode se z všekomponentnh smjesa osnovna znanja o mješljvost razlčth komponenata potrebna su kako

Διαβάστε περισσότερα

OSNOVE MEHANIKE FLUIDA

OSNOVE MEHANIKE FLUIDA ONOVE MEHANIKE FLUIDA Pripremili: mr.sc. Davor Franjković, Jasna vien (Napomena: Za pregled ormula potrean je program Rapid Pi, koji možete preuzeti na stranici www.rapid-pi.com prona verzija traje 60

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami Izv. prof. dr.. Tomilav Kišiček dipl. ing. građ. 0.10.014. Betonke kontrukije III 1 NBK1.147 Slika 5.4 Proračunki dijagrami betona razreda od C1/15 do C90/105, lijevo:

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

1. METODE RJEŠAVANJA NELINEARNE JEDNADŽBE S JEDNOM NEPOZNANICOM

1. METODE RJEŠAVANJA NELINEARNE JEDNADŽBE S JEDNOM NEPOZNANICOM . METODE RJEŠAVANJA NELINEARNE JEDNADŽBE S JEDNOM NEPOZNANICOM. METODA BISEKCIJE.. METODA Nakon početnog stražvanja unkcje poznat su nam Kako može zgledat na ntervalu [ l, d ]? <

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

1. Molekularna svojstva čistih tvari i smjesa

1. Molekularna svojstva čistih tvari i smjesa . Molekularna svojstva čsth tvar smjesa . Treba zračunat molarnu masu lnske smjese koja se sastoj od 6 molova metana (CH 4 ), mola etana (C H 6 ) mola roana (C H 8 ). Kolka je masa navedene kolčne lna?

Διαβάστε περισσότερα

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα