Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3"

Transcript

1 Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { ,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z & Z -Άρρητος λέγεται ένας αριθμός που δεν μπορεί να γραφτεί με τη μορφή κλάσματος; ακεραίων, π.χ. οι αριθμοί, και οι γνωστοί αριθμοί e,7, και,4. -Σύνολο πραγματικών: είναι το σύνολο που περιέχει τους ρητούς και μη ρητούς αριθμούς και συμβολίζεται με. Ισχύει: Q. Μέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα E ( ί Βάσης) (Απόστημα) V ( ό Βάσης) (Ύψος) Σφαίρα E 4 και Αναλογίες 4 V Κώνος Η κάθετη πλευρά γύρω από την οποία περιστρέψαμε το ορθογώνιο τρίγωνο, λέγεται ύψος (υ) του κώνου. Η υποτείνουσα του ορθογωνίου τριγώνου λέγεται γενέτειρα του κώνου (λ). E V και Για ασκήσεις, συνήθως θέτω τον έναν λόγο ίσο με λ.. Δυνάμεις..., ν παράγοντες του α 0, 0 ( ) 0 Λογάριθμοι log, >0 log και log 0 log και log Αλλαγή Βάσης: log log log log ( ) log log Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός

2 0 ( ) ( ) 0 ( ) ( ) ( ), 0 Ρίζες n n και, 0 έτσι και, log log log με, 0 k log k log, >0 ln e, 0 * 0 0 n n ( ) n, 0 Βασικές Ταυτότητες ( ) και ( ) ( ) και ( ) ( )( ) ( ) και ( ) ( ) ( ) και ( ) ( ) ( ) ( ) ( ) ( )(... ) ( )( ) ( ) ( )( )( ) ( ) ( ) Ταυτότητα Euler ( )[( ) ( ) ( ) ] ( )( ) Αν 0 ή τότε 0 Ταυτότητα Lgrnge ( )( ) ( ) ( ) Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός

3 Βασικές ανισότητες 0 0, : ό 0, : ό 0, : ό 0, : ό z ό z k k 0 0 ( ό ) 0 0 Δεν αφαιρούμε και δεν διαιρούμε ανισότητες κατά μέλη. 0, : ί 0 ενώ και 0 & 0 ή & 0 Απόλυτη τιμή αριθμού Απόσταση ενός αριθμού από το μηδέν - πάντα μη αρνητικός αριθμός ( 0 ) 0 και για 0 0 και + + η ισότητα ισχύει για ομόσημους ή ένας τουλάχιστον από και έτσι τους δύο είναι μηδέν. - + η ισότητα ισχύει για ετερόσημους ή ένας τουλάχιστον από τους δύο είναι μηδέν ή (με >0) ή ή και για 0 Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός

4 Τριγωνομετρία β α ω γ β: Απέναντι κάθετη γ: Προσκείμενη κάθετη ω: γωνία σε μοίρες Πυθαγόρειο Θεώρημα (ισχύει μόνο σε ορθογώνιο τρίγωνο): και και Τριγωνομετρικοί αριθμοί γωνίας ω, και και ( ) Μετατροπή ακτινίων σε μοίρες και αντίστροφα α: γωνία σε ακτίνια και μ: γωνία σε μοίρες, οπότε: και και, ενώ, και Βασικές τριγωνομετρικές ταυτότητες k k Z k k Z k k Z k k Z k k Z Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 4

5 Αναγωγή στο ο τεταρτημόριο ( ) ημ(-θ)=-ημθ ημ(π-θ)=ημθ ημ(π+θ)=-ημθ ( ) συν(-θ)=συνθ συν(π-θ)=-συνθ συν(π+θ)=-συνθ ( ) εφ(-θ)=-εφθ εφ(π-θ)=-εφθ εφ(π+θ)=εφθ ( ) σφ(-θ)=-σφθ σφ(π-θ)=-σφθ σφ(π+θ)=σφθ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Μνημονικός κανόνας Οι τριγωνομετρικοί αριθμοί των τόξων: Α) ί ( ) παραμένουν ίδιοι, δηλαδή: ( ί ) : ό, αλλάζουν, δηλαδή: Β) το πρόσημο (+) ή (-) είναι ίδιο με το πρόσημο του αρχικού τριγωνομετρικού αριθμού στο αντίστοιχο τεταρτημόριο. Τριγωνομετρικοί αριθμοί Βασικών τόξων Μοίρες ακτίνια 0 π ή ημω συνω 0-0 εφω 0 Δεν Ορίζ. - 0 Δεν Ορίζ. 0 Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 5

6 σφω Δεν Ορίζ. 0 - Δεν Ορίζ. 0 Δεν Ορίζ. Τριγωνομετρικοί αριθμοί αθροίσματος και διαφοράς δύο τόξων ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Τριγωνομετρικοί αριθμοί διπλάσιου τόξου. Από-τετραγωνισμός Τριγωνομετρικών αριθμών (χρήσιμο στα ολοκληρώματα) Νόμος ημίτονων Νόμος συνημίτονων Για επίλυση τριγώνου Σε κάθε τρίγωνο ΑΒΓ ισχύει: Σε κάθε τρίγωνο ΑΒΓ για κάθε πλευρά του, ισχύει: R όπου R η ακτίνα του περιγεγραμμένου κύκλου του τριγώνου ΑΒΓ. Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 6

7 Επίλυση Εξίσωσης Για την επίλυση οποιασδήποτε εξίσωσης πέρα του πρώτου βαθμού, δηλαδή από δευτέρου τουλάχιστον αξιοποιώ την ιδιότητα 0 ά α=0 ή β=0 ή γ=0 ή δ=0 δηλαδή μετασχηματίζω την εξίσωση σε γινόμενο πρώτων παραγόντων ίσο με το μηδέν και παίρνω κάθε παράγοντα ίσο με το μηδέν. Παρόλα αυτά σε κάποιες περιπτώσεις μπορώ να εργαστώ όπως: Περίπτωση δευτέρου βαθμού της μορφής: b c 0 με 0 Έχουμε τη διακρίνουσα b 4c Τύποι του Viet Δ 0 Δύο άνισες πραγματικές Για την εξίσωση δευτέρου βαθμού b b c 0 με 0, ισχύουν ρίζες, b Άθροισμα ριζών S Δ = 0 Μία πραγματική ρίζα διπλή b c Γινόμενο ριζών P οπότε Δ 0 Δεν έχει ρίζες στο σύνολο των b c 0 S P 0 πραγματικών αριθμών Παραγοντοποίηση και Μορφές τριωνύμου b c με 0 Δ 0, Παραγοντοποιείται: Δ = 0, Παραγοντοποιείται: b c ( )( ) b b c ( ) Δ 0, Δεν παραγοντοποιείται Περίπτωση νιοστού βαθμού της μορφής ό 0 ό 0 ό δεν έχει 0 πραγματικές ρίζες. ό 0 Βασικές τριγωνομετρικές εξισώσεις, Z, Z Συχνές Εξισώσεις 0, Z, Z 0, Z, Z Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 7

8 , Z, Z Η εξίσωση 0 με α,β 0, μετασχηματίζεται σε ( ) 0, Z, Z, 4 Z, 4 Z διότι ( ) όπου και με Εκθετικές και λογαριθμικές εξισώσεις k k k log k e k ln k log log k k log k ln k e k k Εξισώσεις με απόλυτα ή (με >0) ή Επίλυση ανίσωσης Ανισώσεις με απόλυτα ή,για >0 και,για 0 Ανισώσεις δευτέρου βαθμού. Είναι της μορφής 0ή 0. Για την επίλυση αυτών μπορούμε να ακολουθούμε και την παρακάτω διαδικασία. ο βήμα. Βρίσκουμε τις ρίζες αν υπάρχουν της εξίσωσης 0 ο βήμα. Τοποθετούμε τις ρίζες της εξίσωσης στον άξονα των πραγματικών αριθμών τοποθετώντας επίσης και τα σύμβολα του απείρου ( ) και ( ) στις δύο άκρες του άξονα. ο βήμα. Συμπληρώνουμε πίνακα μεταβολών του προσήμου της, Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 8

9 - αν έχουμε δύο ρίζες (Δ>0), ξεκινώντας από το πρόσημο του α (συντελεστής του ) και εναλλάξ βάζουμε πρόσημα στα τρία διαστήματα που σχηματίζονται. Επιπλέον σημειώνουμε κύκλους μικρούς, πάνω στις γραμμές που αντιστοιχούν στις ρίζες. πρόσημο Ομόσημο του α πρόσημο Ετερόσημο του α πρόσημο Ομόσημο του α - αν έχουμε μια ρίζα (Δ=0), τοποθετούμε το πρόσημο του α (συντελεστής του ) και στα δύο διαστήματα που σχηματίζονται. Επιπλέον σημειώνουμε κύκλο μικρό, πάνω στην γραμμή που αντιστοιχεί στην ρίζα. πρόσημο πρόσημο Ομόσημο του α Ομόσημο του α - αν δεν έχουμε ρίζες (Δ<0), τοποθετούμε το πρόσημο του α (συντελεστής του ) στο διάστημα που σχηματίζεται. πρόσημο Ομόσημο του α 4 ο βήμα. Γράφουμε την λύση της ανίσωσης, η οποία θα είναι τα διαστήματα εκείνα που το πρόσημο το οποίο έχουμε τοποθετήσει είναι ίδιο με το πρόσημο της ανίσωσης που θέλουμε να λύσουμε. Για παράδειγμα, αν θέλουμε να λύσουμε την 0 τότε το πρόσημο της ανίσωσης είναι (+). Ανισώσεις της μορφής A( ) B( ) ( ) 0 Βρίσκω το πρόσημο του κάθε παράγοντα. Εισαγάγω αυτά σε έναν ευρύτερο, πίνακα και βρίσκω το πρόσημο του γινομένου των προσήμων του κάθε παράγοντα. A ( ) Ανισώσεις της μορφής 0 B ( ) ή A ( ) 0 B ( ) ή A ( ) ( ) B ( ) Μετασχηματίζονται σε γινόμενο παραγόντων και έτσι εμπίπτουν στην προηγούμενη περίπτωση. Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 9

10 Βασικοί Γεωμετρικοί τόποι Πρωταρχικές έννοιες -Συντελεστή διεύθυνσης ή κλίση ευθείας:, όπου ω η γωνία που σχηματίζει η ευθεία με τον θετικό ημιάξονα Οχ κινούμενη αντίθετα από του δείκτες του ρολογιού ω 80 -Αν η γωνία ω που σχηματίζει με τον άξονα είναι ορθή τότε δεν ορίζεται συντελεστής διεύθυνσης Παράλληλες ευθείες: Κάθετες ευθείες: Συντελεστής διεύθυνσης ευθείας που διέρχεται από δυο σημεία, ) και, ), ( ( Εξίσωση ευθείας A B 0 με A 0 ή B 0 αν 0 0 ό k ά ό ά & 0 ό ά Απόσταση σημείου M0( 0, 0) από την ευθεία ε: A B 0 A0 B0 dm ( 0, ) A B -Απόσταση δύο σημείων (, ) και (, ) είναι ( ) ( ) ( ) -Εξίσωση ευθείας η οποία έχει κλίση -Εξίσωση ευθείας που διέρχεται (συντελεστή διεύθυνσης) και διέρχεται από δυο σημεία A(, ) και από το σημείο (, ) : B(, ) ( ) ( ) ( ). ( ) Κύκλος Ονομάζεται κύκλος με κέντρο Κ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία ισαπέχουν από το Κ. Εξίσωση Κύκλου ( 0) ( 0) κύκλος κέντρου K( 0, 0) και ακτίνα ρ Κ( 0, 0 ) κύκλος κέντρου K(0,0) και ακτίνα ρ - Εφαπτομένη του κύκλου κέντρου K( 0, 0) και ακτίνα ρ σε σημείο του A(, ) ( )( ) ( )( ) Ο ρ M(, ) Γενικά: αν A B 0 με A B 4 0 A B Τότε αναπαριστά κύκλο, κέντρου K, και ακτίνας A B 4 Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 0

11 Παραβολή Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ, ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία ισαπέχουν από την Ε και τη δ. Εξίσωση Παραβολής p Εστία E p, 0 και διευθετούσα p : P Α M(,) p>0 p E,0 p δ: p p Εστία E 0, και διευθετούσα p : =p p>0 E0, p p δ: Έλλειψη Ονομάζεται έλλειψη με εστίες τα σημεία E και Ε ο γεωμετρικός τόπος C των σημείων του επιπέδου των οποίων το άθροισμα των αποστάσεων από τα E και Ε είναι σταθερό και μεγαλύτερο του EE. Εξίσωση Έλλειψης α β, όπου β α γ Εστίες ' (,0) και (,0) Μεγάλος άξονας α Μικρός άξονας β A E( γ,0) B B M (, ) E(γ,0) ( ME ) ( ME) με γα. Α Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός

12 β α, όπου β α γ Εστίες ' (0, ) και (0, ) Μεγάλος άξονας β Μικρός άξονας α B Β Α E( 0, γ) E( 0, γ) Υπερβολή Ονομάζεται υπερβολή με εστίες τα σημεία E και Ε ο γεωμετρικός τόπος C των σημείων του επιπέδου των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από τα E και Ε είναι σταθερή και μικρότερη του ( EE ). Εξίσωση Υπερβολής A Μ(,), όπου β γ α Ε (-γ,0) Ο Α Α Ε(γ,0) Εστίες α β Εστίες ' (,0) και (,0), όπου β ' (0, ) και (0, ) γ α ( ME) ( ME) α και α γ E(0,γ) Α Ο Α Ε (0,-γ) Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός

13 Συναρτήσεις Κατασκευή γραφικής παράστασης η οποία απορρέει από κάποια άλλη συνάρτηση f( ) έτσι: Η f ( ) c κατασκευάζεται μετακινώντας την C f κατακόρυφα (c>0: πάνω ενώ για c<0: κάτω) Η f ( c) κατασκευάζεται μετακινώντας την C f οριζόντια (c>0: αριστερα ενώ για c<0: δεξιά) Η f( ) είναι συμμετρική της C f ως προς τον άξονα Η f( ) είναι συμμετρική της C f ως προς τον άξονα Η f( ) είναι συμμετρική της C f ως προς κέντρο την αρχή των αξόνων. Γραφικές παραστάσεις Βασικών Συναρτήσεων Η πολυωνυμική συνάρτηση f ( ) α β >0 Π.Ο.= R και Σ.Τ.= R <0 Π.Ο.= R και Σ.Τ.= R =0 =β με Π.Ο.: R και Σ.Τ.= β Η πολυωνυμική συνάρτηση f ( ), 0 α. α>0 Π.Ο.= R και Σ.Τ.= 0, α<0 Π.Ο.= R και Σ.Τ.=,0 Προσοχή: Η συνάρτηση f ( ) ( ) 4 f ( ) f ( ) με 0, μετασχηματίζεται σε οπότε η κατασκευή της εμπίπτει σε μετατόπιση της οριζόντια κατά (δες κατασκευή της f ( c) ) και κάθετα κατά 4 Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός

14 Η πολυωνυμική συνάρτηση f ( ) α, α 0. α<0 Π.Ο.= R και Σ.Τ.=R α>0 Π.Ο.= R και Σ.Τ.= R Η ρητή συνάρτηση α f ( ), α 0. α>0 Π.Ο.=,0 0, και Σ.Τ.=,0 0, α<0 Π.Ο.=,0 0, και Σ.Τ.=,0 0, Η συνάρτηση f ( ) Η συνάρτηση g( ) Π.Ο.= 0, και Σ.Τ.= 0, Π.Ο.= R και Σ.Τ.= 0, Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 4

15 Οι τριγωνομετρικές συναρτήσεις π π =ημ π π =συν f ( ) ημ Περίοδος Τ=π Π.Ο.= R και Σ.Τ.=, f ( ) συν Περίοδος Τ=π Π.Ο.= R και Σ.Τ.=, Η συνάρτηση f ( ) ( ), έχει περίοδο T με ελάχιστη τιμή την και μέγιστη τιμή την. Για την γραφική της παράσταση μοιάζει με την f ( ) ημ αρκεί να μελετηθεί σε διάστημα μιας περιόδου δηλαδή, [0, ]. Το αντίστοιχο ισχύει για τις συναρτήσεις ( ) ( ) f. Για τις συναρτήσεις: f ( ) ( ), f ( ) ( ) η μόνη διαφορά με τις βασικές είναι η περίοδος δηλαδή T και βέβαια αρκεί να μελετηθεί σε διάστημα μιας περιόδου. Η συνάρτηση f ( ) με α,β 0, μετασχηματίζεται σε f ( ) ( ) όπου και με η οποία έχει περίοδο T με ελάχιστη τιμή την και μέγιστη τιμή την. Για την γραφική της παράσταση μοιάζει με την f ( ) ημ αρκεί να μετακινηθεί κατά φ (στην περίπτωση που φ>0) αριστερά ή δεξιά αντίστοιχα. π/ π/ π/ f ( ) εφ Περίοδος Τ=π Π.Ο.= R k k και Σ.Τ.= R =εφ Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 5

16 f ( ) Περίοδος Τ=π Π.Ο.=, Σ.Τ.= R R k k Z και Η εκθετική συνάρτηση f ( ) α, 0 α. α α> (α) Π.Ο.= R και Σ.Τ.= 0, α 0<α< (β) Π.Ο.= R και Σ.Τ.= 0, Η λογαριθμική συνάρτηση f ( ) log, 0 α α α> Π.Ο.= 0, και Σ.Τ.= R 0<α< Π.Ο.= 0, και Σ.Τ.= R Επιμέλεια: Κωνσταντίνος Λαβίδας, Μαθηματικός 6

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΛΓΙ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Σύνολο φυσικών: Í {,,,L} Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q / Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί µε τη µορφή κλάσµατος ακεραίων.

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

1.0 Βασικές Έννοιες στην Τριγωνομετρία

1.0 Βασικές Έννοιες στην Τριγωνομετρία .0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΑΓΩΓΗ ΣΤΟ 1 Ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ Έστω ΑΒΓ ένα ορθογώνιο τρίγωνο Είναι γνωστό ότι: ( ΑΒ) ηµ Γ= ( ΒΓ ) ( ΑΓ) συν Γ= ( ΒΓ ) ( ΑΒ) εφ Γ= ( ΑΓ ) ( ΑΓ)

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ. ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ 2ου ΒΑΘΜΟΥ ΠΡΟΣΗΜΟ ΤΡΙΩΝΥΜΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΗΣ ου ΒΑΘΜΟΥ α + β + γ 0, α 0 β 4 αγ Αν >0, τότε η εξίσωση έχει δύο πραγµατικές ρίζες: 1, β ± α Αν 0, τότε η εξίσωση έχει µια ρίζα διπλή: β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 2014

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 04 ΘΕΜΑ Α Α. Θεωρία από το σχολικό βιβλίο σελίδα 60. Α. α) Θεωρία από το σχολικό βιβλίο σελίδα 3. β) Θεωρία από το σχολικό

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ

Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ Τριγωνομετρικός κύκλος Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜAΤΙΚΟΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ Β ημφ, εφφ σφφ Μ Δ συνφ Α www.commonmaths.weebly.com Σελίδα 1 N Β, 90 ο Α, ο H O 1ο 3ο E Σ Δ, 180 ο 360 ο Ν, 70 ο 4ο 1 ο Τεταρτημόριο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013 1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου

Μαθηματικά Β Γυμνασίου Μαθηματικά Β Γυμνασίου Περιεχόμενα KEΦΑΛΑΙΟ 1 ΕΞΙΣΩΣΕΙΣ... 3 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ... 3 1.2 ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ... 3 1.3 ΕΠΙΛΥΣΗ ΤΥΠΩΝ... 4 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος B ΓΥΜΝΑΣΙΟΥ Πέτρος Μάρκος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις σε όλα

Διαβάστε περισσότερα

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Βασικά σύνολα Í,,,L Σύνολο φυσικών: { } Σύνολο ακεραίων: Æ { L,,,,,, L} Σύνολο ρητών: Q ê / ê Æ, ë Æ * ë Άρρητος λέγεται ένας αριθµός που δεν µπορεί να γραφτεί

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016 ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120

ΑΣΚΗΣΕΙΣ (1) Να ανάγετε τους πιο κάτω τριγωνομετρικούς αριθμούς σε τριγωνομετρικούς αριθμούς οξειών γωνιών: α) 160 β) 135 γ) 150 δ) ( 120 ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΝΑΓΩΓΗ ΣΤΟ 1 ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΜΝΗΜΟΝΙΚΟΣ ΚΑΝΟΝΑΣ 1. Χωρίς να λάβουμε υπόψη το πρόσημο: Αν οι δυο γωνιές έουν άθροισμα ή διαφορά, 18, 6 μοίρες τότε ο τριγωνομετρικός αριθμός δεν αλλάζει: ημ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ xcvbnmσγqwφertyuioσδφpγρaηsόρ

Διαβάστε περισσότερα

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά

Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά ΜΕΡΟΣ. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ 61 Ορισμοί. ΗΜΙΤΟΝΟ ΚΙ ΣΥΝΗΜΙΤΟΝΟ ΟΞΕΙΣ ΩΝΙΣ Ημίτονο γωνίας Ο λόγος που σχηματίζεται, αν διαιρέσουμε την απέναντι κάθετη πλευρά μιας οξείας γωνίας ω ενός ορθογωνίου

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας

1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας . ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν πάνω στη μία από τις δύο πλευρές της γωνίας πάρουμε τυχαία σημεία Μ και Ν και φέρουμε

Διαβάστε περισσότερα

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΚΕΦΑΛΑΙΟ Ο : ΤΡΙΓΩΝΟΜΕΤΡΙΑ. ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΟΞΕΙΑΣ ΓΩΝΙΑΣ έ _ ά ί ί _ ά ί έ _ ά ί _ ά ί _ ά έ _ ά ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΤΥΧΑΙΑΣ ΓΩΝΙΑΣ y y y όπου η απόσταση του

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ. Τριγωνομετρικοι αριθμοι οξειων γωνιων Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Τριγωνομετρικοι αριθμοι οξειων γωνιων 22 ΙΑΝΟΥΑΡΙΟΥ 2014 Κλίση ευθείας Όλοι έχουμε στο δρόμο τα παρακάτω σήματα, που από την εμπειρία μας καταλαβαίνουμε ότι πλησιάζουμε σε

Διαβάστε περισσότερα

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ 1.1 ΤΡΙΓΩΝΜΕΤΡΙΚΙ ΑΡΙΘΜΙ ΓΩΝΙΑΣ ΘΕΩΡΙΑ 1. Για γωνία ω µε ο < ω < 9 ο ηµω = γ α = απέ ναντι κάθετη υποτείνουσα Β συνω = β α = προσκείµενη κάθετη υποτείνουσα εφω = γ β = απέ ναντι κάθετη προσκείµενη κάθετη

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά

Διαβάστε περισσότερα

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση. Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ

2ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ. ΣΧΟΛΙΚΟ ΕΤΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ 2ο ΓΕΛ ΣΥΚΕΩΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ : Η ΥΠΕΡΒΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 013-014 ΕΠΙΜΕΛΕΙΑ : ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ο ΓΕΛ ΣΥΚΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Η ΥΠΕΡΒΟΛΗ ΟΡΙΣΜΟΣ: Έστω Ε και Ε δύο σημεία του

Διαβάστε περισσότερα

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηματικά Α Τάξης Γυμνασίου Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. Φυσικοί αριθμοί : Ν = {0,1,,3,4,...}. Ακέραιοι αριθμοί : Ζ = {...-4,-3,-,-1,0,1,,3,4,...} 3. Ρητοί αριθμοί : Q = { ì í, μ Ζ, ν Ζ* } Σημ. Το σύνολο Q των ρητών αριθμών ταυτίζεται με

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας

ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ Τριγωνομετρικοί αριθμοί οξείας γωνίας Δίνεται ορθογώνιο τρίγωνο ΑΒΓ, με Α = 90 ο, κάθετες πλευρές β, γ και οξεία γωνία ω. απέναντι κάθετη Ορίζουμε, ημω = υποτείνουσα συνω = προσκείμενη

Διαβάστε περισσότερα