τα βιβλία των επιτυχιών
|
|
- Ιπποκράτης Λιάπης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από τη διαρκή τους αξιοποίηση στις τάξεις μας διασφαλίζουμε τον εμπλουτισμό τους, τη συνεχή τους βελτίωση και την επιστημονική τους αρτιότητα, καθιστώντας τα βιβλία των Εκδόσεών μας εγγύηση για την επιτυχία των μαθητών. τα βιβλία των επιτυχιών
2
3 Νίκος Τάσος ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ Α & Β ΛΥΚΕΊΟΥ για μαθητές Γ Λυκείου
4 Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Γ Λυκείου Βασικές έννοιες Μαθηματικών Α & Β Λυκείου για μαθητές Γ Λυκείου Νίκος Τάσος ISBN: Επιμέλεια κειμένου: Γαλάτεια Μπασέα Σχεδιασμός έκδοσης, σελιδοποίηση: Βαρβάρα Παπαδημητρίου Σχεδιασμός εξωφύλλου: Αλέξανδρος Γιαννακούλιας, Μαλβίνα Κότο Εικόνα εξωφύλλου: Shutterstock Υπεύθυνη έκδοσης: Μαλβίνα Κότο Copyright 2019 ΕΚΔΟΣΕΙΣ ΠΟΥΚΑΜΙΣΑΣ, Νίκος Τάσος για την ελληνική γλώσσα σε όλο τον κόσμο Κυκλοφορία έκδοσης: Μάιος 2019 Επικοινωνία με συγγραφέα: Απαγορεύεται η με οποιονδήποτε τρόπο, μέσο και μέθοδο αναδημοσίευση, αναπαραγωγή, μετάφραση, διασκευή, θέση σε κυκλοφορία, παρουσίαση, διανομή και η εν γένει πάσης φύσεως χρήση και εκμετάλλευση του παρόντος έργου στο σύνολό του ή τμηματικά, καθώς και της ολικής αισθητικής εμφάνισης του βιβλίου (στοιχειοθεσίας, σελιδοποίησης κ.λπ.) και του εξωφύλλου του, σύμφωνα με τις διατάξεις της υπάρχουσας νομοθεσίας περί προστασίας πνευματικής ιδιοκτησίας και των συγγενικών δικαιωμάτων περιλαμβανομένων και των σχετικών διεθνών συμβάσεων. Αριθμός έκδοσης: 1η Αριθμός αντιτύπων: 1000 Λ. Βουλιαγμένης 46 & Αλεξιουπόλεως, ΤΚ Αργυρούπολη Τ
5 ΠΕΡΙΕΧΟΜΕΝΑ 1. Πραγματικοί Αριθμοί 1.1 Το σύνολο των πραγματικών αριθμών Οι πράξεις και οι ιδιότητές τους Δυνάμεις Ταυτότητες Παραγοντοποίηση Διάταξη Απόλυτη τιμή πραγματικού αριθμού Ρίζες πραγματικών αριθμών Προτεραιότητα των πράξεων Τριγωνομετρικοί Αριθμοί 2.1 Τριγωνομετρικοί αριθμοί Ακτίνιο Τριγωνομετρικοί αριθμοί βασικών γωνιών Αναγωγή στο 1ο τεταρτημόριο Τριγωνομετρικές ταυτότητες Πολυώνυμα 3.1 Ορισμός πολυωνύμου Σταθερό και μηδενικό πολυώνυμο Βαθμός πολυωνύμου Ισότητα πολυωνύμων Αριθμητική τιμή πολυωνύμου Ρίζα πολυωνύμου Διαίρεση πολυωνύμων Σχήμα Horner Εκθετική και Λογαριθμική Συνάρτηση 4.1 Εκθετική συνάρτηση Λογάριθμοι Λογαριθμική συνάρτηση Εξισώσεις 5.1 Πολυωνυμικές εξισώσεις 1ου βαθμού Εξισώσεις της μορφής x ν = α, ν!* Εξισώσεις με απόλυτα Πολυωνυμικές εξισώσεις 2ου βαθμού Πολυωνυμικές εξισώσεις βαθμού Ρητές εξισώσεις Άρρητες εξισώσεις Τριγωνομετρικές εξισώσεις Εκθετικές εξισώσεις Λογαριθμικές εξισώσεις Ειδικές περιπτώσεις εξισώσεων 83 7
6 6. Ανισώσεις 6.1 Πολυωνυμικές ανισώσεις 1ου βαθμού Ανισώσεις με απόλυτα Πολυωνυμικές ανισώσεις 2ου βαθμού Πολυωνυμικές ανισώσεις γινομένου Πολυωνυμικές ανισώσεις βαθμού Ρητές ανισώσεις Άρρητες ανισώσεις Εκθετικές ανισώσεις Λογαριθμικές ανισώσεις Ειδικές περιπτώσεις ανισώσεων Καρτεσιανό επίπεδο 7.1 Καρτεσιανό σύστημα συντεταγμένων Απόσταση δύο σημείων στο επίπεδο Απόσταση σημείου από ευθεία Απόσταση ευθείας από ευθεία Συστήματα 8.1 Γραμμικά συστήματα Μη γραμμικά συστήματα Εκθετικά συστήματα Λογαριθμικά συστήματα Συναρτήσεις 9.1 Η έννοια της συνάρτησης Πεδίο ορισμού & σύνολο τιμών συνάρτησης Μονοτονία & ακρότατα συνάρτησης Άρτια & περιττή συνάρτηση Γραφική παράσταση συνάρτησης Η συνάρτηση f(x) = αx + β Η συνάρτηση f(x) = αx Η συνάρτηση f(x) = αx Η συνάρτηση f(x) = αx 2 + βx + γ Τριγωνομετρικές συναρτήσεις Σύνοψη γραφικών παραστάσεων βασικών συναρτήσεων Γεωμετρία 10.1 Βασικά στοιχεία τριγώνων & είδη τριγώνων Ισότητα τριγώνων & κριτήρια ισότητας τριγώνων Ομοιότητα τριγώνων & κριτήρια ομοιότητας τριγώνων Εμβαδόν & περίμετρος επίπεδων σχημάτων Εμβαδόν & όγκος γεωμετρικών στερεών 191 Ευρετήριο όρων 195 8
7 Κεφάλαιο 1 Πραγματικοί Αριθμοί
8 1.1 Το σύνολο των πραγματικών αριθμών A. Βασικά σύνολα αριθμών Το σύνολο των φυσικών αριθμών, το οποίο συμβολίζουμε με N, είναι: N = {0, 1, 2, 3, } Με n * συμβολίζουμε τους φυσικούς που δεν περιέχουν το 0, δηλαδή: * n n 0 xn / x 0 Το σύνολο των ακεραίων αριθμών, το οποίο συμβολίζουμε με Z, είναι: Z = {, 2, 1, 0, 1, 2, } Με Z * συμβολίζουμε τους ακέραιους που δεν περιέχουν το 0, δηλαδή: * Z Z 0 xz / x 0 Το σύνολο των ρητών αριθμών, το οποίο συμβολίζουμε με q, είναι: Q Z,, 0 Με Q * συμβολίζουμε τους ρητούς που δεν περιέχουν το 0, δηλαδή: * Q Q 0 xq / x 0 Το σύνολο των άρρητων αριθμών, που δεν έχει κάποιον ιδιαίτερο συμβολισμό, είναι όλοι εκείνοι οι αριθμοί που δεν μπορούν να γραφούν σε μορφή κλάσματος. Το σύνολο των πραγματικών αριθμών, το οποίο συμβολίζουμε με r, αποτελείται από τους ρητούς και τους άρρητους. Με R * συμβολίζουμε τους πραγματικούς που δεν περιέχουν το 0, δηλαδή: * R R 0 xr / x 0 Για τα σύνολα N, Z, q, που είναι υποσύνολα του βασικού συνόλου r, ισχύει ότι: n Z Q R και με τη βοήθεια ενός διαγράμματος Venn προκύπτει το εξής: r Q Z N 11
9 Πραγματικοί Αριθμοί B. Ο άξονας των πραγματικών αριθμών Ο άξονας των πραγματικών αριθμών είναι μία ευθεία πάνω στην οποία ορίζουμε: ένα σημείο, το οποίο θεωρείται ως αρχή μέτρησης, ένα μέτρο, τη θετική φορά. x 2 e x + Γ. Αντίθετοι & αντίστροφοι αριθμοί Δύο αριθμοί α, β ονομάζονται: Αντίθετοι, αν, και μόνο αν, α + β = 0 Αντίστροφοι, αν, και μόνο αν, α β = 1 i. Ο αντίθετος του 5 είναι ο 5, αφού = 0. ii. Ο αντίθετος του α β είναι ο β α, αφού (α β) + (β α) = α β + β α = 0. iii. Ο αντίστροφος του 2 3 είναι ο 3 2, αφού iv. Ο αντίστροφος του α είναι ο 2 4, αφού 1 4 (α2 + 4) = 1. Δ. Άρτιοι & περιττοί αριθμοί Κάθε ακέραιος αριθμός που διαιρείται με το 2 (ή είναι πολλαπλάσιο του 2) λέγεται άρτιος. Συμβολικά κάθε άρτιος αριθμός έχει τη μορφή: 2ν, όπου ν ακέραιος Κάθε ακέραιος αριθμός που δεν διαιρείται με το 2 λέγεται περιττός. Συμβολικά κάθε περιττός αριθμός έχει τη μορφή: 2ν + 1, όπου ν ακέραιος 12
10 Κεφάλαιο Οι πράξεις και οι ιδιότητές τους Α. Ιδιότητες των πράξεων Για την πρόσθεση και τον πολλαπλασιασμό ισχύουν οι ιδιότητες που αναφέρονται στον επόμενο πίνακα, οι οποίες αποτελούν τη βάση του αλγεβρικού λογισμού. Ιδιότητα Πράξη Πρόσθεση Πολλαπλασιασμός Αντιμεταθετική α + β = β + α αβ = βα Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Ουδέτερο Στοιχείο α + 0 = α α 1 = α Επιμεριστική α(β + γ) = αβ + αγ B. Ιδιότητες που προκύπτουν από τις πράξεις πραγματικών αριθμών 1. Για κάθε α, β, γ, δr ισχύει ότι: α β α + γ = β + δ γ δ Δηλαδή, μπορούμε δύο ισότητες να τις προσθέτουμε κατά μέλη. 2. Για κάθε α, β, γ, δr ισχύει ότι: α β α γ = β δ γ δ Δηλαδή, μπορούμε δύο ισότητες να τις πολλαπλασιάζουμε κατά μέλη. 3. Για κάθε α, β, γr ισχύει ότι: α = β α + γ = β + γ (ιδιότητα διαγραφής στην πρόσθεση) Δηλαδή, μπορούμε και στα δύο μέλη μιας ισότητας να προσθέτουμε (ή να αφαιρούμε) τον ίδιο πάντα αριθμό. 4. Για κάθε α, β, γr με γ 0, ισχύει ότι: α = β α γ = β γ (ιδιότητα διαγραφής στον πολλαπλασιασμό) Δηλαδή, μπορούμε και τα δύο μέλη μιας ισότητας να τα πολλαπλασιάζουμε (ή να τα διαιρούμε) με τον ίδιο μη μηδενικό αριθμό. 13
11 Πραγματικοί Αριθμοί 5. Για κάθε α, βr, ισχύει ότι: α β = 0 α = 0 ή β = 0 Δηλαδή, το γινόμενο δύο πραγματικών αριθμών είναι ίσο με το μηδέν, αν, και μόνο αν, ένας τουλάχιστον από τους αριθμούς είναι ίσος με το μηδέν. Άμεση συνέπεια της ιδιότητας αυτής είναι η: α β 0 α 0 και β 0 6. α 2 + β 2 = 0 α = 0 και β = 0 7. α + β = 0 α = 0 και β = 0 8. α 2 + β 2 0 α = 0 και β = 0 9. α 2 + β 2 > 0 α 0 ή β 0 Παγίδες Προσέξτε ότι στις ιδιότητες (1) και (2) δεν ισχύει το αντίστροφο, γι αυτό άλλωστε χρησιμοποιούμε το σύμβολο της συνεπαγωγής (). Με άλλα λόγια, αν ισχύει α + γ = β + δ, δεν μπορούμε να συμπεράνουμε ότι α = β και γ = δ. Όμοια, για τη (2), αν ισχύει α γ = β δ, δεν μπορούμε να συμπεράνουμε ότι α = β και γ = δ. Για παράδειγμα: = δεν ισχύει ότι 2 = 3 και 5 = = 2 6 δεν ισχύει ότι 3 = 2 και 4 = 6 Γ. Λόγος του α προς τον β, όπου β 0 Αν α και β είναι δύο πραγματικοί αριθμοί με β 0, ονομάζουμε λόγο του α προς τον β το πηλίκο της διαίρεσης α : β και συμβολίζουμε. Δ. Ανάλογοι αριθμοί Δύο αριθμοί α, β λέγονται ανάλογοι προς δύο άλλους αριθμούς γ και δ, όταν ο λόγος του α προς τον γ είναι ίσος με τον λόγο του β προς τον δ, δηλαδή όταν ισχύει: 1. Ε. Ιδιότητες αναλογιών α δ = β γ, βδ 0 14
12 Κεφάλαιο , αβγδ 0, βγδ 0, βδ 0 5. Αν, τότε:, βδ(β + δ) Δυνάμεις Α. Ορισμός δύναμης Η δύναμη ενός πραγματικού αριθμού α με εκθέτη έναν ακέραιο αριθμό, τον οποίο συμβολίζουμε με α ν, είναι το γινόμενο ν παραγόντων ίσων με τον αριθμό α, δηλαδή: α ν, για ν > 1 και α 1 = α, για ν = 1 Αν επιπλέον ισχύει α 0, ορίζουμε ότι: α 0 = 1 και α ν = 1 i. 2 4 = = 16 ii. ( 3) 2 = ( 3)( 3) = 9 iii. ( 2) 3 = ( 2)( 2)( 2) = 8 iv. 0 4 = 0 v. 5 0 = 1 vi. 3 2 = = 2 9 Β. Ιδιότητες δυνάμεων Για δυνάμεις με εκθέτη κ, λz ισχύουν οι παρακάτω ιδιότητες: 1. α κ α λ = α κ+λ 2. α κ β κ = (α β) κ 3. (α κ ) λ = α κλ 4. α κ α κ λ 5. α κ λ κ α β α κ 6. β α κ β β α κ 15
13 Πραγματικοί Αριθμοί i = = 3 2 = 9 ii = (4 5) 2 = 400 iii. (2 4 ) 2 = 2 8 = = iv. 4 3 = ( 4) 5 3 = ( 4) 2 = 16 4 v = ( 2) 4 = 16 vi Παγίδες Τα λάθη που παρατηρούνται πιο συχνά και πρέπει να αποφύγουμε είναι τα εξής: Λάθος Σωστό 2 3 = 2 3 = = = = 2 5 = = = = 2 1 = = 8 4 = = = = 8 3 = (2 3 ) 3 = = = 2 5 Γ. Πρόσημο δυνάμεων Ισχύουν τα εξής: 1. Αν ν άρτιος, τότε: α. α ν > 0, αν α 0 β. α ν = 0, αν α = 0 2. Αν ν περιττός, τότε: α. α ν > 0, αν α > 0 β. α ν = 0, αν α = 0 γ. α ν < 0, αν α < 0 3. Ισχύει επίσης ότι: ( α) 2ν α 2ν ενώ ( α) 2ν + 1 = α 2ν + 1, νz i. ( 5) 2022 > 0 ii > 0 iii < 0 iv = 0 v. ( 4) 51 < 0 vi = 1 < 0 16
14 Κεφάλαιο 1 Δ. Δυνάμεις με εκθέτη ρητό Αν α > 0, μ ακέραιος και ν θετικός ακέραιος, τότε ορίζουμε: μ α ν ν α μ Αν μ, ν θετικοί ακέραιοι, τότε ορίζουμε: 0 = i = 16 = 16 = 4 ii = 8 = 64 = Για α > 0, είναι: Παγίδα Αν αr, μ, νn * και μ άρτιος, τότε: ν α μ μ α ν 1.4 Ταυτότητες Α. Βασικές ταυτότητες Ταυτότητα είναι κάθε ισότητα με μεταβλητές, η οποία επαληθεύεται για όλες τις τιμές των μεταβλητών αυτών. ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 1. (α + β) 2 = α 2 + 2αβ + β 2 2. (α β) 2 = α 2 2αβ + β 2 3. α 2 β 2 = (α β)(α + β) 4. (α + β) 3 = α 3 + 3α 2 β + 3αβ 2 + β 3 5. (α β) 3 = α 3 3α 2 β + 3αβ 2 β 3 6. α 3 + β 3 = (α + β)(α 2 αβ + β 2 ) 7. α 3 β 3 = (α β)(α 2 + αβ + β 2 ) 8. (α + β + γ) 2 = α 2 + β 2 + γ 2 + 2αβ + 2αγ + 2βγ 17
15 Πραγματικοί Αριθμοί Β. Χρήσιμες ταυτότητες Μερικές ακόμη εφαρμογές ταυτοτήτων είναι οι εξής: ΧΡΗΣΙΜΕΣ ΤΑΥΤΟΤΗΤΕΣ 1. α 2 + β 2 = (α + β) 2 2αβ 2. α 2 + β 2 = (α β) 2 + 2αβ 3. (α + β) 2 = (α β) 2 + 4αβ 4. (α β) 2 = (α + β) 2 4αβ 5. α 3 + β 3 = (α + β) 3 3αβ(α + β) 6. α 3 β 3 = (α β) 3 + 3αβ(α β) 7. (α + β γ) 2 = α 2 + β 2 + γ 2 + 2αβ 2αγ 2β 8. α 3 + β 3 + γ 3 3αβγ = 1 2 (α + β + γ)[(α β)2 + (β γ) 2 + (γ α) 2 ] i. (3x 2 + 2y) 2 = (3x 2 ) x 2 2y + (2y) 2 = 9x x 2 y + 4y 2 ii. (x 2y 3 ) 2 = x 2 2 x 2y 3 + (2y 3 ) 2 = x 2 4xy 3 + 4y 6 iii. (x + 3y)(x 3y) = x 2 (3y) 2 = x 2 9y 2 iv. (3x + 4) 3 = (3x) (3x) (3x) = 27x x x + 64 v. (2x y) 3 = (2x) 3 3 (2x) 2 y + 3 (2x) y 2 y 3 = 8x 3 12x 2 y + 6xy 2 y 3 vi. 8 + x 3 = x 3 = (2 + x)(2 2 2x + x 2 ) = (2 + x)(4 2x + x 2 ) vii. 27 x 3 = 3 3 x 3 = (3 x)( x + x 2 ) = (3 x)(9 + 3x + x 2 ) viii. (2x + y + 1) 2 = (2x) 2 + y x y + 2 2x y 1 = = 4x 2 + y xy + 4x + 2y Παγίδες Προσέχουμε τις παρακάτω ισότητες: ( α β) 2 = (α + β) 2 ( α + β) 2 = (β α) 2 ( α β) 3 = (α + β) 3 ( α + β) 3 = (β α) 3 18
16 Κεφάλαιο Παραγοντοποίηση Α. Ορισμός παραγοντοποίησης Η παραγοντοποίηση μιας παράστασης είναι ο μετασχηματισμός της σε γινόμενο παραγόντων. Β. Μέθοδοι παραγοντοποίησης 1. Κοινός παράγοντας Όταν οι όροι της παράστασης έχουν κοινό παράγοντα, τότε η παράσταση μετατρέπεται σε γινόμενο με τη βοήθεια της επιμεριστικής ιδιότητας. i. 4αβ 2α 2 + 3α = α(4β 2α + 3) ii. 4α 3 β 2 2α 4 β 3 + 8α 7 β 5 = 2α 3 β 2 (2 αβ + 4α 4 β 3 ) 2. Παραγοντοποίηση κατά ομάδες (ομαδοποίηση) Όταν οι όροι που εμφανίζονται σε μια παράσταση δεν έχουν όλοι κοινό παράγοντα, τότε τους διασπάμε σε ομάδες ώστε: οι ομάδες που δημιουργούμε να έχουν κοινό παράγοντα, οι παραστάσεις που θα προκύψουν, μετά την εξαγωγή του κοινού παράγοντα, να είναι ίδιες. i. 20α 2 + 5α 2β 8αβ = 5α(4α + 1) 2β(1 + 4α) = (4α + 1)(5α 2β) ii. 6α 3 2α 3 β + 3α αβ + β 3 = 2α 3 (3 β) + α(3 β) + β 3 = = 2α 3 (3 β) + α(3 β) (3 β) = (3 β)(2α 3 + α 1) 3. Ταυτότητες 1. α 2 2αβ + β 2 = (α β) 2 2. α 2 + 2αβ + β 2 = (α + β) 2 3. α 2 β 2 = (α β)(α + β) 4. α 3 β 3 = (α β)(α 2 + αβ + β 2 ) 5. α 3 3α 2 β + 3αβ 2 β 3 = (α β) 3 6. α 3 + 3α 2 β + 3αβ 2 + β 3 = (α + β) 3 19
17 Πραγματικοί Αριθμοί i. 4α 2 12αβ 2 + 9β 2 = (2α) 2 2 2α 3β + (3β) 2 = (2α 3β) 2 ii. 16α 4 + β 2 + 8α 2 β = (4α 2 ) α 2 β + β 2 = (4α 2 + β) 2 iii. 1 4α 2 = 1 2 (2α) 2 = (1 2α)(1 + 2α) iv. 27α 3 8β 3 = (3α) 3 (2β) 3 = (3α 2β)[(3α) 2 + 3α 2β + (2β) 2 ] = = (3α 2β)(9α 2 + 6αβ + 4β 2 ) v. 8α 3 12α 2 + 6α 1 = (2α) 3 3 4α α = = (2α) 3 3 (2α) α = (2α 1) 3 vi. α α 2 β + 48αβ β 3 = α α 2 4β + 3 α 16β 2 + (4β) 3 = = α α 2 4β + 3 α (4β) 2 + (4β) 3 = (α + 4β) 3 4. Σε κάποιες περιπτώσεις παραγοντοποίησης θα χρειαστεί να προσθέσουμε και να αφαιρέσουμε κάποια παράσταση, προκειμένου να δημιουργήσουμε το ανάπτυγμα κάποιας γνωστής ταυτότητας. Οι περιπτώσεις αυτές είναι εξαιρετικά δύσκολες και απαιτούν μεγάλη εμπειρία. α 4 + 4β 4 = α 4 + 4β 4 + 4α 2 β 2 4α 2 β 2 = = (α 2 + 2β 2 ) 2 (2αβ) 2 = = (α 2 + β 2 2αβ)(α 2 + β 2 + 2αβ) 5. Συνδυασμός περιπτώσεων Σε πολλές περιπτώσεις για την παραγοντοποίηση μιας παράστασης χρειάζεται να κάνουμε συνδυασμό των παραπάνω τρόπων. 9α 2 18αβ + 9β 2 3α + 3β = 9(α 2 2αβ + β 2 ) 3(α β) = = 9(α β) 2 3(α β) = 3(α β)[3(α β) 1] = = 3(α β)(3α 3β 1) 20
18 Κεφάλαιο 1 6. Τριώνυμο Διακρίνουσα Δ = β 2 4 α γ Ρίζες Δ > 0 x 12, 2 Μορφή τριωνύμου αx 2 + βx + γ αx 2 + βx + γ = α(x x 1 )(x x 2 ) Δ = 0 x 0 2 αx 2 + βx + γ = α(x x 0 ) 2 Δ < 0 Δεν υπάρχουν πραγματικές ρίζες Δεν αναλύεται σε γινόμενο πρωτοβάθμιων παραγόντων i. Το τριώνυμο 3x 2 + x 2 έχει α = 3, β = 1 και γ = 2. Οπότε η διακρίνουσα του είναι: Δ = β 2 4 α γ = ( 2) = = 25 > 0 Επομένως, το τριώνυμο έχει δύο πραγματικές και άνισες ρίζες, τις: x 12, Άρα, το τριώνυμο 3x 2 + x 2 παραγοντοποιείται ως εξής: 2 3x 2 + x 2 = 3 x 3 (x ( 1)) = (3x 2)(x + 1) ii. Το τριώνυμο 4x x + 9 έχει α = 4, β = 12 και γ = 9. Οπότε η διακρίνουσα του είναι: Δ = β 2 4 α γ = = = 0 Επομένως, το τριώνυμο έχει μία διπλή ρίζα, τη: x 0 = Άρα, το τριώνυμο 3x 2 + x 2 παραγοντοποιείται ως εξής: 2 2 3x 2 + x 2 = 3 x 3 x iii. Το τριώνυμο 2x 2 5x + 6 έχει α = 2, β = 5 και γ = 6. Οπότε η διακρίνουσα του είναι: Δ = β 2 4 α γ = ( 5) = = 23 < 0 Επομένως, το τριώνυμο δεν έχει πραγματικές ρίζες και συνεπώς δεν παραγοντοποιείται. 21
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΒασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραAπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!
ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ Καθηγητής Μαθηµατικών άμιλλα φροντιστήρια ΠΩΣ; Βασικά στοιχεία από την Άλγεβρα της Α και Β Λυκείου, αλλά και από την Κατεύθυνση της Β Λυκείου, που είναι απαραίτητα στα Μαθηµατικά Κατεύθυνσης
Διαβάστε περισσότεραμαθηματικά β γυμνασίου
μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραR={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
Διαβάστε περισσότεραΙγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
Διαβάστε περισσότεραAλγεβρα A λυκείου α Τομος
Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΑπαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ
1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. Φυσικοί αριθμοί : Ν = {0,1,,3,4,...}. Ακέραιοι αριθμοί : Ζ = {...-4,-3,-,-1,0,1,,3,4,...} 3. Ρητοί αριθμοί : Q = { ì í, μ Ζ, ν Ζ* } Σημ. Το σύνολο Q των ρητών αριθμών ταυτίζεται με
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΠ.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΆλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Διαβάστε περισσότερα2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΑ. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
Διαβάστε περισσότεραAλγεβρα A λυκείου B Τομος
Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ειρά: Γενικό ύκειο, Θετικές Επιστήμες Άλγεβρα Α υκείου, Β Τόμος Παναγιώτης Γριμανέλλης Εξώφυλλο: Γεωργία αμπροπούλου
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΦ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη
Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότεραΠολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...
3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜέτρηση του όγκου και του εμβαδού ορθών πρισμάτων Κανονική Πυραμίδα 1 Βάσης) (Απόστημα) 2 1 ό Βάσης) (Ύψος) 3
Βασικά σύνολα αριθμών -Σύνολο φυσικών: Ν = {0,., } ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ -Σύνολο ακεραίων: Ζ= { -.-.0.,, } Συμβολίζουμε με ν=κ και τους άρτιους και τους περιττούς αντίστοιχα. * -Σύνολο ρητών: Q =, Z &
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Διαβάστε περισσότερα( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:
( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x
Διαβάστε περισσότεραΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr
11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραBbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {
ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=
Διαβάστε περισσότερα2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Διαβάστε περισσότεραΑ ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1
Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότερα7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
Διαβάστε περισσότεραΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΜ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
Διαβάστε περισσότεραΡητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,
Διαβάστε περισσότεραΝα γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Διαβάστε περισσότεραΚεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
Διαβάστε περισσότεραΚεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Διαβάστε περισσότερα1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R
. ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και
Διαβάστε περισσότερα. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:
Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω
Διαβάστε περισσότεραΜαθηματικα Γ Γυμνασιου
Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
Διαβάστε περισσότεραΣ. Ασημέλλης. Μαθημαγικά
Σ. Ασημέλλης Μαθημαγικά Αθήνα 2013 Αφιερωμένο στο δικαίωμα ελεύθερης διάδοσης της γνώσης. Γνωρίζω, οι πρόλογοι των βιβλίων είναι ενδεχομένως το πιο σίγουρο τμήμα τους που κανένας δε διαβάζει. Στην πραγματικότητα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΘετικής-Τεχνολογικής Κατεύθυνσης
Mα θ η μ α τ ι κ ά Β Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Μαθηματικά Β Λυκείου Θετικής-Τεχνολογικής
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότερα