1.3. Εμβαδά επίπεδων σχημάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.3. Εμβαδά επίπεδων σχημάτων"

Transcript

1 1.3. μβαδά επίπεδων σχημάτων 1 cm 1 cm μβαδόν τετραγώνο ς θεωρήσομε ένα τετράγωνο πλεράς cm. Μπορούμε να το χωρίσομε σε = = «τετραγωνάκια» πλεράς 1 cm, καθένα από τα οποία έχει εμβαδόν 1 cm. Άρα, το τετράγωνο έχει εμβαδόν cm. ενικά: Το εμβαδόν ενός τετραγώνο πλεράς α ισούται με α. α β μβαδόν ς θεωρήσομε ένα ορθογώνιο με πλερές και cm. Όπως φαίνεται στο σχήμα, το ορθογώνιο χωρίζεται σε 1 «τετραγωνάκια» εμβαδού 1 cm. πομένως, το ορθογώνιο έχει εμβαδόν 3 = 1 cm. ενικά: Το εμβαδόν ενός με πλερές α, β ισούται με α β. Τις πλερές ενός τις λέμε μήκος (τη μεγαλύτερη πλερά) και πλάτος (τη μικρότερη) και τις ονομάζομε διαστάσεις το. Έτσι, μπορούμε να πούμε ότι το γινόμενο των διαστάσεων ενός ισούται με το εμβαδόν το ή: εμβαδόν = μήκος πλάτος. E E E Z Z Παρατήρηση: ια να σμβολίσομε το εμβαδόν κάθε επίπεδο σχήματος, το γράφομε μέσα σε παρένθεση. ηλαδή, το εμβαδόν ενός τετραπλεύρο σμβολίζεται με (), το εμβαδόν ενός τριγώνο ΖΗΘ σμβολίζεται με (ΖΗΘ) κ.ο.κ. μβαδόν παραλληλογράμμο ς θεωρήσομε ένα παραλληλόγραμμο με βάση = β = και ας φέρομε τα ύψη το = και Ζ =. Μεταφέροντας το τρίγωνο στη θέση τού (ίσο με ατό) τριγώνο Ζ, παρατηρούμε ότι: το εμβαδόν το παραλληλογράμμο ισούται με το εμβαδόν το Ζ. Άρα: () = (Ζ) = Ζ Ζ = β. ενικά: E Z Το εμβαδόν ενός παραλληλογράμμο είναι ίσο με το γινόμενο μίας βάσης το με το αντίστοιχο ύψος indb /1/013 10:0: μμ

2 10 Μέρος B Eμβαδά επίπεδων σχημάτων A β β É μβαδόν τχαίο τριγώνο ς θεωρήσομε ένα τχαίο τρίγωνο πο δεν είναι ορθογώνιο και ας πάρομε και άλλο ένα τρίγωνο ίδιο με ατό. ν τοποθετήσομε το δεύτερο τρίγωνο δίπλα στο πρώτο, όπως φαίνεται στα διπλανά σχήματα, τότε θα σχηματιστεί ένα παραλληλόγραμμο, πο θα έχει ως βάση β, τη βάση το και ως ύψος, το ύψος το, από την κορφή. ίτε το τρίγωνο είναι οξγώνιο είτε είναι αμβλγώνιο, το εμβαδόν το θα είναι ίσο με το μισό το παραλληλογράμμο πο σχηματίζεται, αν τοποθετήσομε άλλο ένα τρίγωνο ίσο με το, όπως φαίνεται στα διπλανά σχήματα. πομένως, θα ισχύει: () = 1 () = 1 β, A B β É όπο β η βάση το και το αντίστοιχο ύψος. ενικά: Το εμβαδόν ενός τριγώνο είναι ίσο με το μισό το γινομένο μιας βάσης το με το αντίστοιχο ύψος. B β μβαδόν τριγώνο Όταν το τρίγωνο είναι ορθογώνιο, τότε η μία από τις κάθετες πλερές είναι η βάση β και η άλλη το ύψος το. = γ πομένως: () = 1 β = 1 β γ. β Το εμβαδόν ενός τριγώνο είναι ίσο με το μισό το γινομένο των δύο κάθετων πλερών το. E β Θ β Ζ Η μβαδόν τραπεζίο ς θεωρήσομε το τραπέζιο πο έχει μεγάλη βάση =, μικρή βάση = β και ύψος Θ =. Θεωρώντας άλλο ένα ίσο τραπέζιο με το σχηματίζομε ένα παραλληλόγραμμο ΖΗ, όπως φαίνεται στο διπλανό σχήμα. Το παραλληλόγραμμο πο σχηματίσαμε έχει βάση (β + ) και ύψος. πομένως: (ΖΗ) = (β + ). Όμως: (ΖΗ) = () (β + ) Άρα: () = Το εμβαδόν ενός τραπεζίο είναι ίσο με το γινόμενο το ημιαθροίσματος των βάσεών το με το ύψος το indb 10 19/1/013 10:0:9 μμ

3 Μέρος B Eμβαδά επίπεδων σχημάτων 11 ΦΡΜΟΗ 1 Να σμπληρώσετε τον διπλανό πίνακα: Μήκος Πλάτος Περίμετρος μβαδόν 1 m 10 m 17 m 44m 9 m 4 m 33 m 330 m Λύση: Με τη βοήθεια της σχέσης: εμβαδόν = μήκος πλάτος, σμπληρώνομε τον πίνακα: Μήκος Πλάτος Περίμετρος μβαδόν 1 m 10 m 44 m 10 m 17 m m 44m 8 m m 9 m 8 m 4 m 33 m 10 m 86 m 330 m ΦΡΜΟΗ H αίθοσα Φσικής στο σχολείο της Άννας αποφασίστηκε να στρωθεί με τετράγωνα πλακάκια πο το καθένα έχει πλερά cm. α) Να βρείτε πόσα πλακάκια θα χρειαστούν, αν το δάπεδο της τάξης έχει διαστάσεις 1 m μήκος και 8 m πλάτος. β) ν κάθε πλακάκι κοστίζει 0, e, πόσα χρήματα θα χρειαστούν για να στρωθεί η τάξη; Λύση: α) Το εμβαδόν το δαπέδο είναι: Π = 1 8 = 96 (m ) και το εμβαδόν σε κάθε πλακάκι είναι: ΠΛΚ = = 6 (cm ) = 0,06 (m ). ιαιρώντας τα δύο ατά εμβαδά βρίσκομε πόσα πλακάκια χρειάζονται για να στρωθεί η τάξη: E Π 96 = ΠΛΚ 0,06 = 136. β) φού χρειάζονται 136 πλακάκια και το κάθε πλακάκι κοστίζει 0, e, το σνολικό κόστος θα είναι: 136 0, = 768 e. ΦΡΜΟΗ 3 Στο σχολείο της Κάτιας το μαθητικό σμβούλιο εκδίδει μια εφημερίδα πο κάθε φύλλο της έχει διαστάσεις μήκος και 30 cm πλάτος. Να πολογίσετε τη σνολική επιφάνεια το χαρτιού πο θα χρησιμοποιηθεί, για να τπωθούν 800 αντίτπα της εφημερίδας, αν κάθε αντίτπο έχει 8 φύλλα. Λύση: Το εμβαδόν κάθε φύλλο είναι 30 4 = 160 (cm ). Aφού κάθε αντίτπο έχει 8 φύλλα, χρειάζονται = (cm ) χαρτί για κάθε αντίτπο. Eπομένως, για να τπωθούν 800 αντίτπα, θα χρειαστούν: = (cm ) = 806,4 (m ) χαρτί indb 11 19/1/013 10:0:30 μμ

4 1 Μέρος B Eμβαδά επίπεδων σχημάτων 4 ΦΡΜΟΗ Στο τρίγωνο το σχήματος φέρνομε τη διάμεσο Μ. Να αποδείξετε ότι τα τρίγωνα Μ και Μ έχον το ίδιο εμβαδόν. B Η Μ Λύση: Μ Η Φέρνομε το ύψος Η. Τότε το τρίγωνο Μ έχει εμβαδόν: (Μ) =. Μ Η Το τρίγωνο Μ έχει εμβαδόν: (Μ) =. Όμως, Μ = Μ, επειδή το Μ είναι το μέσο της (η Μ είναι διάμεσος). Άρα: (Μ) = (Μ). ΦΡΜΟΗ Ένα οικόπεδο, όπως φαίνεται στο παρακάτω σχήμα, πωλείται προς 300 e το m. Ποια είναι η αξία το οικοπέδο; Λύση: Bρίσκομε πρώτα το εμβαδόν το οικοπέδο. τό αποτελείται από το ορθογώνιο και το τραπέζιο Ζ. 18 m Το εμβαδόν το είναι: () = 18 1 = 70 (m ). To εμβαδόν το τραπεζίο είναι: 1 m Ζ 8 m (1 + 8) 10 (Ζ) = = 11 (m ). 8 m B Άρα, το εμβαδόν το οικοπέδο είναι = 38 (m ). ια να βρούμε την αξία πώλησης το οικοπέδο, πολλαπλασιάζομε το εμβαδόν το με την τιμή πώλησης το τετραγωνικού μέτρο. Άρα, η αξία το οικοπέδο είναι: = e. ΦΡΜΟΗ 6 Στο παρακάτω σχήμα: α) Να εκφράσετε το εμβαδόν το τραπεζίο ως σνάρτηση το. β) ν το εμβαδόν το τραπεζίο είναι το τριπλάσιο από το εμβαδόν το Ζ, να πολογίσετε το. Λύση: α) Στο τραπέζιο, η μικρή βάση είναι = + 3 (cm), η μεγάλη βάση είναι = = + 4 (cm) και το ύψος το είναι = 6 (cm). Άρα, το εμβαδόν το είναι: () = (β + ) = ( ) 6 β) Το εμβαδόν το είναι (Ζ) = 3 6 = 18 (cm ). Aφού το εμβαδόν το τραπεζίο είναι τριπλάσιο από το εμβαδόν το, έχομε: () = 3 (Ζ) ή 3( + 7) = 3 18 ηλαδή: + 7 = 18 ή = 11 ή =, (cm). = 3( + 7) (cm ). Ζ +1 B indb 1 19/1/013 10:0:3 μμ

5 Μέρος B Eμβαδά επίπεδων σχημάτων 13 ΡΩΤΗΣΙΣ ΚΤΝΟΗΣΗΣ 1. Στο διπλανό σχήμα: Θ 1 To εμβαδόν το ΗΘ είναι: To εμβαδόν το ΖΘ είναι: To εμβαδόν το Η είναι: B Η 4 To εμβαδόν το Η είναι: 9 1 4, To εμβαδόν το ΖΗ είναι: 9 1 4, 6 To εμβαδόν το ΖΗ είναι: To εμβαδόν το Η είναι:, To εμβαδόν το Θ είναι:, 18 1 Ζ Nα επιλέξετε τη σωστή απάντηση.. Nα επιλέξετε τη σωστή απάντηση: 1 To εμβαδόν το παραλληλογράμμο είναι: To ύψος πο αντιστοιχεί στην πλερά είναι:, 9 4, 3 To εμβαδόν το παραλληλογράμμο ΖΗΘ είναι: cm 8 cm Ζ 4 Η πλερά = Θ είναι: 4 6 Θ Η Ποιο από τα επόμενα δεν είναι ίσο με το εμβαδόν το τριγώνο ; AB A A BK B AΛ K 6 Το εμβαδόν το τριγώνο ΘΗ είναι: Λ E Κ 7 Το ύψος ΘΚ πο αντιστοιχεί στην πλερά Η είναι: 4 6 Θ Ζ 10 cm 8 cm Η indb 13 19/1/013 10:0:37 μμ

6 14 Μέρος B Eμβαδά επίπεδων σχημάτων 8 Το διπλανό παραλληλόγραμμο έχει εμβαδόν 16cm και το είναι το μέσο της πλεράς. Το εμβαδόν το τριγώνο Κ είναι: Κ 9 Το εμβαδόν το μπλε παραλληλογράμμο είναι: 4 8 m 10 Το εμβαδόν κάθε πράσινο τριγώνο είναι: , 8m 1m ν το εμβαδόν το παραλληλογράμμο 11 είναι 1cm και το είναι το μέσο της πλεράς, τότε το εμβαδόν το τραπεζίο είναι: B ΣΚΗΣΙΣ 1 3 ν η περίμετρος ενός τετραγώνο είναι 60 cm, να πολογίσετε το εμβαδόν το. Οι διαστάσεις ενός φύλλο στο εικοσάφλλο τετράδιο το Σταύρο είναι 1 cm και 30 cm. Να πολογίσετε πόση επιφάνεια χαρτιού έχει όλο το τετράδιο. Στο παρακάτω σχήμα να αποδείξετε ότι τα εμβαδά το ροζ και το κίτρινο σχήματος είναι ίσα. α) Να αποδείξετε ότι το τετράγωνο και το τρίγωνο έχον ίσα εμβαδά. β) Να αποδείξετε ότι το εμβαδόν το είναι διπλάσιο από το εμβαδόν το. Nα πολογίσετε τα εμβαδά των δύο σχημάτων στο παρακάτω σχήμα, αν = cm. Στη σνέχεια, να εξηγήσετε γιατί ατά είναι ίσα για οποιαδήποτε τιμή το. α 6cm α 3cm 4 Να κατασκεάσετε ένα τετράγωνο. Στη σνέχεια να προεκτείνετε την πλερά το τετραγώνο και να πάρετε τμήμα =. 6 Ένα τετράγωνο και ένα τραπέζιο έχον ίσα εμβαδά. ν οι βάσεις το τραπεζίο είναι 1 cm και 0 cm και το ύψος το είναι, να πολογίσετε το εμβαδόν το τετραγώνο indb 14 19/1/013 10:0:41 μμ

7 Μέρος B Eμβαδά επίπεδων σχημάτων 1 7 Ένας ορθογώνιος κήπος έχει διαστάσεις 40 m και m. Tον κήπο διασχίζον δύο κάθετα μεταξύ τος δρομάκια. Το ένα παράλληλο προς τη μεγάλη πλερά το κήπο με πλάτος 0,6 m και το άλλο με πλάτος 0,8 m. Το πόλοιπο τμήμα θα β) Να αποδείξετε ότι το τετράπλερο ΜΝ έχει εμβαδόν όσο είναι το άθροισμα των εμβαδών των παραπάνω τριγώνων. Μ Ν m 0,6 m 0,8 m 11 Στα παρακάτω σχήματα κάθε τετραγωνάκι έχει πλερά 1 cm. Να βρείτε τα εμβαδά των 1 σχημάτων πο δίνονται: m 8 φτετεί με γκαζόν. Να πολογίσετε το κόστος της κατασκεής το γκαζόν, αν ο γεωπόνος χρεώνει 1 e κάθε m γκαζόν. Τα παρακάτω ορθογώνια έχον τις ίδιες διαστάσεις. ξηγήστε γιατί τα πράσινα μέρη των δύο ορθογωνίων έχον ίσα εμβαδά Στο παρακάτω σχήμα φαίνεται οικόπεδο σχήματος, το οποίο διασχίζει διαγώνια ένας δρόμος σταθερού πλάτος. α) Να αποδείξετε ότι τα τριγωνικά οικόπεδα πο απομένον έχον ίσα εμβαδά. β) Να πολογίσετε το, ώστε ο δρόμος να «αποκόπτει» από το οικόπεδο τμήμα το οποίο το εμβαδόν να είναι ίσο με το το εμβαδού πο απομένει στο οικόπεδο Στο τετράπλερο το διπλανού σχήματος οι διαγώνιες είναι κάθετες. ν = cm,ο=3cm και Ο=6cm, να πολογίσετε το εμβαδόν το τετράπλερο. Να πολογίσετε το σε καθένα από τα παρακάτω σχήματα. Ο 18 m 40 cm 3 30 m 10 Στο τετράγωνο το παρακάτω σχήματος είναι Μ και Ν τα μέσα των πλερών το και αντίστοιχα. α) Να αποδείξετε ότι τα τρίγωνα Μ και Ν έχον ίσα εμβαδά. 0 cm 18 cm indb 1 19/1/013 10:0:44 μμ

8 16 Μέρος B Eμβαδά επίπεδων σχημάτων 14 cm 9 cm Να πολογίσετε τα εμβαδά των παρακάτω σχημάτων: cm 1 cm 1 cm 8 cm 10 cm 16 Στο παρακάτω σχήμα δίνεται η κάτοψη ενός διαμερίσματος. Να βρείτε: α) Το εμβαδόν κάθε δωματίο. β) Το εμβαδόν το γωνιακού διαδρόμο. γ) Το εμβαδόν της βεράντας. εράντα εράντα 8, m Σαλόνι 4 m 3 m Κοζίνα ιάδρομος ραφείο Υπνοδωμάτιο 1 WC, m Mπάνιο Υπνοδωμάτιο, m 4 m 3 m 1, m, m 3 m 3 m 1 m 4, m 1 Να βρείτε το εμβαδόν το πορτοκαλί τετραγώνο το παρακάτω σχήματος. 1 1 cm 17 Στο παρακάτω σχήμα φαίνεται το τοπογραφικό διάγραμμα ενός κτήματος το οποίο πωλείται προς e το στρέμμα. α) Να βρεθεί η αξία το κτήματος. β) Πόσα κλήματα μπορούμε να φτέψομε στο κτήμα ατό, αν κάθε κλήμα απαιτεί, m χώρο; 60m 1 0m 30m 1 Ι ΙΣΚΣΗ: Πίσω από την κορτίνα κρύβονται ένα τετράγωνο, ένα ορθογώνιο και ένα ορθογώνιο τρίγωνο. 44m ρείτε τη θέση και το εμβαδόν καθενός, αν γνωρίζετε ότι: 1. Το ορθογώνιο έχει τετραπλάσιο εμβαδόν και βρίσκεται πιο αριστερά από το τετράγωνο.. Ένα σχήμα εμβαδού 100 cm βρίσκεται δεξιά από το ορθογώνιο τρίγωνο. 3. εξιά από ένα σχήμα με τέσσερις ορθές γωνίες βρίσκεται το ορθογώνιο τρίγωνο. 4. Οι κάθετες πλερές το τριγώνο είναι ίσες με τις κάθετες πλερές το indb 16 19/1/013 10:0:0 μμ

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2.

1.3 ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ. Ορισμοί Εμβαδόν τετραγώνου. Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α 2. ΜΡΟΣ Β 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ 1 Ορισμοί μβαδόν τετραγώνου 1.3 ΜΒΑΔΑ ΠΙΠΔΩΝ ΣΧΗΜΑΤΩΝ Το εμβαδόν ενός τετραγώνου πλευράς α ισούται µε α. E α α α μβαδόν ορθογωνίου Το εμβαδόν ενός ορθογωνίου µε πλευρές

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ορισμοί. Πυθαγόρειο θεώρημα. Δηλαδή Ε 1 =Ε 2 +Ε 3 ή α 2 =β 2 +γ 2 Το αντίστροφο του πυθαγορείου θεωρήματος

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ορισμοί. Πυθαγόρειο θεώρημα. Δηλαδή Ε 1 =Ε 2 +Ε 3 ή α 2 =β 2 +γ 2 Το αντίστροφο του πυθαγορείου θεωρήματος ΜΕΡΟΣ 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ 37 Ορισμοί 1.4 ΠΥΘΟΡΕΙΟ ΘΕΩΡΗΜ Πθαγόρειο θεώρημα Σε κάθε ορθογώνιο τρίγωνο το άθροισμα των τετραγώνων των δύο καθέτων πλερών είναι ίσο µε το τετράγωνο της ποτείνοσας. Στο διπλανό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ» Τι καλείται εμαδόν επίπεδης επιφάνειας; Το εμαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, πο εκφράζει την έκταση πο καταλαμάνει η επιφάνεια

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης

Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης 0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

Απέναντι πλευρές παράλληλες

Απέναντι πλευρές παράλληλες 5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.

5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες. 5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

2.3 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ

2.3 ΠΡΟΒΛΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ 79.3 ΠΡΟΒΛΗΜΑΤΑ Σύμφωνα με τα προηγούμενα δεν μπορούμε να πολογίσομε µε ακρίβεια την τιμή ενός άρρητο αριθμού. Στα διάφορα προβλήματα πο θα σναντούμε άρρητος αριθμούς θα τος προσεγγίζομε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο:

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο: ρωτήσεις ανάπτυξης. α) πό το ορθογώνιο τρίγωνο, έχουµε: - () λλά R, R, αφού η γωνία 0. () γίνεται: (R) - R R - R R Άρα R cm H πλευρά α του ισοπλεύρου τριγώνου είναι α 6 cm. β) Το 6 7 cm. B A H O. κεντρική

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν; ΜΕΡΟΣ Β. ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ-ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 05. ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΗΣ ΕΠΙΦΑΝΕΙΑΣ Ορισμός Το εμβαδόν μιας επίπεδης επιφάνειας είναι ένας θετικός αριθμός, που εκφράζει την έκταση που καταλαμβάνει η επιφάνεια

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ ΚΕΦΛΙΟ 0ο ΕΜ ΕΠΙΜΕΛΕΙ ΥΕΡΙΝΟΣ ΣΙΛΗΣ 57 ΚΕΦΛΙΟ 0ο ΕΜ Πολυγωνικά χωρία - Πολυγωνικές επιφάνειες. Τι καλούμαι πολυγωνικό χωρίο και πως ονομάζεται αυτό ; Πότε δύο πολυγωνικά χωρία λέγονται

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10 ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1

ΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ΛΥΚΙΟΥ - ΩΜΤΡΙ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α

Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο

Διαβάστε περισσότερα

4 η εκάδα θεµάτων επανάληψης

4 η εκάδα θεµάτων επανάληψης 4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι

Διαβάστε περισσότερα

5 η εκάδα θεµάτων επανάληψης

5 η εκάδα θεµάτων επανάληψης 5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο

ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή

ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ

3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ 1 3 ΠΛΛΗΛΟΜΜΟ ΟΘΟΩΝΙΟ ΤΤΩΝΟ ΟΜΟΣ ΤΠΙΟ ΙΣΟΣΛΣ ΤΠΙΟ ΘΩΙ Παραλληλόγραµµο Λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές παράλληλες. ( // και // ) άσεις και ύψη στο παραλληλόγραµµο άθε πλευρά του µπορεί

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ 1 4.5 Ο ΚΩΝΟΣ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΟΥ ΘΕΩΡΙ 1. Κώνος : ν φανταστούµε ότι το ορθογώνιο τρίγωνο στρέφεται γύρω από την κάθετη πλευρά του κατά µία πλήρη περιστροφή, προκύπτει το στερεό το οποίο λέγεται κώνος. 2.

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας

Διαβάστε περισσότερα

ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ

ΜΕΡΟΣ Β 1.4 ΟΜΟΙΟΘΕΣΙΑ ΟΜΟΙΟΘΕΣΙΑ ΜΕΡΟΣ.4 ΟΜΟΙΟΘΕΣΙ 45. 4 ΟΜΟΙΟΘΕΣΙ Το ομοιόθετο σημείου ν πάρουμε δύο σημεία Ο, και στην ημιευθεία Ο πάρουμε ένα σημείο ', τέτοιο ώστε Ο = 2 O, τότε λέμε ότι το σημείο είναι ο- μοιόθετο του με κέντρο Ο

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ ΕΩΜΕΤΡΙΑ ΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 ΤΑΞΗ ΦΥΛΛΟ ΕΡΑΣΙΑΣ Κ 1.1 ΕΝΟΤΗΤΑ : Εμβαδόν επίπεδης επιφάνειας Τάξη : υμνασίου. Καθ. Χρήστος Μουρατίδης Όνομα Μαθητή :.. Ημ/νία :. 1. Να βρείτε το εμβαδόν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 5 η ΕΚ 1. Οι πλευρές ενός τριγώνου σε cm είναι = 3x 3, = 3x + 1 και = x και η περίµετρος Π του τριγώνου είναι Π = 8cm. Να βρείτε τα µήκη των πλευρών του τριγώνου. Να δείξτε ότι το τρίγωνο

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

1.3 ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ

1.3 ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ 1 1.3 ΕΜΒΑ Α ΕΠΙΠΕ ΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Εµδόν τετργώνο πλεράς : Ε =. Εµδόν ορθογωνίο : Ε = 3. Εµδό πρλληλογράµµο : Ε = ύψος ή ύψος άση άση 4. Εµδόν τχίο τριγώνο : Ε = 5. Εµδόν ορθογωνίο τριγώνο : Ε =

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ ÊåöÜëáéï 7 ï Åõèýãñáììá ó Þìáôá âéâëéïììüèçìá : -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ âéâëéïììüèçìá 3: -Åìâáäü ôñéãþíïõ -Åìâáäü

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας.

1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΘΕΜΑ 1 ο 1. Να εξετάσετε αν οποιοδήποτε τετράγωνο είναι και ορθογώνιο παραλληλόγραμμο. Να διατυπώσετε τα επιχειρήματά σας. 2. Να δείξετε με παραδείγματα σχημάτων ορθογωνίων

Διαβάστε περισσότερα

1 η εκάδα θεµάτων επανάληψης

1 η εκάδα θεµάτων επανάληψης η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι

Διαβάστε περισσότερα

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης

6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης 6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ

Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΣΙΡΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ Σχολική χρονιά : 01-013 Βαθμός:... Υπογραφή:... ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 013 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία : 10-06-013 Σελίδες : 1 Τάξη : Γ Διάρκεια : ώρες Ώρα: 08:00-10:00

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

1.1- øª Δƒπ (111-115) 18-12-06 23:47 ÂÏ 111 ΜΕΡΟΣ Β. Εμβαδά Επίπεδων Σχημάτων. Πυθαγόρειο Θεώρημα

1.1- øª Δƒπ (111-115) 18-12-06 23:47 ÂÏ 111 ΜΕΡΟΣ Β. Εμβαδά Επίπεδων Σχημάτων. Πυθαγόρειο Θεώρημα .- øª ƒπ (-) 8--06 :7 ÂÏ ΜΕΡΟΣ º π Εμβαδά Επίπεδων Σχημάτων Ô Πυθαγόρειο Θεώρημα .- øª ƒπ (-) 8--06 :7 ÂÏ ΕΙΣΩΙΚΟ ΣΗΜΕΙΩΜ È appleïëìì ÚÂ ÙÔ Â ÏÔ, ÙÔ ÁÚË Î È ÙÔ ÊÚ ÙË, appleúèó applefi appleâú appleô ÙÚÂÈ

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου 70 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου Σχέσεις µεταξύ τριγωνοµετρικών αριθµών 71 Εφαρµογές 72 73 74 75 76 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ 5.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ. ΚΦΑΛΑΙΟ 11. Παραθέτουμε για εύκολη αναφορά το πινακάκι με την αντιστοιχία χορδών-αποστημάτων-τόξων που χρειάζεται σε όλες σχεδόν τις παρακάτω ασκήσεις Κανονικό εξάγωνο Πλευρά λν Χορδή λ = Απόστημα α =

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

2.6 ΑΘΡΟΙΣΜΑ ΚΑΙ ΔΙΑΦΟΡΑ ΔΙΑΝΥΣΜΑΤΩΝ

2.6 ΑΘΡΟΙΣΜΑ ΚΑΙ ΔΙΑΦΟΡΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕΡΟΣ 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ 293 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ Άθροισμα διανυσμάτων Το άθροισμα διανυσμάτων ρίσκεται με δύο τρόπους. Η μέθοδος του πολυγώνου Μεταφέρουμε τα διανύσµατα που χρειάζεται

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/2014 ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 06/06/014 ΤΑΞΗ: Β ΧΡΟΝΟΣ: ώρες (10:15 1:15) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:..

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΣΤΕΡΕΟΜΕΤΡΙΑ Ενδεικτικές Επαναληπτικές Δραστηριότητες 1 1. Να χαρακτηρίσετε με ΟΡΘΟ ή ΛΑΘΟΣ τις πιο κάτω προτάσεις, βάζοντας σε κύκλο τον αντίστοιχο χαρακτηρισμό. (α) Ο κύλινδρος είναι πολύεδρο. ΟΡΘΟ /

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΗ. 1 Να υπολογίσετε την περίμετρο και το εμβαδόν του παρακάτω τρίγωνο ΑΒΓ που έχει ΑΒ = 17cm, ΑΓ = 25cm και ΑΔ = 15cm. ΑΣΚΗΣΗ. 2 Στο ορθογώνιο τραπέζιο είναι ΑΒ= 9cm,

Διαβάστε περισσότερα

10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β

10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β 0.5 σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης. ( ) ύο τρίγωνα και έχουν υ β = υ β και =. ( ) β ποιος είναι ο λόγος β : : : 9 : 4 5 4 4 9 Κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 9 10 (Γ Γυμνασίου Α Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιο από τα ακόλουθα είναι το αποτέλεσμα της διαίρεσης του αριθμού 20102010 με τον

Διαβάστε περισσότερα

κάθε σχήματος. 1. Σκιάζω τα 3 4

κάθε σχήματος. 1. Σκιάζω τα 3 4 Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΑΘΗΝΑ Τηλ. 665-6778 - Fax: 605 ος Μαθητικός Διαγωνισμός Για μαθητές της Ε Τάξης Δημοτικού Ονοματεπώνυμο:. Δημοτικό Σχολείο. Τάξη/Τμήμα. Σκιάζω τα κάθε σχήματος..

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Α ΛΥΚΕΙΟΥ Ημερομηνία: 5//07 Ώρα εξέτασης: 09:0 -:0 ΟΔΗΓΙΕΣ: Να λύσετε όλα τα θέματα Κάθε θέμα βαθμολογείται με 0 μονάδες Να γράφετε με μπλέ ή μαύρο μελάνι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ 1. Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2

ΠΡΟΒΛΗΜΑ 1. Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2 ΠΡΟΒΛΗΜΑ 1 Αν x=-3, με τι ισούται το -3x; Α. -9 Β. -6 Γ. -1 Δ. 1 Ε. 9 ΠΡΟΒΛΗΜΑ 2 Τα αντικείμενα της παρακάτω ζυγαριάς ισορροπούν τέλεια. Στην αριστερή πλευρά υπάρχει ένα δοχείο 1 κιλού και μισό τούβλο.

Διαβάστε περισσότερα

Λόγος εμβαδών ομοίων σχημάτων

Λόγος εμβαδών ομοίων σχημάτων ΜΡΟΣ Β.6 ΛΟΓΟΣ ΜΒΑΔΩΝ ΟΜΟΙΩΝ ΣΧΗΜΑΤΩΝ 463. 6 ΛΟΓΟΣ ΜΒΑΔΩΝ ΟΜΟΙΩΝ ΣΧΗΜΑΤΩΝ Λόγος εμβαδών ομοίων σχημάτων Ο λόγος των εμβαδών δύο ομοίων σχημάτων είναι ίσος με το τετράγωνο του λόγου ομοιότητας τους. Δηλαδή

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

Μαθηματικά Ε. Μάθημα 34 ο. Ασκήσεις. 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.:

Μαθηματικά Ε. Μάθημα 34 ο. Ασκήσεις. 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.: Μάθημα 34 ο Ασκήσεις 1. Να σχεδιάσεις δύο ευθύγραμμα τμήματα, ΑΒ = 4 εκατ. και ΓΔ = 5,5 εκατ.: A B Γ Δ 2. Να σχεδιάσεις δύο ημιευθείες Λx και Κy: Λ x K y 3. Να σχεδιάσεις δύο ευθείες ε 1 και ε 2 οι οποίες

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ

Διαβάστε περισσότερα

MATHematics.mousoulides.com

MATHematics.mousoulides.com ΟΔΗΓΙΕΣ: ΕΝΔΕΙΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΑΞΙΟΛΟΓΗΣΗΣ 3 (Θέματα από τελικό γραπτό Ιουνίου 2014, Γυμνασίου Αρχαγγέλου Μιχαήλ) Επιτρέπεται η χρήση υπολογιστικής μηχανής. Να γράφετε μόνο με μελάνι μπλε ή μαύρο,

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα