ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2015 Α & Β ΓΥΜΝΑΣΙΟΥ.
|
|
- Κυριακή Γεννάδιος
- 10 χρόνια πριν
- Προβολές:
Transcript
1 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2015 Α & Β ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH
2
3 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 ΕΛΛΗΝΙΚΗ ΕΚΔΟΣΗ
4
5 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003 Λευκωσία, Κύπρος Τηλ , Φαξ: Ιστοσελίδα: IΣΤ' ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ Κυριακή, 26/04/2015 ΔΟΚΙΜΙΟ Α, Β ΓΥΜΝΑΣΙΟΥ ΧΡΟΝΟΣ: 60 λεπτά Να συμπληρώσετε προσεκτικά το φύλλο απαντήσεων, επιλέγοντας μόνο μία απάντηση για κάθε ερώτηση. Η συμπλήρωση να γίνει με μαύρισμα στο αντίστοιχο κυκλάκι. Κάθε σωστή απάντηση βαθμολογείται με 4 μονάδες. Για κάθε λανθασμένη απάντηση αφαιρείται 1 μονάδα. Απάντηση σε άσκηση με μαύρισμα σε περισσότερα από ένα κυκλάκια θεωρείται λανθασμένη. Επειδή η διόρθωση θα γίνει ηλεκτρονικά, οποιοδήποτε σημάδι ή σβήσιμο καθιστά την απάντηση λανθασμένη. Μπορείτε να χρησιμοποιήσετε το χώρο δίπλα από τις ασκήσεις για βοηθητικές πράξεις. Συστήνεται όπως σημειώνετε τις απαντήσεις στο ειδικό έντυπο απαντήσεων στα τελευταία πέντε λεπτά της εξέτασης αφού βεβαιωθείτε ότι οι απαντήσεις είναι τελικές. Παραδείγματα συμπλήρωσης απαντήσεων: 1. Βρείτε το αποτέλεσμα 2+3=? (A) 6 (B) 5 (C) 4 (D) 3 (E) 2 Σωστή συμπλήρωση: Λανθασμένη συμπλήρωση: 1. A B C D E 1. A B C D E 1. A B C D E 1. A B C D E 1. A B C D E 1. A B C D E
6
7 Α & Β Γυμνασίου 16 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος Το πηλίκο της διαίρεσης 2727,27 0,27 είναι: Α. 101 Β. 111 Γ Δ Ε Ποιο από τα ακόλουθα σχήματα έχει την μεγαλύτερη περίμετρο; Α. Α Β. Β Γ. Γ Δ. Δ Ε. Ε 3. Αν x y = x + y 2, τότε 2 3 είναι ίσο με: Α. 8 Β. 25 Γ. 11 Δ. 13 Ε Με πόσους διαφορετικούς τρόπους μπορούν 3 κορίτσια να σταθούν, το ένα δίπλα στο άλλο σε ευθεία γραμμή, για να βγάλουν φωτογραφία; Α. 1 Β. 2 Γ. 3 Δ. 6 Ε Σε μια τάξη με 38 κορίτσια, οι 9 έχουν καστανά μαλλιά και 13 έχουν μπλε μάτια. 7 κορίτσια έχουν καστανά μαλλιά και μπλε μάτια. Πόσα κορίτσια δεν έχουν ούτε καστανά μαλλιά ούτε μπλε μάτια; Α. 9 Β. 16 Γ. 19 Δ. 22 Ε Το άθροισμα όλων των διαιρετών του αριθμού 26 είναι: Α. 28 Β. 39 Γ. 40 Δ. 41 Ε. 42 Κυπριακή Μαθηματική Εταιρεία Σελίδα 1
8 Α & Β Γυμνασίου 16 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος Αν τέσσερις μπουκάλες γεμίζουν με 16 ποτήρια λάδι, πόσα ποτήρια λάδι χρειάζονται για να γεμίσουν μπουκάλες; Α. 24 Β. 30 Γ. 34 Δ. 38 Ε Σε ποιο αριθμό αντιστοιχεί το γράμμα Δ στην πιο κάτω πρόσθεση, αν διαφορετικά γράμματα αντιστοιχούν σε διαφορετικούς αριθμούς και ίδια γράμματα αντιστοιχούν σε ίδιους αριθμούς; Α. 2 Β. 3 Γ. 6 Δ. 7 Ε Η Όλια αγόρασε ένα μπλουζάκι για 13,95 και έδωσε στον ταμία 20,00. Ο ταμίας κατά λάθος της έδωσε ρέστα 13,95. Για να διορθώσει το λάθος η Όλια πρέπει να δώσει στον ταμία: Α. 6,05 Β. 7,95 Γ. 7,90 Δ. 6,90 Ε. 13, Οι διαστάσεις μιας φωτογραφίας που είναι 20 cc επί 25 cc, αυξάνονται ώστε η φωτογραφία να έχει διαστάσεις 25 cc επί 30 cc. Το ποσοστό αύξησης του εμβαδού της φωτογραφίας είναι: Α. 250% Β. 50% Γ. 80% Δ. 37.5% Ε. 25% 11. Το αγαπημένο αναψυκτικό της Μαρίας πωλείται σε συσκευασίες των 6, 12 και 24 αναψυκτικών. Αν η Μαρία αγόρασε ακριβώς 66 αναψυκτικά, ποιος είναι ο μικρότερος αριθμός συσκευασιών που αγόρασε; Α. 4 Β. 5 Γ. 6 Δ. 8 Ε Αν 12α + 3β = 1 και 7β 2α = 9, ποιος είναι ο μέσος όρος των α και β; Α. 5 Β. 0,5 Γ. 2,5 Δ. 0,1 Ε Ποιος από τους πιο κάτω αριθμούς δεν μπορεί να εκφραστεί σαν άθροισμα τριών διαδοχικών ακεραίων; Α. 18 Β. 24 Γ. 28 Δ. 33 Ε. 36 Κυπριακή Μαθηματική Εταιρεία Σελίδα 2
9 Α & Β Γυμνασίου 16 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος Αν α(x + β) = 3x + 12 για όλες τις τιμές του x, τότε α + β είναι: Α. 12 Β. 15 Γ. 8 Δ. 7 Ε Πόσα λεπτά χρειάζεται ο Γιάννης να καλύψει μιαν απόσταση όταν οδηγεί με ταχύτητα 20 χιλιομέτρων την ώρα, αν η Μαίρη που οδηγεί με ταχύτητα 60 χιλιομέτρων την ώρα χρειάζεται 30 λεπτά για την ίδια απόσταση; Α. 10 Β. 30 Γ. 60 Δ. 90 Ε Στο πιο κάτω σχήμα, το ΑΑΑΑ είναι τετράγωνο με ΑΖ Η = 120. Να βρεθεί η ΑΕ Ζ. Α. 45 Β. 50 Γ. 60 Δ. 75 Ε Μια τάξη 20 μαθητών στο διαγώνισμα των Μαθηματικών είχε μέσο όρο 66%. Η διπλανή τάξη με 30 μαθητές στο ίδιο διαγώνισμα είχε μέσο όρο 56%. Ποιος είναι ο μέσος όρος του διαγωνίσματος για τους μαθητές των δύο τάξεων επί τοις %; Α. 56% Β. 58% Γ. 60% Δ. 61% Ε. 62% 18. Το x παίρνει τιμές από το σύνολο {4,5,6,7,8} και το y παίρνει τιμές από το σύνολο {20,24,32,36,40}. Η μικρότερη και η μεγαλύτερη τιμή του y x είναι: Α. 5, 10 Β. 2 5, 5 Γ. 10, 5 2 Δ. 5 2, 5 Ε. 5 2, Ένας βοσκός ερωτήθηκε πόσα πρόβατα έχει και απάντησε ως εξής: Έχω λιγότερα από 1000 και αν τα χωρίσω σε ομάδες των 7 προβάτων τότε περισσεύουν 5, αν τα χωρίσω σε ομάδες των 10 περισσεύουν 8 ενώ αν τα χωρίσω σε ομάδες των 11 περισσεύουν 9. Πόσα πρόβατα είχε ο βοσκός; Α. 998 Β. 870 Γ. 770 Δ. 768 Ε Πόσα ψηφία έχει ο αριθμός ; Α. 9 Β. 10 Γ. 11 Δ. 12 Ε. 13 Κυπριακή Μαθηματική Εταιρεία Σελίδα 3
10 Α & Β Γυμνασίου 16 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος Στο πιο κάτω σχήμα, το ΑΑΑ είναι ισόπλευρο τρίγωνο. Από σημείο P, που απέχει εξίσου από τις κορυφές Α, Β και Γ, φέρουμε τα ευθύγραμμα τμήματα ΡΡ, ΡΡ, και ΡΡ σχηματίζοντας τρία ίσα τρίγωνα. Τα σημεία Δ, Ε, Ζ είναι τα μέσα των πλευρών του τριγώνου ΑΑΑ. Ποιος είναι ο λόγος του εμβαδού του σκιασμένου χωρίου προς το εμβαδόν του τριγώνου ΑΑΑ; Α. 1 5 Β Γ. 1 4 Δ. 2 9 Ε Να υπολογιστεί η τιμή του κλάσματος: Κ = 9,99 0,099 0,009 0,003 0,033 3,33 Α. 0,0027 Β. 0,27 Γ. 2,7 Δ. 27 Ε Σε μια τάξη 24 μαθητών, οι 10 έχουν κινητό τηλέφωνο. Κατά τις διακοπές του Πάσχα οι μαθητές που δεν έχουν κινητό στέλνουν κάρτες στους συμμαθητές τους και εκείνοι που έχουν κινητό στέλλουν sms στους συμμαθητές τους που έχουν κινητό και κάρτα στους συμμαθητές τους που δεν έχουν κινητό. Πόσες κάρτες στάλθηκαν; Α. 24 Β. 28 Γ. 280 Δ. 462 Ε Δυο άντρες και δυο παιδιά θέλουν να περάσουν στην άλλη όχθη ενός ποταμού. Και οι τέσσερις βρίσκονται στην ίδια όχθη. Η βάρκα με την οποία θα περάσουν απέναντι μπορεί να μεταφέρει το πολύ έναν άντρα ή το πολύ δυο παιδιά κάθε φορά. Πόσες το λιγότερο διαδρομές πρέπει να κάνει η βάρκα για να περάσουν όλοι στην απέναντι όχθη; Α. 6 Β. 7 Γ. 8 Δ. 9 Ε Αν ν είναι ακέραιος θετικός, ποιος από τους πιο κάτω ακεραίους είναι πάντοτε διαιρετός με το 3; A. (ν + 1)(ν + 4) B. ν(ν + 2)(ν + 6) Γ. ν(ν + 2)(ν + 4) Δ. ν(ν + 3)(ν 3) Ε. (ν + 2)(ν + 3)(ν + 5) Κυπριακή Μαθηματική Εταιρεία Σελίδα 4
11 CYPRUS MATHEMATICAL OLYMPIAD 2015 ENGLISH VERSION
12
13 CYPRUS MATHEMATICAL SOCIETY 36 Stasinou street, Off. 102, 2003 Strovolos Nicosia, Cyprus Tel , Fax: Website: 16 th CYPRUS MATHEMATICAL OLYMPIAD Sunday, 26/04/2015 EXAMS PAPER 7 th, 8 th Grade A, B Gymnasium TIME: 60 minutes Fill carefully the answer sheet, by choosing only one answer to each question. The selection must be made by shading the right2answer. Every right answer is graded with 4 points. For each wrong answer 1 point will be lost. If a question is answered by shading more than one answer, the answer will be considered wrong. The correction will be electronically, so any mark will be taken wrong. You can use the space next to the questions to make extra notes. It is recommended that you complete the answer sheet in the last five minutes of the exam, with your final answer. Choose only one of the five proposed answers (A, B, C, D or E) and fill the box for right answer. Example of filling the table of answers: 41. Find the result 2+3=? (A) 6 (B) 5 (C) 4 (D) 3 (E) 2 These fillings are correct and these are incorrect 1. A B C D E 1. A B C D E 1. A B C D E 1. A B C D E 1. A B C D E 1. A B C D E
14
15 7 th & 8 th Grade 16 th Cyprus Mathematical Olympiad April 2015 (A & B Gymnasium) 1. Find the value of 2727,27 0,27. Α. 101 Β. 111 Γ Δ Ε Which of the following shapes has the greatest perimeter? Α. Α Β. Β Γ. Γ Δ. Δ Ε. Ε 3. If x y = x + y 2, then 2 3 equals to: Α. 8 Β. 25 Γ. 11 Δ. 13 Ε In how many different ways can we take a photo of 3 girls, standing on a straight line one next to each other? Α. 1 Β. 2 Γ. 3 Δ. 6 Ε In a classroom of 38 girls, 9 of them have brown hair and 13 of them have blue eyes. 7 girls have both brown hair and blue eyes. How many girls have neither brown hair nor blue eyes? Α. 9 Β. 16 Γ. 19 Δ. 22 Ε The sum of all divisors of the number 26 is: Α. 28 Β. 39 Γ. 40 Δ. 41 Ε. 42 Cyprus Mathematical Society Page 1
16 tins, and tins. 7 th & 8 th Grade 16 th Cyprus Mathematical Olympiad April 2015 (A & B Gymnasium) 7. If 16 glasses of oil are needed to fill completely four bottles, how many glasses of oil are needed to fill bottles? Α. 24 Β. 30 Γ. 34 Δ. 38 Ε In the following addition, different letters have different value and same letters have the same value. What is the value of the letter Δ? Α. 2 Β. 3 Γ. 6 Δ. 7 Ε Olia bought a blouse for 13,95 and gave 20,00 to the cashier. The cashier gave her by mistake 13,95 as change. For correcting the mistake, Olia must give back to the cashier the amount of: Α. 6,05 Β. 7,95 Γ. 7,90 Δ. 6,90 Ε. 13, A photo measuring 20 cc by 25 cc is enlarged to make a photo measuring 25 cc by 30 cc. The percentage increase in area of the photo is: Α. 250% Β. 50% Γ. 80% Δ. 37.5% Ε. 25% 11. Marias favorable soft drink is sold in packages of 6, 120T 240T If Maria bought exactly 660T which is the smallest number of packages she could bought? Α. 4 Β. 5 Γ. 6 Δ. 8 Ε If 12α + 3β = 1 and 7β 2α = 9, the average of α and β is: Α. 5 Β. 0,5 Γ. 2,5 Δ. 0,1 Ε Which of the following numbers cannot be expressed as the sum of three consecutive integers? Α. 18 Β. 24 Γ. 28 Δ. 33 Ε. 36 Cyprus Mathematical Society Page 2
17 kilometers 7 th & 8 th Grade 16 th Cyprus Mathematical Olympiad April 2015 (A & B Gymnasium) 14. If α(x + β) = 3x + 12 for all values of x, then α + β equals to: Α. 12 Β. 15 Γ. 8 Δ. 7 Ε How many minutes needed John to cover a distance when driving at a speed of 20 kilometers per hour, if Mary leading with speed of 600T per hour takes 30 minutes for the same distance? Α. 10 Β. 30 Γ. 60 Δ. 90 Ε ΑΑΑΑ is a square with ΑΖ Η = 120. Find the angle ΑΕ Ζ. Α. 45 Β. 50 Γ. 60 Δ. 75 Ε In a class of 20 students, the average on a test of Mathematics is 66%. Ιn other class of 30 students, the average on the same test is 56%. What is the average for all the students? Α. 56% Β. 58% Γ. 60% Δ. 61% Ε. 62% 18. x takes values from the group {4,5,6,7,8} and y takes values from the group {20,24,32,36,40}. The lowest and the greatest value of y x is: Α. 5, 10 Β. 2 5, 5 Γ. 10, 5 2 Δ. 5 2, 5 Ε. 5 2, A shepherd was asked about the number of sheep he had and responded as follows: I have less than 1000 and if I put them in groups of 7 then 5 of them will be left, if I put them in groups of 10 then 8 of them will be left and if I put them in groups of 11 then 9 of them will be left. How many sheep did he have? Α. 998 Β. 870 Γ. 770 Δ. 768 Ε How many digits has? Α. 9 Β. 10 Γ. 11 Δ. 12 Ε. 13 Cyprus Mathematical Society Page 3
18 and 7 th & 8 th Grade 16 th Cyprus Mathematical Olympiad April 2015 (A & B Gymnasium) 21. In the figure below, ΑΑΑ is an equilateral triangle. From point P, which is equidistant from the vertices A, B0T Γ0T, we draw the segments PP, PP, and PΓ and form three equal triangles. The points Δ, Ε, Ζ are midpoints of the sides of the triangle ΑΑΑ. What is the ratio of the area of shaded figure to the area of triangle ΑΑΑ? Α. 1 5 Β Γ. 1 4 Δ. 2 9 Ε Find the value of: Κ = 9,99 0,099 0,009 0,003 0,033 3,33 Α. 0,0027 Β. 0,27 Γ. 2,7 Δ. 27 Ε In a class of 24 students, 10 of them have a mobile phone. During the Easter holidays, the students who have no mobile phone send cards to their classmates and those who have a mobile phone send sms to those of their classmates who have a mobile phone and a card to those who have not a mobile phone. How many cards were sent? Α. 24 Β. 28 Γ. 280 Δ. 462 Ε Two men and two children want to cross a river. All of them are on the same side of the river. In order to cross the river, they are using a boat that can carry at most one man or at most two children each time. What is the least number of crossings of the boat, in order to carry all the people to the other side of the river? Α. 6 Β. 7 Γ. 8 Δ. 9 Ε If ν is a positive integer, an integer which is always divisible by 3 is: A. (ν + 1)(ν + 4) B. ν(ν + 2)(ν + 6) Γ. ν(ν + 2)(ν + 4) Δ. ν(ν + 3)(ν 3) Ε. (ν + 2)(ν + 3)(ν + 5) Cyprus Mathematical Society Page 4
19
20
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Α & Β ΓΥΜΝΑΣΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2018 Β & Γ ΛΥΚΕΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2019 14 ΑΠΡΙΛΙΟΥ 2019 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΣΤΑ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019
ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Κ ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙΔ 09 4 ΠΡΙΛΙΟΥ 09 & ΓΥΜΝΣΙΟΥ www.cms.org.cy ΘΕΜΤ ΣΤ ΕΛΛΗΝΙΚ ΚΙ ΓΓΛΙΚ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙΔ 09 ΕΛΛΗΝΙΚΗ ΕΚΔΟΣΗ ΧΡΟΝΟΣ:
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2014 Β & Γ ΛΥΚΕΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 014 6 ΑΠΡΙΛΙΟΥ 014 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2018 Α & Β ΓΥΜΝΑΣΙΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019
ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Κ ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙ 2019 1 ΠΡΙΛΙΟΥ 2019 ΥΜΝΣΙΟΥ & ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΤ ΣΤ ΕΛΛΗΝΙΚ ΚΙ ΛΙΚ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΟΛΥΜΠΙ 2019 ΕΛΛΗΝΙΚΗ ΕΚΟΣΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 0 ΑΠΡΙΛΙΟΥ 0 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2018 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 019 14 ΑΠΡΙΛΙΟΥ 019 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2018 Γ & Δ ΔΗΜΟΤΙΚΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Γ & Δ ΔΗΜΟΤΙΚΟΥ.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;
ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 11 ΜΑΪΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 204 ΜΑΪΟΥ 204 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2019
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Κ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2019 14 ΑΠΡΙΛΙΟΥ 2019 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΣΤΑ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
Advanced Subsidiary Unit 1: Understanding and Written Response
Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes
Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference
1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT
Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT
Date: 22 October 2016 Time: 09:00 hrs Subject: BULLETIN No 5 Document No: 1.6 --------------------------------------------------------------------------------------------------------------------------------------
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
How to register an account with the Hellenic Community of Sheffield.
How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,
Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony
Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας
STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18
STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn
LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014
LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
1999 MODERN GREEK 2 UNIT Z
STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 1999 MODERN GREEK 2 UNIT Z (55 Marks) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Write your Student
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
MATHEMATIC KANGOUROU 2016 Student-Levels 11-12
MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 18 June 2010 Morning Time: 45 minutes
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple
A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 014 6 ΑΠΡΙΛΙΟΥ 014 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)
Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding
Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Thursday 24 May 2007 Morning Time: 45 minutes
LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014
LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο
FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17
FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 Name: Surname: Date: Class: 1. Write these words in the correct order. /Γράψε αυτέσ τισ λέξεισ ςτη ςωςτή ςειρά. 1) playing / his / not /
ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ
ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ 1. Η διαφήμιση της Τράπεζας για τα "Διπλά Προνόμια από την American Express" ισχύει για συναλλαγές που θα πραγματοποιηθούν από κατόχους καρτών Sunmiles American Express, American
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
KANGOUROU MATHEMATICS
KANGOUROU MATHEMATICS LEVEL 9 10 Γ ΓΥΜΝΑΣΙΟΥ - Α ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα
LEVEL / ΕΠΙΠΕΔΟ 11-12
3 point problems (θέματα 3 μονάδων) 1. The flag of Kangoraland is a rectangle which is divided into three smaller equal rectangles as shown. What is the ratio of the side lengths of the white rectangle?
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Final Test Grammar. Term C'
Final Test Grammar Term C' Book: Starting Steps 1 & Extra and Friends Vocabulary and Grammar Practice Class: Junior AB Name: /43 Date: E xercise 1 L ook at the example and do the same. ( Κξίηα ηξ παοάδειγμα