ΛΥΓΙΣΜΟΣ ΙΣΤΥΛΩΝ ΠΛΑΙΣΙΩΝ ΜΕ ΣΤΥΛΟΥΣ ΜΕΤΑΒΛΗΤΗΣ ΙΑΤΟΜΗΣ
|
|
- Ἀπολλόδωρος Αναστασιάδης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΛΥΓΙΣΜΟΣ ΙΣΤΥΛΩΝ ΠΛΑΙΣΙΩΝ ΜΕ ΣΤΥΛΟΥΣ ΜΕΤΑΒΛΗΤΗΣ ΙΑΤΟΜΗΣ Τάσος Αβραάµ Λέκτορας Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα e-ail: Ζαχαρίας Φασουλάκης Μεταπτυχιακός φοιτητής Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα e-ail: Ιωάννης Ερµόπουλος Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα e-ail: ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία µελετάται η ευστάθεια ορθογωνικών δίστυλων µεταλλικών πλαισίων µε στύλους µεταβλητής διατοµής. Συγκεκριµένα, η µελέτη αυτή αφορά πλαίσια µε στύλους διατοµής µεταβλητής ροπής αδράνειας και σταθερού ή µεταβλητού εµβαδού. Υπολογίζονται τα κρίσιµα φορτία καθώς επίσης και οι τιµές του ισοδύναµου µήκους λυγισµού των στύλων του πλαισίου. Τα αποτελέσµατα παρουσιάζονται σε διαγράµµατα για διάφορες παραµέτρους, όπως ο λόγος µηκών και ροπών αδράνειας στύλου-ζυγώµατος, καθώς και διάφορους λόγους µεταβολής της ροπής αδράνειας των στύλων.. ΕΙΣΑΓΩΓΗ Το πρόβληµα λυγισµού στύλων µεταβλητής διατοµής (διατοµές σταθερού εµβαδού και µεταβλητής ροπής αδράνειας κυρίως αλλά και διατοµές µεταβλητού εµβαδού και ροπής αδράνειας) συναντάται σε κτίρια µε πλαίσια µεγάλου ανοίγµατος. Ο Ευρωκώδικας EC δεν προβλέπει κάποιον κανόνα για την αντιµετώπιση τέτοιων προβληµάτων και συνήθως αυτά τα προβλήµατα επιλύονται µε τη θεώρηση κάποιας ισοδύναµης διατοµής σταθερού εµβαδού και ροπής αδράνειας καθ όλο το ύψος των στύλων ώστε να µπορέσει ο µελετητής να εκτιµήσει κρίσιµα φορτία και µήκη λυγισµού. Τέτοιες, όµως, προσεγγίσεις δεν οδηγούν πάντα σε σωστές εκτιµήσεις κρισίµων µεγεθών της κατασκευής µε αποτέλεσµα τη µείωση του συντελεστού ασφάλειας ή τη σπατάλη υλικού. Η µελέτη ευστάθειας θλιβοµένων στοιχείων µεταβλητής διατοµής έχει απασχολήσει πολλούς µελετητές από τα µέσα του προηγούµενου αιώνα [,]. Αργότερα έγιναν σχετικές
2 µελέτες για τη συµπεριφορά πλαισίων µε στύλους µεταβλητής ροπής αδράνειας και σταθερού εµβαδού µέσω γραµµικής και µη γραµµικής ανάλυσης από τον Ι. Ερµόπουλο [,] ο οποίος ερεύνησε την επιρροή των γεωµετρικών µεγεθών των µελών ενός µονόστυλου πλαισίου στο κρίσιµο φορτίο επιδιώκοντας τη βέλτιστη ικανότητα του πλαισίου έναντι λυγισµού. Ο Li Qiusheng. και οι λοιποί [5] µελέτησαν τον πρόβολο υπό θλίψη για διάφορες περιπτώσεις µεταβολής της διατοµής του προβόλου (µεταβλητό εµβαδόν και µεταβλητή ροπή αδράνειας). Εκτεταµένη έρευνα για την εύρεση κρισίµων φορτίων και µηκών λυγισµού για θλιβόµενα στοιχεία µεταβλητής διατοµής(τυχόντα µέλη πλαισίων) έγινε από τον Ι. Ερµόπουλο [6]. Η µελέτη επιρροής αρχικών ατελειών (γεωµετρική ατέλεια και εκκεντρότητα φορτίου) στύλου τµηµατικά ή γραµµικά µεταβλητής διατοµής επιβεβαιώθηκε µέσω αναλυτικής λύσης µε εφαρµογή µη γραµµικής θεωρίας πεπερασµένων στοιχείων από τους Ι. Ραυτογιάννη και Ι. Ερµόπουλο [7]. Στην παρούσα µελέτη θα αναζητήσουµε φορτία λυγισµού και µήκη λυγισµού στύλων για ένα ορθογωνικό δίστυλο πλαίσιο µε στύλους µεταβλητής διατοµής. Το πλαίσιο (σχ. ) µπορεί να λυγίσει µε µετάθεση ή χωρίς µετάθεση Σχ.. Η γεωµετρία του φορέα σύµφωνα µε το σχήµα. Το µικρότερο φορτίο χωρίς µετάθεση αντιστοιχεί στην περίπτωση συµµετρικού λυγισµού (σχ.α). Έτσι, στην παρούσα εργασία θα εξετάσουµε την περίπτωση αντισυµµετρικού λυγισµού µε µετάθεση(ισοδύναµος φορέας το µισό πλαίσιο µε οριζόντια κύλιση στο ζύγωµα) και την περίπτωση συµµετρικού λυγισµού (ισοδύναµος φορέας το µισό πλαίσιο µε κατακόρυφα κυλιόµενη πάκτωση στο ζύγωµα). Οι στύλοι του πλαισίου είναι µεταβλητής διατοµής (µεταβλητή ροπή αδράνειας και σταθερό ή µεταβλητό εµβαδόν). Σχ.. Απεικόνιση παραµορφώσεων λυγισµού µε (α) και χωρίς (β-δ) µετάθεση.
3 . ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ.Α. ιατοµή στύλου µε σταθερό εµβαδόν και µεταβλητή ροπή αδρανείας..α.. Συµµετρικός λυγισµός. Η ισορροπία του πλαισίου δίδεται από τις κάτωθι διαφορικές εξισώσεις: d w d w EI ( x ) + P (α) dx dx d dx w (β) x I, και, όπου I(x) I η ροπή α αδράνειας στη βάση του στύλου. Σχ.. Συµµετρικός λυγισµός Η γενική λύση των ανωτέρω διαφορικών εξισώσεων είναι της µορφής x x x w ( x) Α sin µ ln + Β cos µ ln + C x + D (α) α α α w ( x) A x + B x + C x + D (β) Οι συνοριακές συνθήκες και οι συνθήκες συνέχειας είναι: d w w ( α ) ( α) w( l ) (α-γ) dx dw dx ( L ) ( l ) dw (δ) dx d w d w EI (ε) dx dx ( ) d w ( ) dx ( L) ( L ) ( L ) + EI ( l ) w (στ) EI (ζ) w (η) Με τη βοήθεια των συνοριακών συνθηκών και των συνθηκών συνέχειας εξ. (α-η) καταλήγουµε στην παρακάτω εξίσωση λυγισµού του πλαισίου. µ tan[ µ ln( l + ) ], () ρ r l ( l + ) ( µ + ) + (.5l + ) όπου l r l, Ι ρ I, l l, α µ β.5 + l, β P l E I.
4 .A.. Αντισυµµετρικός λυγισµός µε µετάθεση. Όπως στην περίπτωση.α. έτσι και εδώ ισχύουν οι ίδιες διαφορικές εξισώσεις ισορροπίας καθώς επίσης και οι εκφράσεις των αντίστοιχων βελών. Επιπλέον, ισχύουν οι ίδιες συνοριακές συνθήκες πλην των συνθηκών (.ζ,η) που διαφοροποιούνται ως εξής: d w dw EI ( L) ( L) P ( L) (5α) dx dx d w dx ( ) EI ( ) w (5β,γ) Μετά τη διαδικασία απαλοιφής των σταθερών Α i, B i, C i και D i καταλήγουµε στην κάτωθι διαφορική εξίσωση: µ tan[ µ ln( l + ) ] ρ r l ( l + ) ( µ + ) (6) 6.5l + Η επίλυση των δύο µη-γραµµικών εξισώσεων () και (6) µας δίνει τα κρίσιµα αδιάστατα Pcr l φορτία β cr και στη συνέχεια υπολογίζουµε τα µήκη λυγισµού του στύλου. E I.Β ιατοµή στύλου µε µεταβλητό εµβαδό και µεταβλητή ροπή αδράνειας..β. Συµµετρικός λυγισµός. Σχ. 5 Η ισορροπία του πλαισίου δίδεται από τις διαφορικές εξισώσεις (α,β ) όπου όµως η ροπή αδρανείας του στύλου I(x ) δίδεται από την έκφραση: x ( x) I, I (7) α Η περίπτωση αυτή αφορά µορφές διπλής µεταβολής µε διατοµές διπλού ταυ µε γραµµικά µεταβαλλόµενο ύψος κορµού και πελµάτων (σχ. 5). Η λύση της διαφορικής εξίσωσης ισορροπίας του ζυγώµατος είναι η ίδια ως και στις προηγούµενες περιπτώσεις (εξ.β),ενώ η λύση της διαφορικής εξίσωσης ισορροπίας του στύλου αλλάζει και δίδεται από τη σχέση: l l w ( x ) A x Bessel, B x BesselY, µ + + C x + D x µ x (8) Οι συνοριακές συνθήκες και οι συνθήκες συνέχειας δίδονται από τις εξισώσεις α~η. Με τη βοήθεια των συνοριακών συνθηκών και των εκφράσεων των βελών (σχ. β και 8) καταλήγουµε στην κάτωθι εξίσωση λυγισµού: Y Y όπου Σχ. Y Y β + l + + l l / µ β +. l / ( + r ρ β ) ( ), (9)
5 Επίσης, Υ BesselΥ, Όπου, Bessel, µ + l µ + l + a ( ) x,! Γ( + a + ), Bessel(,µ l ) α,, BesselY(,µ l ) Y α, Υ BesselΥ, Bessel, a (x) cos(aπ) a (x) Ya (x) sin(aπ) συναρτήσεις Bessel τάξης a, πρώτου και δεύτερου είδους αντίστοιχα. µ + l a (x) µ + l,. (α,β).β. Αντισυµµετρικός λυγισµός. Οµοίως για την περίπτωση αντισυµµετρικού λυγισµού σύµφωνα µε τις συνοριακές συνθήκες που εξετάσαµε στην παράγραφο.α. προκύπτει η παρακάτω εξίσωση λυγισµού: Y Y Y Y / β + l β r ρ + + l l. ΑΠΟΤΕΛΕΣΜΑΤΑ -ΣΥΜΠΕΡΑΣΜΑΤΑ Στα σχήµατα 6 και 7(α,β) παρουσιάζονται τα κρίσιµα φορτία και οι συντελεστές ισοδύναµου µήκους λυγισµού Κ l, λυγ / l για τις περιπτώσεις συµµετρικού και αντισυµµετρικού λυγισµού,αντίστοιχα, και για διάφορους λόγους ροπών αδρανείας και I l µηκών των πλαισίων, rρ, για την περίπτωση στύλου διατοµής σταθερού εµβαδού I l και µεταβλητής ροπής αδράνειας. () Σχ. 6. ρόµοι ισορροπίας συµµετρικού λυγισµού διατοµής στύλου µε σταθερό εµδαδόν.
6 Σχήµα 7(α). ρόµοι ισορροπίας αντισυµµετρικού λυγισµού διατοµής στύλου µε σταθερό εµβαδόν. Σχ. 7(β). Ισοδύναµα µήκη αντισυµµετρικού λυγισµού διατοµής στύλου µε σταθερό εµβαδόν. Στα σχήµατα 8(α,β) και 9(α,β) παρουσιάζονται τα αντίστοιχα διαγράµµατα όπως προηγουµένως για την περίπτωση στύλου διατοµής µεταβλητού εµβαδού και µεταβλητής ροπής αδράνειας. Σχ. 8(α). ρόµοι ισορροπίας συµµετρικού λυγισµού διατοµής στύλου µε µεταβλητό εµβαδόν. Σχ. 8(β). Ισοδύναµα µήκη συµµετρικού λυγισµού διατοµής στύλου µε µεταβλητό εµβαδόν.
7 Σχ. 9(α). ρόµοι ισορροπίας αντισυµµετρικού λυγισµού διατοµής στύλου µε µεταβλητό εµβαδόν. Σχ. 9(β). Ισοδύναµα µήκη αντισυµµετρικού λυγισµού διατοµής στύλου µε µεταβλητό εµβαδόν. Στην παρούσα εργασία µελετήθηκε η ευστάθεια δίστυλων πλαισίων µε, ή χωρίς µετάθεση, µε στύλους διατοµής σταθερού ή µεταβλητού εµβαδού και µεταβλητής ροπής αδράνειας. Μετά την επίλυση των µη γραµµικών εξισώσεων λυγισµού ελήφθησαν τα κρίσιµα φορτία των πλαισίων καθώς επίσης και τα αντίστοιχα µήκη λυγισµού των στύλων. Τα αποτελέσµατα παρουσιάζονται σε διαγράµµατα για διάφορες τιµές του λόγου µηκών των στοιχείων l / l και του λόγου ροπών αδράνειας I / I (ροπή αδράνειας στο µέσον του στύλου / ροπή αδράνειας ζυγώµατος) καθώς επίσης και του λόγου µεταβολής του στύλου l l / a. ΒΙΒΛΙΟΓΡΑΦΙΑ [] Dinnik A. N. Design of coluns of varying cross-section, ournal of Appl. Mech, ASME, 9, p. 65 [] Gere. M, Carter W.O. Critical buckling loads for tapered coluns, ournal of the Structural Division, ASCE ST 88, 96, pp - [] Eropoulos. Buckling of tapered bars under stepped axial loads,. of Structural Engineering, ASCE, Vol., No. 6, pp. 6-5, 986. [] Eropoulos. Buckling length of nonunifor ebers under stepped axial loads, International ournal of Coputers and Structures, 7, pp , 999 [5] Li Qiusheng, Cao Hong, Li Guiqing Stability analysis of bars with varying crosssection, Int. ournals Solids Structures, Vol., No., 995, pp. 7-8 [6] Eropoulos. Equivalent Buckling Length of Non-unifor Mebers, ournal Construction Steel Research, Vol., No., 995, pp. -58 [7] Raftoyannis I., Eropoulos. Ch. Stability of tapered and stepped steel coluns with initial iperfections, Engineering Structures, Vol.7, 5, pp. 8-57
8 BUCKLING ANALYSIS OF PORTAL FRAMES WITH COLUMNS OF VARYING CROSS-SECTIONS Tasos Avraa Lecturer Metal Structures Laboratory National Technical University of Athens Athens, Greece e-ail: Zacharias Fasoulakis Postgraduate student National Technical University of Athens Athens, Greece e-ail: ohn Eropoulos Professor Metal Structures Laboratory National Technical University of Athens Athens, Greece e-ail: SUMMARY The buckling of coluns with varying cross-section is a proble that exists in any steel structures. Such coluns are used to reduce the cost of a structure or for serviceability or architectural reasons. This proble is not treated by Eurocode EC where the forer Annex E refers only to buckling of coluns with constant cross-section. In the present study we are looking for critical buckling loads as well as for equivalent buckling lengths of a rectangular (sway or non sway) etallic frae with tapered coluns (coluns with varying oent of inertia and constant or varying area). The exained frae is subject to vertical loads at its nodes. The use of differential equations of equilibriu and the related boundary and continuity conditions of the frae leads to the corresponding buckling equations. Critical buckling loads and equivalent buckling lengths can be calculated for several paraeters (geoetrical variation of coluns cross-sections, ebers oent of inertia or lengths ratios etc.) for both cases of sway and non sway buckling. The results are presented via relative diagras.
ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ
Ευστάθεια Πλαισίων Με Μέλη Μεταβλητής ιατοµής Μέρος 1
Ευστάθεια Πλαισίων Με Μέλη Μεταβλητής ιατοµής Μέρος 1 Ε. Κ. Λαζαρίδου Πολ. Μηχανικός, MSc, Ε.Μ.Π. Μεταπτυχική φοιτήτρια, EEDM, UCL, CEGE, Chadwick Building,Gower Street, WC1E 6BT London, UK e-mail: eflazar@otenet.gr
ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά
Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ ιπλωµατική Εργασία Μαρία Μ. Βίλλη
Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων Α. Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη
Θλιβόµενες οκοί Μεταβλητής ιατοµής Μέρος 3: Κρίσιµα Φορτία και Ισοδύναµα Μήκη Λυγισµού
Θλιβόµενες οκοί Μεταβλητής ιατοµής Μέρος 3: Κρίσιµα Φορτία και Ισούναµα Μήκη Λυγισµού Ε. Κ. Λαζαρίου Πολ. Μηχανικός, Μεταπτυχιακή φοιτήτρια Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών, Εργαστήριο Μεταλλικών Κατασκευών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ ιπλωµατική εργασία: Λεµονάρη Μαρίνα Επιβλέπων καθηγητής:
Παραδείγματα μελών υπό αξονική θλίψη
Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.
ΑΝΑΛΥΤΙΚΗ ΚΑΙ ΑΡΙΘΜΗΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΑΜΠΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕΛΩΝ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΣΙΩΝ ΜΕ ΑΜΦΙΚΛΙΝΗ ΖΥΓΩΜΑΤΑ
ΑΝΑΛΥΤΙΚΗ ΚΑΙ ΑΡΙΘΜΗΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΑΜΠΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕΛΩΝ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΣΙΩΝ ΜΕ ΑΜΦΙΚΛΙΝΗ ΖΥΓΩΜΑΤΑ Μαρία Λιβανού Υποψήφια Διδάκτωρ Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα e-mail: livanoumaria@gmail.com
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιερεύνηση αξιοπιστίας EC3 για τον έλεγχο αστοχίας µεταλλικών πλαισίων ιπλωµατική Εργασία: Καλογήρου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών ιπλωµ ατική εργασία «Α Ν Α Λ Υ Τ Ι Κ Η Κ Α Ι Α Ρ Ι Θ Μ Η Τ Ι Κ Η Ι Ε Ρ Ε Υ Ν Η Σ Η Π Ρ Ο Β Λ Η
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ» ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή εργασία «Α Ν Α Λ
Θλιβόµενες οκοί Μεταβλητής ιατοµής Μέρος 2: Θεµελιώδεις Ροπές
Θλιβόµενες οκοί Μεταβλητής ιατοµής Μέρος : Θεµελιώδεις Ροπές Ε. Κ. Λαζαρίδου Πολ. Μηχανικός, Μεταπτυχιακή φοιτήτρια Ε.Μ.Π. Σχολή Πολιτικών Μηχανικών, Εργαστήριο Μεταλλικών Κατασκευών Ηρώων Πολυτεχνείου
προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.
ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος
NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR}
NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} {EMAIL}r.j.plank@sheffield.ac.uk{/EMAIL} {OVERVIEW} οκοί
Στατική Ανάλυση Ναυπηγικών Κατασκευών
Στατική Ανάλυση Ναυπηγικών Κατασκευών Ενότητα 2: Ελαστικός λυγισμός πρισματικών φορέων Αλέξανδρος Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη στα πλοία καθ όσον χρησιμοποιούνται
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΦΟΙΤΗΤΡΙΑ: Γ.ΦΕΒΡΑΝΟΓΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Χ.ΓΑΝΤΕΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2000
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Διάλεξη Πλευρικός λυγισμός χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,
Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών
Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Η ΕΠΙΡΡΟΗ ΑΞΟΝΙΚΟΥ ΕΦΕΛΚΥΣΜΟΥ ΣΤΗΝ ΚΡΙΣΙΜΗ ΡΟΠΗ ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ ΔΟΚΩΝ
Η ΕΠΙΡΡΟΗ ΑΞΟΝΙΚΟΥ ΕΦΕΛΚΥΣΜΟΥ ΣΤΗΝ ΚΡΙΣΙΜΗ ΡΟΠΗ ΠΛΕΥΡΙΚΟΥ ΛΥΓΙΣΜΟΥ ΔΟΚΩΝ Τάσος Π. Αβραάμ Λέκτορας, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα e-mail: avraamt@central.ntua.gr Ζαχαρίας Χ. Φασουλάκης Υποψήφιος
ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ
ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο
ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΥΠΟΣΤΥΛΩΜΑΤΩΝ Λυγισμός - Ευστάθεια Κρίσιμο φορτίο λυγισμού Δρ. Σ. Π. Φιλόπουλος Εισαγωγή Μέχρι στιγμής στην ανάλυση των κατασκευών επικεντρώσαμε
ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΑΤΕΛΩΝ ΜΕΛΩΝ TIMOSHENKO ΥΠΟ ΕΓΚΑΡΣΙΑ ΦΟΡΤΙΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΣΕ ΣΥΝΘΕΤΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΜΕ ΡΑΒ ΟΥΣ ΙΚΤΥΩΣΗΣ
ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΑΤΕΛΩΝ ΜΕΛΩΝ TIOSHENKO ΥΠΟ ΕΓΚΑΡΣΙΑ ΦΟΡΤΙΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΣΕ ΣΥΝΘΕΤΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΜΕ ΡΑΒ ΟΥΣ ΙΚΤΥΩΣΗΣ Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα
Ιωάννης Βάγιας Καθηγητής ΕΜΠ, Εργαστήριο Μεταλλικών Κατασκευών Αθήνα
MEΘΟ ΟΙ ΑΝΑΛΥΣΗΣ ΚΑΙ ΕΛΕΓΧΟΥ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ Ιωάννης Βάγιας Καθηγητής ΕΜΠ, Εργαστήριο Μεταλλικών Κατασκευών Αθήνα e-mail: vastahl@central.ntua.gr 1. ΠΕΡΙΛΗΨΗ Οι µέθοδοι ανάλυσης µεταλλικών πλαισίων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΑΥΤΟΜΑΤΟ ΕΛΕΓΧΟ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ανεµόµετρο AMD 1 Αισθητήρας AMD 2 11 ος όροφος Υπολογιστής
Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αλληλεπίδραση Ανωδοµής-Βάθρων- Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα ΙΠΛΩΜΑΤΙΚΗ
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE09-S07 μαθήματος:
ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση
Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ)
ΚΩΔΙΚΟΣ: Ε.202-2 ΕΝΤΥΠΑ ΣΥΣΤΗΜΑΤΟΣ ΠΟΙΟΤΗΤΑΣ ΕΝΤΥΠΟ: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΚΔΟΤΗΣ: ΥΠΕΥΘΥΝΟΣ ΣΥΝΤΑΞΗΣ ΕΓΧΕΙΡΙΔΙΟΥ Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ) A ΜΕΡΟΣ 1. ΓΕΝΙΚΑ
ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright
ΑΣΚΗΣΗ 14. Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα M, Q, για τη δεδομένη φόρτιση.
ΑΣΚΗΣΗ 14 ΔΕΔΟΕΝΑ: Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα,, για τη δεδομένη φόρτιση. ΕΠΙΛΥΣΗ: Ο φορέας είναι συμμετρικός ως προς άξονα με τυχαία φόρτιση.
ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,
v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων
Θυρόφραγµα υπό Γωνία
Ολοκληρωµένη ιαχείριση Υδατικών Πόρων 247 Θυρόφραγµα υπό Γωνία Κ.. ΧΑΤΖΗΑΘΑΝΑΣΙΟΥ Ε.. ΡΕΤΣΙΝΗΣ Ι.. ΗΜΗΤΡΙΟΥ Πολιτικός Μηχανικός Πολιτικός Μηχανικός Αναπλ. Καθηγητής Ε.Μ.Π. Περίληψη Στην πειραµατική αυτή
ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού
ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ 1. Γενικά Κατά τη φόρτιση μιας ράβδου από θλιπτική αξονική δύναμη και με προοδευτική αύξηση του μεγέθους της δύναμης αυτής, η αναπτυσσόμενη τάση θλίψης θα περάσει από το όριο αναλογίας
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΒΑΣΕΙ ΤΟΥ EC4 KAI ΣΥΓΚΡΙΣΗ ΜΕ ΤΟΝ LRFD
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ
Πειραματική Αντοχή Υλικών Ενότητα:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λυγισμός Ευστάθεια (Euler και Johnson)
Λυγισμός Ευστάθεια (Euler και Johnson) M z P z EI z P z P z z 0 και αν EI k EI P 0 z k z Η λύση της διαφορικής εξίσωσης έχει την μορφή: 1 sin z C kz C cos kz Αν οι οριακές συνθήκες είναι άρθρωση άρθρωση
NFATEC L13 Columns (27/09/2004)
NFATEC L13 Columns (27/09/2004) {LASTEDIT}Roger 27/09/2004{/LASTEDIT} {LECTURE} {LTITLE}Στύλοι{/LTITLE} {AUTHOR}John Ermopoulos{/AUTHOR} {EMAIL}jermop@central.ntua.gr{/EMAIL} {OVERVIEW} Κατασκευαστικά
Γενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ
ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ Νικόλαος Αντωνίου Πολιτικός Μηχανικός Τµήµα Πολιτικών Μηχανικών, Α.Π.Θ.,
2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.
Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός
ΙΕΡΕΥΝΗΣΗ ΕΙ ΙΚΩΝ ΘΕΜΑΤΩΝ ΑΝΗΡΤΗΜΕΝΟΥ ΣΤΕΓΑΣΤΡΟΥ ΜΕΣΩ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΝΑΛΥΣΕΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία ΙΕΡΕΥΝΗΣΗ ΕΙ ΙΚΩΝ ΘΕΜΑΤΩΝ ΑΝΗΡΤΗΜΕΝΟΥ ΣΤΕΓΑΣΤΡΟΥ ΜΕΣΩ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΝΑΛΥΣΕΩΝ
Προβλήµατα δοκών ελαστικά εδραζοµένων και φορτιζόµενων µε οριζόντια φορτία
Προβλήµατα δοκών ελαστικά εδραζοµένων και φορτιζόµενων µε οριζόντια φορτία Β. Καρατζά, Ε. Καρατζά, Ι. Καρατζάς Πολιτικοί Μηχανικοί Λέξεις κλειδιά: Ελατηριακές σταθερές, δοκός, παραµορφώσεις, µορφή αντιµετρικού
υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και
Έλεγχος σε στρεπτοκαμπτικό λυγισμό δοκών υπό κάμψη και αξονικό φορτίο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Έλεγχος σε στρεπτοκαμπτικό λυγισμό δοκών υπό κάμψη και αξονικό φορτίο ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Φώτιος Τ. Αυδής Επιβλέπων:
Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών
Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)
Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΡΕΠΤΙΚΩΝ ΣΤΑΘΕΡΩΝ ΤΥΠΙΚΩΝ ΜΕΤΑΛΛΙΚΩΝ ΔΙΑΤΟΜΩΝ Παναγιώτης Ι. Κόκκαλης, Διπλ. Π.Μ., ΜSc ΑSAναστασιάδης & Συνεργάτες 1. Εισαγωγή Η στρέψη ως φαινόμενο καταπόνησης συνδυάζεται, κυρίως,
ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Πεδιλοδοκοί και Κοιτοστρώσεις
/7/0 ΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 0 - ΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις 8.0.0 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεµελίωση µπορεί να γίνει µε πεδιλοδοκούς ή κοιτόστρωση
Χρύσανθος ΜΑΡΑΒΕΑΣ 1,2. Λέξεις κλειδιά: Ωπλισμένο Σκυρόδεμα, Λυγηρά υποστυλώματα, Φαινόμενα δευτέρας τάξης, Απλοποιημένες μέθοδοι
Συγκριτική αξιολόγηση των απλοποιημένων μεθόδων του ΕΝ1992-1-1 για δεύτερης τάξης ανάλυση λυγηρών υποστυλωμάτων Comparative evaluation of the simplified methods of EN1992-1-1 for second order analysis
Κρίσιµο φορτίο λυγισµού επίπεδων πολυώροφων πλαισίων Ω/Σ.
Κρίσιµο φορτίο λυγισµού επίπεδων πολυώροφων πλαισίων Ω/Σ. Χαρίτων Ξενίδης, ρ Πολιτικός Μηχανικός, Επικ. Καθηγητής Τµήµατος Πολιτικών Μηχανικών ΑΠΘ Τριαντάφυλλος Μακάριος, ρ Πολιτικός Μηχανικός, όκιµος
Αντοχή γωνιακών σε κάμψη και θλίψη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Αντοχή γωνιακών σε κάμψη και θλίψη ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ιωάννης Χ. Κριαράς Επιβλέπων: Ιωάννης Βάγιας Αθήνα, Ιούλιος
Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος
Πρόβλεψη συµπεριφοράς διεπιφάνειας υποστυλώµατος ενισχυµένου µε πρόσθετες στρώσεις οπλισµένου σκυροδέµατος Α.Π.Λαµπρόπουλος, Ο.Θ.Τσιούλου Φοιτητές Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Πατρών Σ.Η.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιπλωµατική Εργασία «ΙΕΡΕΥΝΗΣΗ ΑΛΛΗΛΕΠΙ ΡΑΣΗΣ ΚΑΘΟΛΙΚΟΥ ΚΑΙ ΤΟΠΙΚΟΥ ΑΝΕΛΑΣΤΙΚΟΥ ΛΥΓΙΣΜΟΥ ΜΕ ΤΗ ΜΕΘΟ
Σιδηρές Κατασκευές Ι Διάλεξη 6 Θλιβόμενα μέλη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Διάλεξη 6 Θλιβόμενα μέλη χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,
ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ
Επίλυση γραμμικών φορέων ΟΣ σύμφωνα με τους EC & EC8 ΑΣΚΗΣΗ 4 (3/3/017) ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Να υπολογιστεί σε κάµψη η µονοπροέχουσα δοκός του σχήµατος για συνδυασµό φόρτισης 135G15Q Η δοκός ανήκει σε
ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ
ΚΕΦΑΛΑΙΟ 4 4 ΕΝΕΡΓΕΙΑΚΕΣ ΜΕΘΟ ΟΙ ΜΕΛΕΤΗΣ ΕΥΣΤΑΘΕΙΑΣ 4.1 Εισαγωγή Η μέθοδος Euler, η οποία παρουσιάστηκε στο Kεφάλαιο 3 και εφαρμόστηκε για την παρουσίαση προβλημάτων γεωμετρικά μη γραμμικής συμπεριφοράς,
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης
Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ
ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΠΤΥΣΣΟΜΕΝΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΥΧΑΙΑΣ ΚΑΜΠΥΛΟΤΗΤΑΣ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΩΝ ΜΕ ΤΗ ΜΕΘΟ
Καθ. Βλάσης Κουµούσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ Καθ. Βλάσης Κουµούσης Η καµπτική επιρροή αναµένεται να φθίνει σε κάποια κοντινή απόσταση από το σύνορο, δηµιουργώντας
Δομική Σχεδίαση Πλοίου Εισαγωγή στη Θεωρία Πλακών
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Δομική Σχεδίαση Πλοίου Εισαγωγή στη Θεωρία Πλακών Α. Θεοδουλίδης Κατηγοριοποίηση ελασμάτων στη Μηχανική 2 Υποθέσεις Kirchoff 1. Υλικό
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Ανάλυσης Θεωρία Μηχανισμών
ΚΕΦΑΛΑΙΟ ΕΛΑΣΤΙΚΟΣ ΚΑΙ ΑΝΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΘΛΙΒΟΜΕΝΩΝ ΡΑΒ ΩΝ
ΚΕΦΑΛΑΙΟ 10 10 ΕΛΑΣΤΙΚΟΣ ΚΑΙ ΑΝΕΛΑΣΤΙΚΟΣ ΛΥΓΙΣΜΟΣ ΘΛΙΒΟΜΕΝΩΝ ΡΑΒ ΩΝ 10.1 Εισαγωγή Το πρόβλημα του λυγισμού αξονικά θλιβόμενης ράβδου αποτελεί το πλέον χαρακτηριστικό παράδειγμα λυγισμού και χρησιμοποιείται
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ
Βόλος 29-3/9 & 1/1 211 ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ Δάφνη Παντούσα, Msc, Υπ. Διδάκτωρ Ευριπίδης Μυστακίδης, Αναπληρωτής Καθηγητής
Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης Α. Θεοδουλίδης Η αντοχή του πλοίου Διαμήκης αντοχή Εγκάρσια αντοχή Τοπική αντοχή Ανάλυση του σύνθετου εντατικού πεδίου Πρωτεύουσες,
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 19: Φίλτρα (IV) Σχεδιασμός φίλτρων FIR Είδαμε ότι για φίλτρα IIR συνήθως σχεδιάζουμε ένα φίλτρο ΣΧ και μετασχηματίζουμε Για φίλτρα FIR θα δούμε
Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα
Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ
Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).
3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα
ΜΕΛΕΤΗ ΜΗΧΑΝΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΑΝΑΛΥΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗ ΜΗΧΑΝΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΥΠΟΓΕΙΩΝ ΑΓΩΓΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΑΝΑΛΥΤΙΚΕΣ ΜΕΘΟ ΟΥΣ V1 L2 C1-2.711-4.624-6.538-8.451-10.36-12.28-14.19-16.1-18.02-19.93-21.84-23.76-25.67
Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων
Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης
ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΙΕΡΕΥΝΗΣΗ ΜΕΘΟ ΩΝ ΣΧΕ ΙΑΣΜΟΥ ΟΧΥΡΩΜΑΤΙΚΩΝ ΕΡΓΩΝ ιπλωµατική Εργασία Γεώργιος Κ. Πανούσης Επιβλέπων ρ. Χάρης Γαντές Επίκουρος Καθηγητής
Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:
Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος
Πλαστικός Λυγισμός Σιδηρών Υποστυλωμάτων Διατομής Διπλού Ταυ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Πλαστικός Λυγισμός Σιδηρών Υποστυλωμάτων Διατομής Διπλού Ταυ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αναστάσιος Π. Στασινόπουλος Επιβλέπων:
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Χ. ΖΕΡΗΣ Απρίλιος
Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός
ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Αγωγή Χρονικά µεταβαλλόµενη κατάσταση Κεφάλαιο 4 Ορισµός του προβλήµατος Σε πολλές τεχνικές εφαρµογές απαιτείται ο υπολογισµός της θερµικής αγωγής σε χρονικά
( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος
ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος 005 Ασκήσεις στην ελαστική γραµµή Γενικές Εξισώσεις () p w ( x) = x+ M ( x) = w ( x) p w ( ) ( ) ( ) ( ) ( x) = x + x+ onst x p x onst x dm x =
Η μηχανική επαφής και η στατική των πέτρινων γεφυριών
Η μηχανική επαφής και η στατική των πέτρινων γεφυριών Καθηγητής Γεώργιος Σταυρουλάκης Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης Επίκουρη Καθηγήτρια Μαρία Σταυρουλάκη Σχολή Αρχιτεκτόνων
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Κεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ατοµο του Υδρογόνου 1.1.1 Κατάστρωση του προβλήµατος Ας ϑεωρήσουµε πυρήνα ατοµικού αριθµού Z
Νέα έκδοση προγράμματος STeel CONnections 2010.354
http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών
Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ
Π Ρ Ο Τ Ε Ι Ν Ο Μ Ε Ν Α Θ Ε Μ Α Τ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ ΘΕΜΑ Α A Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο, στο οποίο όμως η είναι συνεχής
ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται