Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά"

Transcript

1 ΑΚΜΩΝ Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά

2 Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά Τα πορώδη υλικά αποτελούν µια πολύ σηµαντική κατηγορία υλικών µε πλήθος εφαρµογών βιοµηχανικής ή περιβαλλοντικής σηµασίας, όπως διεργασίες διαχωρισµού, αποθήκευση φυσικών πόρων, ετερογενής κατάλυση, διαχείριση αποβλήτων κλπ. Tα υλικά αυτά ανάλογα µε την κατεργασία που υφίστανται συνίστανται από διάφορα µεγέθη πόρων παρουσιάζοντας µια ξεχωριστή δοµή, ο έγκυρος χαρακτηρισµός της οποίας κρίνεται επιτακτικός για την επιλογή και την εκµετάλλευσή τους. Σύµφωνα µε το σύστηµα IUPAC τα πορώδη υλικά ταξινοµούνται σε µακροπορώδη (µέγεθος πόρων >50 nm), µεσοπορώδη (µέγεθος πόρων 2-50 nm) και µικροπορώδη (µέγεθος πόρων <2 nm). ιάφορες µέθοδοι, λιγότερο ή περισσότερο καθιερωµένες, χρησιµοποιούνται σήµερα για τα µεσοπορώδη και µακροπορώδη υλικά, παρέχοντας πληροφορίες για την κατανοµή µεγέθους πόρων, το δίκτυο των πόρων και άλλες δοµικές παραµέτρους του υλικού. Αντίθετα, δεν υφίσταται προς το παρόν επικυρωµένη µέθοδος για την περίπτωση χαρακτηρισµού νανοπορωδών υλικών. Το Εργαστήριο Περιβαλλοντικών Ερευνών παρέχει υπηρεσίες προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά σύµφωνα µε την παρακάτω µέθοδο. Εργαλεία Περιγραφή της µεθόδου Ο προσδιορισµός της κατανοµής µεγέθους πόρων µε συνδυασµό θεωρητικών και πειραµατικών αποτελεσµάτων περιλαµβάνει τα εξής στάδια: 1. Ανάπτυξη ενός αντιπροσωπευτικού µοντέλου για τον υπολογισµό των αλληλεπιδράσεων αερίου-αερίου και στερεού-αερίου. 2. ηµιουργία µιας βάσης δεδοµένων µε ισόθερµες προσρόφησης για διάφορα αέρια, θερµοκρασίες, πιέσεις και µεγέθη πόρων. 3. Επίλυση ενός αριθµητικού προβλήµατος που περιγράφεται από την εξίσωση 1: N( p) = H max H min f ( H) n( H) dh (1) όπου Ν(p) είναι τα πειραµατικά δεδοµένα της προσρόφησης, n(h,p) είναι η µέση τιµή της πυκνότητας για δεδοµένη πίεση και µέγεθος πόρου υπολογισµένη µε το µοντέλο GCMC και f(h) είναι η ζητούµενη κατανοµή. Περιγραφή του µοντέλου GCMC Η µέθοδος προσοµοίωσης Grand Canonical Monte Carlo είναι µια από τις πολλές παραλλαγές της µεθόδου Monte Carlo. Κρατώντας σταθερά το χηµικό δυναµικό µ, την πίεση P και τον όγκο V του συστήµατος, υπολογίζει τον αριθµό των µορίων του αερίου και την συνολική τους ενέργεια σε κάθε µικροκατάσταση του δεδοµένου συνόλου {µ, V, P}. Η συνολική ενέργεια του συστήµατος είναι το άθροισµα των αλληλεπιδράσεων αερίου-αερίου που υπολογίζονται µε βάση το δυναµικό Lennard-Jones (εξ. 2), και στερεού-αερίου και περιγράφονται σύµφωνα µε το δυναµικό Steele (εξ. 3), που αποτελεί µια παραλλαγή του Lennard-Jones: 12 6 σ σ qα q β ( r) = 4ε + (2) r r 4πε r u ij 0

3 u w ( r ) z 2 σ 5 rz σ = 2πρwε σ 3 σ rz 3 ( 0,61 + r ) z (3) όπου u ij είναι η ενέργεια αλληλεπίδρασης µεταξύ των κέντρων Lennard-Jones. Τα µόρια του προσροφούµενου αερίου αναπαρίστανται χρησιµοποιώντας το δυναµικό σκληρής σφαίρας, µε το Η 2 να έχει σχήµα ελλειψοειδές διαθέτοντας δύο κέντρα Lennard- Jones, ενώ αγνοήθηκαν τα κβαντικά φαινόµενα. Το µοντέλο πόρων του προσροφητικού υλικού περιγράφεται από φύλλα γραφίτη τα οποία απέχουν µεταξύ τους απόσταση και σχηµατίζουν πόρο πλάτους Η. Στον υπολογισµό της κατανοµής µεγέθους πόρων πρέπει να χρησιµοποιηθεί το διορθωµένο πλάτος πόρου Η (εξ. 4), ώστε τα θεωρητικά δεδοµένα να είναι συγκρίσιµα µε τις πειραµατικές µετρήσεις: H = H 2 z0 + σ g (4) όπου σ g είναι η διάµετρος σκληρής σφαίρας του αερίου και z 0 η ρίζα της πρώτης παραγώγου της εξίσωσης Steele, που αντιπροσωπεύει την ελάχιστη απόσταση του µορίου του αερίου από τα µόρια του γραφίτη. Παράδειγµα εφαρµογής Ο κώδικας GCMC εκτελέστηκε για το CO 2 στους 298 Κ και στους 253 Κ για πιέσεις έως 20 bar και λήφθηκαν ισόθερµες προσρόφησης για µεγέθη πόρων από nm µε βήµα 0.1 nm. Για το Η 2 οι υπολογισµοί πραγµατοποιήθηκαν σε θερµοκρασία 77 Κ για τις ίδιες πιέσεις και µεγέθη πόρων µε το CO 2. Οι παράµετροι που χρησιµοποιήθηκαν κατά την εκτέλεση των υπολογισµών συνοψίζονται στον Πίνακα 1. Πίνακας 1: τιµές παραµέτρων που χρησιµοποιήθηκαν Ζεύγος σ (nm) ε/k (K) l (nm) φορτίο CO 2 -CO 2 σ CC = σ OO = σ CO = ε CC /k=26.3 ε OO /k=75.2 ε CO /k= H 2 -H 2 σ HH =0.259 ε HH /k= C (γραφίτη) -C (γραφίτη) C (γραφίτη) -C (CO2) C (γραφίτη) -O (CO2) * Τα ε και σ υπολογίζονται σύµφωνα µε τους κανόνες Lorenz-Berthelot * Το CO 2 έχει τετραπολική ροπή q C =+0.664e q O =-0.332e Oι πειραµατικές ισόθερµες προσρόφησης του CO 2 σε θερµοκρασίες 253 Κ και 298 Κ και του Η 2 στους 77 Κ και για εύρος πιέσεων 0-20 bar µετρήθηκαν σε βαροµετρική συσκευή υψηλής ανάλυσης (Intelligent Gravimetric Analyzer IGA Hiden Analytical Ltd.). Το δείγµα που εξετάστηκε είναι ενεργός άνθρακας ΑΧ-21 (Amoco Co.) ο οποίος υπέστη απαέρωση στους 623 Κ µέχρι να µη παρατηρείται µετολή στη µάζα του. Η εκρόφηση του CO 2 ήταν πλήρης και στις δύο θερµοκρασίες, κάτι που δε συνέβη στην περίπτωση του Η 2 (πιθανή χηµειορόφηση), όπου η εναποµένουσα ποσότητα αποµακρύνθηκε µετά από θέρµανση. Η διαδικασία επανελήφθη για δύο τουλάχιστον φορές, ώστε να επιβεβαιωθεί η εγκυρότητα της µέτρησης της φυσικά προσροφηµένης ποσότητας Η 2. Η διαδικασία προσδιορισµού της βέλτιστης κατανοµής µεγέθους πόρων ξεκινά µε την υπόθεση ενός αρχικού όγκου V j για κάθε πλάτος πόρου H j και την κατασκευή µιας

4 θεωρητικής ισοθέρµου που προκύπτει από την αρχική υπόθεση. Εν συνεχεία, η ισόθερµος αυτή συγκρίνεται µε την πειραµατική και µε επαναληπτικές τροποποιήσεις των στοιχείων του πίνακα V j, του οποίου το άθροισµα των στοιχείων πρέπει να είναι µονάδα και οι τιµές τους µη αρνητικές, εξάγεται η βέλτιστη κατανοµή. Η παραπάνω διαδικασία αποτελεί ένα πρόβληµα ελαχιστοποίησης, η επίλυση του οποίου πραγµατοποιείται µε χρήση της ρουτίνας επίλυσης γραµµικών ελαχίστων τετραγώνων Ε04ΝCF (NAG library). H τεχνική αρχικά εφαρµόστηκε ξεχωριστά για κάθε αέριο και θερµοκρασία (CO 2 253K, CO 2 298K, H 2 77K). H υπολογιζόµενη κατανοµή πόρων της κάθε περίπτωσης παρουσιάζεται υπό τη µορφή ιστογράµµατος στο Σχήµα 1α. Η κατανοµή που προέκυψε από τα δεδοµένα προσρόφησης του Η 2 περιλαµβάνει ουσιαστικά τρεις περιοχές µεγέθους πόρων, οι οποίες εντοπίζονται γύρω από τα 0.5, 1.6 και 2.8 nm. Οι θεωρητικά υπολογισµένες ισόθερµες προσρόφησης του Η 2 στα µικρά µεγέθη πόρων (H'<0.8 nm) είναι τύπου Langmuir, ενώ για µεγαλύτερους πόρους σταδιακά χάνεται η καµπυλότητα, και τείνουν να γίνουν ευθείες γραµµές (τύπου Henry). Αυτό αποδεικνύει ότι στο εύρος πιέσεων που χρησιµοποιήθηκε οι πολύ µικροί πόροι γεµίζουν, ενώ στους µεγαλύτερους πραγµατοποιείται επιφανειακή κάλυψη και συνεπώς σ αυτά τα µεγέθη πόρων η προσροφηµένη ποσότητα δεν είναι συνάρτηση του πλάτους των πόρων, αλλά της ειδικής επιφάνειας του υλικού. Εποµένως, δεν υπάρχει µια µοναδική κατανοµή που να αναπαράγει ικανοποιητικά την πειραµατική ισόθερµο, αλλά ένας συνδυασµός λύσεων που προκύπτουν από καθεµία θεωρητική ισόθερµο. Ένα απλό συµπέρασµα που εξάγεται από τη µέθοδο είναι ότι οι ισόθερµοι προσρόφησης του H 2 δεν µπορούν να χρησιµοποιηθούν στο χαρακτηρισµό πόρων δειγµάτων που περιέχουν πόρους πέρα από την περιοχή των πολύ µικρών πόρων (ultramicropores), εκτός αν είναι διαθέσιµα τα πειραµατικά στοιχεία προσρόφησης σε πολύ µεγαλύτερες πιέσεις. Το CO 2 αντίθετα και στις δύο θερµοκρασίες παρουσιάζει µια πολύ διευρυµένη κατανοµή, η οποία καλύπτει σχεδόν όλο το εύρος πόρων που µελετάται. Οι κύριες διαφορές µεταξύ των δύο θερµοκρασιών παρατηρούνται στα κάτω και πάνω όρια της κλίµακας πλάτους πόρων. Η κατανοµή του CO 2 στους 253 Κ αποκαλύπτει την ύπαρξη µεγάλων πόρων (περίπου 2.6 nm) κάτι που δε συµβαίνει στους 298 Κ, όπου εµφανίζονται πόροι µεγέθους 0.4 nm περίπου. Το φαινόµενο αυτό µπορεί να εξηγηθεί αναλογιζόµενοι όπως και στην περίπτωση του υδρογόνου ότι οι πειραµατικές ισόθερµες καλύπτουν εύρος πιέσεων από 0 έως 20 bar και εποµένως στους 298 Κ έχουν µετρηθεί µάλλον χαµηλές σχετικές πιέσεις (p/p 0 <0.55), µε αποτέλεσµα η ακρίβεια της πρόβλεψης να περιορίζεται στους µικρούς πόρους. Η ισόθερµος στους 253 Κ περιέχει το πλήρες εύρος σχετικών πιέσεων (p/p 0 =0.94) και άρα αναµένεται οι πληροφορίες για τους µεγάλους πόρους να είναι πληρέστερες CO2 (253K) CO2 (298K) H2 (77K) H2 (77K) + CO2 (253 K) CO2 (298K) + CO2 (253 K) H2 (77K) + CO2 (298K) + CO2 (253 K) Vj/Vt 0.2 Vj/Vt H' j (nm) H' j (nm) Σχήµα 1: Κατανοµές µεγέθους πόρων προσδιορισµένες από α) επιµέρους ισόθερµες (CO 2 253K, CO 2 298K, H 2 77K) και β) διάφορους συνδυασµούς των δεδοµένων.

5 Για τους προαναφερθέντες λόγους οι κατανοµές µεγέθους πόρων που υπολογίζονται µε βάση τις µεµονωµένες ισόθερµες έχουν γενικά περιορισµένη δυνατότητα πρόβλεψης. Αυτό είναι προφανές στο Σχήµα 2, όπου κάθε κατανοµή χρησιµοποιείται αντίστροφα, για να προβλέψει όλες τις ισόθερµους προσρόφησης. Όπως αναµένονταν, όλες οι κατανοµές προβλέπουν µε ακρίβεια τις αντίστοιχες πειραµατικές τους καµπύλες, εντούτοις όταν γίνεται προσπάθεια να αναπαράγουν ισόθερµες διαφορετικού είδους µορίου ή/και θερµοκρασίας, αποδεικνύονται ανεπαρκείς και εσφαλµένες. Η αποτυχία µπορεί να αποδοθεί στο γεγονός ότι το H 2 (77 Κ) και το CO 2 (298 Κ) δεν περιέχουν επαρκείς πληροφορίες για τους µεγαλύτερους πόρους και συνεπώς δεν µπορεί να προβλεφθεί η πλήρωση τους που πραγµατοποιείται στις υψηλότερες σχετικές πιέσεις. Αντίθετα, η κατανοµή της πλήρους ισοθέρµου του CO 2 (253 Κ) µπορεί εύλογα να προβλέψει όλες τις πειραµατικές ισόθερµες H2 77 K experimental CO2 298 K experimental PSD H2 77K PSD CO2 253K PSD CO2 298K CO2 253 K experimental uptake (mmol/g) pressure (bar) H2 77 K experimental CO2 298 K experimental PSD H2+CO2 253K PSD CO K PSD all CO2 253 K experimental uptake (mmol/g) pressure (bar) Σχήµα 2: Πειραµατικές και αναπαραγόµενες (από τις κατανοµές µεγέθους πόρων του Σχήµατος 1) ισόθερµες Επιλύοντας το πρόβληµα ελαχιστοποίησης µετά από εισαγωγή διαφόρων συνδυασµών πειραµατικών και θεωρητικών αποτελεσµάτων λαµβάνονται νέες προβλέψεις κατανοµών (Σχήµα 1β). Αντίθετα µε τις κατανοµές που προκύπτουν από τις µεµονωµένες ισόθερµες, αυτές που εξάγονται µετά από "συνδυασµό" είναι παρόµοιες µεταξύ τους, ενώ επιπλέον αναπαράγουν ακριβέστερα όλες τις πειραµατικές ισόθερµες. Όπως αναµένεται, η βέλτιστη κατανοµή λαµβάνεται από το συνδυασµό όλων των πληροφοριών (CO 2 253K, CO 2 298K, H 2 77K). Μπορούµε να συµπεράνουµε λοιπόν, πως η κάθε ισόθερµη προσρόφησης δίνει ακριβείς και έγκυρες πληροφορίες για κάποιο συγκεκριµένο εύρος πόρων. Γενικεύοντας, η κατάταξη της ακρίβειας της µεθόδου σε σχέση µε το πλάτος των πόρων θα είναι H 2 (77K)>CO 2 (298K)>CO 2 (253K) µε σειρά από τα µικρότερα προς τα µεγαλύτερα µεγέθη. Προκειµένου συνεπώς να εξαχθεί η καλύτερη δυνατή πρόβλεψη κατανοµής µεγέθους

6 πόρων, είναι απαραίτητη µια ισόθερµος σε σχετικά υψηλή θερµοκρασία (υπό την έννοια ότι η ισορροπία είναι εφικτή) και µια που να περιλαµβάνει όλο το εύρος πίεσης (προκειµένου να προστεθεί η συµβολή όλων των µεγεθών πόρων). Επιπρόσθετη πληροφορία σχετικά µε τους λεπτότερους πόρους µπορεί να δώσει κάποιο αέριο το οποίο να µπορεί εύκολα να εισχωρήσει σε πόρους µη ανιχνεύσιµους από ογκώδη µόρια, παραδείγµατος χάριν το H 2. Εποµένως, ο κατάλληλος συνδυασµός των δεδοµένων προσδίδει αρκετά σαφή εικόνα της νανοπορώδους δοµής του υλικού.

Η ρόφηση H 2 σαν αποτελεσματικό μέσο χαρακτηρισμού νανοπορώδους άνθρακα

Η ρόφηση H 2 σαν αποτελεσματικό μέσο χαρακτηρισμού νανοπορώδους άνθρακα Η ρόφηση H 2 σαν αποτελεσματικό μέσο χαρακτηρισμού νανοπορώδους άνθρακα Μ. Κωνσταντάκου 1,2, Σ. Σάμιος 2, Θ. Α. Στεριώτης 1, Μ. Καινουργιάκης 1, Γ. Κ. Παπαδόπουλος 3, Ε. Σ. Κικκινίδης 2 και Α. Κ. Στούμπος

Διαβάστε περισσότερα

Προσρόφηση και Αποθήκευση Αερίων σε Νανοπορώδη Υλικά

Προσρόφηση και Αποθήκευση Αερίων σε Νανοπορώδη Υλικά NCSR "DEMOKRITOS" INSTITUTE OF NUCLEAR TECNOLOGY & RADIATION ROTECTION ENVIRONMENTAL RESEARC LABORATORY Προσρόφηση και Αποθήκευση Αερίων σε Νανοπορώδη Υλικά Μαρία Κωνσταντάκου Χηµικός Πανεπιστήµιο υτικής

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Διαχωρισμός του Η 2 σε εμπορική μεμβράνη Pd-Cu/V

Διαχωρισμός του Η 2 σε εμπορική μεμβράνη Pd-Cu/V Διαχωρισμός του Η 2 σε εμπορική μεμβράνη Pd-Cu/V Δ. Κουτσονικόλας 1, Σ. Τόπης 3, Σ. Καλδής 2, Γ. Σκόδρας 1,2,3 και Γ.Π. Σακελλαρόπουλος 1,2,3 * 1 Εργαστήριο Γενικής Χημικής Τεχνολογίας, Τμήμα Χημικών Μηχανικών,

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα

Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα θερµοκρασία που αντιπροσωπεύει την θερµοκρασία υγρού βολβού. Το ποσοστό κορεσµού υπολογίζεται από την καµπύλη του σταθερού ποσοστού κορεσµού που διέρχεται από το συγκεκριµένο σηµείο. Η απόλυτη υγρασία

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 10 Μαίου 2010

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 10 Μαίου 2010 ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 10 Μαίου 2010 Συµπληρώστε τα στοιχεία σας στο παρακάτω πίνακα τώρα Ονοµατεπώνυµο Αρ. Ταυτότητας Username Password Δηµιουργήστε ένα φάκελο στο home directory σας µε

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Δείτε εδώ τις Διαφάνειες για την Άσκηση 8. Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ

Δείτε εδώ τις Διαφάνειες για την Άσκηση 8. Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ Δείτε εδώ τις Διαφάνειες για την Άσκηση 8 Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ Διάγραμμα Ροής Βήμα 1. Υπολογισμός της πραγματικής αρχικής συγκέντρωσης του διαλύματος κιτρικού οξέος στη

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I. ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005. Μαίρη Τζιράκη, Κουνής Γεώργιος

ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I. ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005. Μαίρη Τζιράκη, Κουνής Γεώργιος ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005 Μαίρη Τζιράκη, Κουνής Γεώργιος Σκοπός της εργαστηριακής άσκησης είναι η µελέτη των εξισώσεων

Διαβάστε περισσότερα

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ

ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ (ΘΧΜ) 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ 2. ΘΕΜΕΛΙΑ 1 1. ΣΚΟΠΟΣ και ΑΝΤΙΚΕΙΜΕΝΟ Σκοπός της θερμοδυναμικής χημικής μηχανικής είναι η παροχή των κατάλληλων θεωρητικών γνώσεων και των

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών «ΔιερΕΥνηση Και Aντιμετώπιση προβλημάτων ποιότητας ηλεκτρικής Ισχύος σε Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ) πλοίων» (ΔΕΥ.Κ.Α.Λ.Ι.ΩΝ) πράξη ΘΑΛΗΣ-ΕΜΠ, πράξη ένταξης 11012/9.7.2012, MIS: 380164, Κωδ.ΕΔΕΙΛ/ΕΜΠ:

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

Άσκηση 2 : Μέτρηση Διαπερατότητας πλαστικών στους υδρατμούς

Άσκηση 2 : Μέτρηση Διαπερατότητας πλαστικών στους υδρατμούς ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ Εργαστήριο Συσκευασίας Τροφίμων Άσκηση : Μέτρηση Διαπερατότητας πλαστικών στους υδρατμούς Πειραματικές Μετρήσεις Χρόνος (h) Βάρος σάκου La Πίνακας βάρους σακιδίων συναρτήσει

Διαβάστε περισσότερα

Enrico Fermi, Thermodynamics, 1937

Enrico Fermi, Thermodynamics, 1937 I. Θερµοδυναµικά συστήµατα Enrico Feri, herodynaics, 97. Ένα σώµα διαστέλλεται από αρχικό όγκο. L σε τελικό όγκο 4. L υπό πίεση.4 at. Να υπολογισθεί το έργο που παράγεται. W - -.4 at 5 a at - (4..) - -

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 10: Φαινόμενα προσροφήσεως Προσρόφηση ουσίας από διαλύματα Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 5 3. Επεξεργασία Μετρήσεων... 6 Σελίδα

Διαβάστε περισσότερα

[ ] [ ] CH3COO [ ] CH COOH. Cοξ. Cαλ

[ ] [ ] CH3COO [ ] CH COOH. Cοξ. Cαλ Πριν από κάθε απάντηση, προηγείται η καλή ανάγνωση και η προσπάθεια κατανόησης της ερώτησης. Η κάθε απάντηση πρέπει να σχετίζεται µε την ακριβή διατύπωση της ερώτησης και όχι µε την γενική της ιδέα. Κάθε

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες

Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Σε πολλές χημικές αντιδράσεις, οι ταχύτητές τους επηρεάζονται από κάποια συστατικά τα οποία δεν είναι ούτε αντιδρώντα ούτε προϊόντα. Αυτά τα υλικά

Διαβάστε περισσότερα

2. Επίλυση μη Γραμμικών Εξισώσεων

2. Επίλυση μη Γραμμικών Εξισώσεων 2. Επίλυση μη Γραμμικών Εξισώσεων Ασκήσεις 2.4 Έστω (x n ) n2n η ακολουθία των προσεγγίσεων, την οποία δίνει η μέθοδος της διχοτόμησης για την εξίσωση f (x) = 0 με f : [ 1; p 2]! R; f (x) := x 3 3 2 x2

Διαβάστε περισσότερα

Συνδυασµός θεωρητικών και πειραµατικών

Συνδυασµός θεωρητικών και πειραµατικών Συνδυασµός θεωρητικών και πειραµατικών τεχνικών για τον χαρακτηρισµό νανοϋλικών Μ.Ε. Καινουργιάκης, Γ.Χ. Χαραλαµποπούλου, Α.Κ. Στούµπος Ε.Κ.Ε.Φ.Ε. ηµόκριτος Ε.Κ.Ε.Φ.Ε. ΗΜΟΚΡΙΤΟΣ ΘΕΡΙΝΟ ΣΧΟΛΕΙΟ 25 Υλικά

Διαβάστε περισσότερα

Παρεµβολή και Προσέγγιση Συναρτήσεων

Παρεµβολή και Προσέγγιση Συναρτήσεων Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

2H 2 (g) + O 2 (g) 2H 2 O(l) Η = -572 kj,

2H 2 (g) + O 2 (g) 2H 2 O(l) Η = -572 kj, ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 3.1 Γενικά για τη χηµική κινητική και τη χηµική αντίδραση - Ταχύτητα αντίδρασης 1. Τι µελετά η χηµική κινητική; Η χηµική κινητική µελετά - Την ταχύτητα (ή το ρυθµό) που εξελίσσεται µια

Διαβάστε περισσότερα

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ

ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΠΕΡΙΛΗΨΕΙΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ της Χαρίκλειας Βαϊκούση, Γεωπόνου με τίτλο: ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΣΥΝΤΟΜΗ ΠΕΡΙΛΗΨΗ Αντικείμενο της μελέτης αποτέλεσε

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Η ετερογενής καταλυτική δράση στα μέταλλα

Η ετερογενής καταλυτική δράση στα μέταλλα Η ετερογενής καταλυτική δράση στα μέταλλα Τα μέταλλα των στοιχείων μετάπτωσης καταλύουν συνήθως: την υδρογόνωση ακόρεστων υδρογονανθράκων την υδρογόνωση του CO προς πλήθος βιομηχανικών προϊόντων την υδρογονόλυση

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

1bar. bar; = = y2. mol. mol. mol. P (bar)

1bar. bar; = = y2. mol. mol. mol. P (bar) Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Εισαγωγή στη Μοριακή Προσοµοίωση

Εισαγωγή στη Μοριακή Προσοµοίωση Κεφάλαιο 6 Εισαγωγή στη Μοριακή Προσοµοίωση 6.1. Μοριακή Μηχανική 6.1.1. Εισαγωγή στη µεθοδολογία του «απ αρχής» διπλώµατος της πρωτείνης. Η ενέργεια κάθε µορίου µπορεί θεωρητικά να υπολογιστεί µε την

Διαβάστε περισσότερα

Onset point : 135,97 C Peak 1 top : 136,90 C Enthalpy / J/g : 4,6485 (Endothermic effect)

Onset point : 135,97 C Peak 1 top : 136,90 C Enthalpy / J/g : 4,6485 (Endothermic effect) ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΥΣΤΕΡΗΣΗΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΦΑΣΗΣ ΤΟΥ HgI ΚΑΤΑ ΤΗΝ ΨΥΞΗ ΜΕ ΤΗΝ ΤΕΧΝΙΚΗ ΤΗΣ ΙΑΦΟΡΙΚΗΣ ΚΑΛΟΡΙΜΕΤΡΙΑΣ (DSC). Σ.Ν.Τουµπεκτσής, Μ. αβίτη, Κ.Μ.Παρασκευόπουλος και Ε.Κ.Πολυχρονιάδης

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Β Λυκείου Οκτώβριος 01 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να επιλέξετε την σωστή απάντηση. κατεύθυνσης 1. Η καταστατική εξίσωση των ιδανικών αερίων εφαρμόζεται και στα πραγματικά

Διαβάστε περισσότερα

Ο Πυρήνας του Ατόμου

Ο Πυρήνας του Ατόμου 1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

Διάλεξη 17: Το μοντέλο των κουάρκ

Διάλεξη 17: Το μοντέλο των κουάρκ Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Ισοζύγια Μάζας. 1. Eισαγωγή

Ισοζύγια Μάζας. 1. Eισαγωγή Ισοζύγια Μάζας 1. Eισαγωγή Οποιαδήποτε χηµική διεργασία όπου υπάρχουν αλληλεπιδράσεις µεταξύ δύο ή περισσότερων υλικών µπορεί να αναλυθεί µε βάση τα ισοζύγια υλικών. Γενικά, υπάρχουν δύο διαφορετικές περιπτώσεις

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις Ασφάλεια Πληροφοριακών Συστηµάτων Επαναληπτικές Ασκήσεις ιάγραµµα Pareto Τα προβλήματα ασφάλειας σε δύο εξυπηρετητές μίας εταιρείας απεικονίζονται στο παρακάτω πίνακα: α/α Κωδικός Προβλήματος Συχνότητα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Απορρόφηση Αερίων (2)

Απορρόφηση Αερίων (2) Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Σχήμα 1: Εφαρμογές υπερδιακλαδισμένων πολυμερών.

Σχήμα 1: Εφαρμογές υπερδιακλαδισμένων πολυμερών. Τίτλος διατριβής : «Θερμοδυναμική μελέτη διαλυμάτων υπερδιακλαδισμένων πολυμερών» Υποψήφιος Διδάκτορας : Δρίτσας Γεώργιος Περίληψη Διατριβής Τα μακρομόρια δενδριτικής μορφής όπως τα υπερδιακλαδισμένα πολυμερή

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία

Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 1 Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 2 Μετωπικό φραιζάρισμα: Χρησιμοποιείται κυρίως στις αρχικές φάσεις της κατεργασίας (φάση εκχόνδρισης) Μεγάλη διάμετρο Μεγάλες προώσεις μείωση

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ

ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Παράγοντας Αποτελεσματικότητας Ειδικά για αντίδραση πρώτης τάξης, ο παράγοντας αποτελεσματικότητας ισούται προς ε = C

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ Κινητική Θεωρία Αερίων Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Νόμος του Boyle: με τον όγκο. Η πίεση ορισμένης ποσότητας αερίου του οποίου η θερμοκρασία

Διαβάστε περισσότερα

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000 Ζήτηµα 1ο Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου τις ερωτήσεις 1-3,να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. ε καθαρό νερό διαλύεται

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Α. 200 C B. 100 C Γ. 50 C

Α. 200 C B. 100 C Γ. 50 C ιδακτική ενότητα: Βρασµός Β' Γυµνασίου Σχέδιο µαθήµατος Α) ιδακτικοί στόχοι Οι µαθητές θα πρέπει: 1. Να αναγνωρίζουν πότε ένα υγρό βράζει 2. Να διακρίνουν το βρασµό από την εξάτµιση 3. Να διατυπώνουν τον

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Εγχειρίδιο λειτουργίας οργάνου Ποροσίµετρου

Εγχειρίδιο λειτουργίας οργάνου Ποροσίµετρου Εγχειρίδιο λειτουργίας οργάνου Ποροσίµετρου Όταν ανοίγει το πρόγραµµα εµφανίζει την οθόνη που φαίνεται στην παρακάτω εικόνα. Τα βήµατα που πρέπει να ακολουθηθούν για να γίνει εισαγωγή στο κυρίως µενού

Διαβάστε περισσότερα

ΜΟΡΙΑΚO ΚOΣΚΙΝΟ ΖΕOΛΙΘΟΣ NaX

ΜΟΡΙΑΚO ΚOΣΚΙΝΟ ΖΕOΛΙΘΟΣ NaX Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Εργαστήριο Χημείας Υλικών Γεράσιμος Αρματάς ΜΟΡΙΑΚO ΚOΣΚΙΝΟ ΖΕOΛΙΘΟΣ NaX ΖΕΟΛΙΘΟΙ Οι ζεόλιθοι (από το ζέω και λίθος) είναι μικροπορώδη, κρυσταλλικά

Διαβάστε περισσότερα

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ 1 Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Οι αντηλιακές µεµβράνες 3M Scotchtint της εταιρίας 3Μ µελετήθηκαν

Διαβάστε περισσότερα

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Γραµµοµοριακός όγκος Ο Νόµος του Avogadro Ελένη ανίλη, Χηµικός, Msc., Ph.D 2 Η ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥ MOL ΣΤΑ ΑΕΡΙΑ Όπως ήδη ξέρεις τα αέρια είναι πολύ ελαφρά. Είναι δύσκολο να τα ζυγίσουµε όµως

Διαβάστε περισσότερα

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000 Ζήτηµα 1ο Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου ΕΚΦΩΝΗΕΙ τις ερωτήσεις 1-3,να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. ε καθαρό

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Μερικές εφαρμογές. Τεχνικές προσομοίωσης και σχεδιασμού υλικών σε ΗΥ. Υπολογιστικές μέθοδοι στην επιστήμη των υλικών

Εισαγωγικές έννοιες. Μερικές εφαρμογές. Τεχνικές προσομοίωσης και σχεδιασμού υλικών σε ΗΥ. Υπολογιστικές μέθοδοι στην επιστήμη των υλικών Τεχνικές προσομοίωσης και σχεδιασμού υλικών σε ΗΥ Μερικές εφαρμογές Εισαγωγικές έννοιες Εναπόθεση σε Cu(111) Τσαλάκωμα γραφενίου Τριβή Δ.Γ. Παπαγεωργίου Ανάμιξη νερού πεντανίου Σκίσιμο γραφενίου Πρόσκρουση

Διαβάστε περισσότερα

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση Ονοµατεπώνυµο: Αριθµός Μητρώου: Εξάµηνο: Υπογραφή Εργαστήριο Ηλεκτρικών Κυκλωµάτων και Συστηµάτων 1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος σε βηµατική και αρµονική διέγερση Μέρος Α : Απόκριση στο πεδίο

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων

Τμήμα Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα 2: Γραφική επίλυση προβληµάτων γραµµικού προγραµµατισµού(γ.π.) ιδάσκων: Βασίλειος Ισµυρλής Τηλ:6979948174, e-mail: vasismir@gmail.com

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ Ι Ακαδ. έτος Εαρινό εξάμηνο Δ Σειρά Ασκήσεων

ΦΥΣΙΚΟΧΗΜΕΙΑ Ι Ακαδ. έτος Εαρινό εξάμηνο Δ Σειρά Ασκήσεων Παράδοση : Παρασκευή 20 Μαΐου 2005 Κεφάλαιο : Επιφανειακή τάση ΦΥΣΙΚΟΧΗΜΕΙΑ Ι Ακαδ. έτος 2004-05 Εαρινό εξάμηνο Δ Σειρά Ασκήσεων. Δύο παράλληλες γυάλινες πλάκες εμβαπτίζονται σε δοχείο με νερό στους 20

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις.

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περίληψη Η επιβάρυνση του περιβάλλοντος που προκαλείται από την παροχή ηλεκτρικής ή θερµικής ενέργειας είναι ιδιαίτερα σηµαντική.

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ

ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 www.pmoiras.weebly.om ΘΕΡΜΙΚΕΣ & ΨΥΚΤΙΚΕΣ ΜΗΧΑΝΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Κυκλικές διαδικασίες 2. O 2ος Θερμοδυναμικός Νόμος- Φυσική Ερμηνεία 2.1 Ισοδυναμία

Διαβάστε περισσότερα

Θαλής ΤΕΙ Καβάλας - Nanocapillary. Αναφορά 1 ου Πειράματος MIS P a g e

Θαλής ΤΕΙ Καβάλας - Nanocapillary. Αναφορά 1 ου Πειράματος MIS P a g e Θαλής ΤΕΙ Καβάλας - Nanocapillary Αναφορά 1 ου Πειράματος MIS 375233 1 P a g e Εισαγωγή Το Πρώτο πείραμα (1 ο ) αποτελεί μέλος του Πακέτου Εργασίας 3 (Π.Ε. 3), το οποίο αναφέρεται στα επί τόπου πειράματα

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4)

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4) Μιχαήλ Π. Μιχαήλ ΚΕΦΑΛΑΙΟ 3o ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 1 3.1 Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-34 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το αντικείµενο µελέτης της χηµικής

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα