Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά"

Transcript

1 ΑΚΜΩΝ Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά

2 Νέα µέθοδος προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά Τα πορώδη υλικά αποτελούν µια πολύ σηµαντική κατηγορία υλικών µε πλήθος εφαρµογών βιοµηχανικής ή περιβαλλοντικής σηµασίας, όπως διεργασίες διαχωρισµού, αποθήκευση φυσικών πόρων, ετερογενής κατάλυση, διαχείριση αποβλήτων κλπ. Tα υλικά αυτά ανάλογα µε την κατεργασία που υφίστανται συνίστανται από διάφορα µεγέθη πόρων παρουσιάζοντας µια ξεχωριστή δοµή, ο έγκυρος χαρακτηρισµός της οποίας κρίνεται επιτακτικός για την επιλογή και την εκµετάλλευσή τους. Σύµφωνα µε το σύστηµα IUPAC τα πορώδη υλικά ταξινοµούνται σε µακροπορώδη (µέγεθος πόρων >50 nm), µεσοπορώδη (µέγεθος πόρων 2-50 nm) και µικροπορώδη (µέγεθος πόρων <2 nm). ιάφορες µέθοδοι, λιγότερο ή περισσότερο καθιερωµένες, χρησιµοποιούνται σήµερα για τα µεσοπορώδη και µακροπορώδη υλικά, παρέχοντας πληροφορίες για την κατανοµή µεγέθους πόρων, το δίκτυο των πόρων και άλλες δοµικές παραµέτρους του υλικού. Αντίθετα, δεν υφίσταται προς το παρόν επικυρωµένη µέθοδος για την περίπτωση χαρακτηρισµού νανοπορωδών υλικών. Το Εργαστήριο Περιβαλλοντικών Ερευνών παρέχει υπηρεσίες προσδιορισµού κατανοµής µεγέθους πόρων για νανοπορώδη υλικά σύµφωνα µε την παρακάτω µέθοδο. Εργαλεία Περιγραφή της µεθόδου Ο προσδιορισµός της κατανοµής µεγέθους πόρων µε συνδυασµό θεωρητικών και πειραµατικών αποτελεσµάτων περιλαµβάνει τα εξής στάδια: 1. Ανάπτυξη ενός αντιπροσωπευτικού µοντέλου για τον υπολογισµό των αλληλεπιδράσεων αερίου-αερίου και στερεού-αερίου. 2. ηµιουργία µιας βάσης δεδοµένων µε ισόθερµες προσρόφησης για διάφορα αέρια, θερµοκρασίες, πιέσεις και µεγέθη πόρων. 3. Επίλυση ενός αριθµητικού προβλήµατος που περιγράφεται από την εξίσωση 1: N( p) = H max H min f ( H) n( H) dh (1) όπου Ν(p) είναι τα πειραµατικά δεδοµένα της προσρόφησης, n(h,p) είναι η µέση τιµή της πυκνότητας για δεδοµένη πίεση και µέγεθος πόρου υπολογισµένη µε το µοντέλο GCMC και f(h) είναι η ζητούµενη κατανοµή. Περιγραφή του µοντέλου GCMC Η µέθοδος προσοµοίωσης Grand Canonical Monte Carlo είναι µια από τις πολλές παραλλαγές της µεθόδου Monte Carlo. Κρατώντας σταθερά το χηµικό δυναµικό µ, την πίεση P και τον όγκο V του συστήµατος, υπολογίζει τον αριθµό των µορίων του αερίου και την συνολική τους ενέργεια σε κάθε µικροκατάσταση του δεδοµένου συνόλου {µ, V, P}. Η συνολική ενέργεια του συστήµατος είναι το άθροισµα των αλληλεπιδράσεων αερίου-αερίου που υπολογίζονται µε βάση το δυναµικό Lennard-Jones (εξ. 2), και στερεού-αερίου και περιγράφονται σύµφωνα µε το δυναµικό Steele (εξ. 3), που αποτελεί µια παραλλαγή του Lennard-Jones: 12 6 σ σ qα q β ( r) = 4ε + (2) r r 4πε r u ij 0

3 u w ( r ) z 2 σ 5 rz σ = 2πρwε σ 3 σ rz 3 ( 0,61 + r ) z (3) όπου u ij είναι η ενέργεια αλληλεπίδρασης µεταξύ των κέντρων Lennard-Jones. Τα µόρια του προσροφούµενου αερίου αναπαρίστανται χρησιµοποιώντας το δυναµικό σκληρής σφαίρας, µε το Η 2 να έχει σχήµα ελλειψοειδές διαθέτοντας δύο κέντρα Lennard- Jones, ενώ αγνοήθηκαν τα κβαντικά φαινόµενα. Το µοντέλο πόρων του προσροφητικού υλικού περιγράφεται από φύλλα γραφίτη τα οποία απέχουν µεταξύ τους απόσταση και σχηµατίζουν πόρο πλάτους Η. Στον υπολογισµό της κατανοµής µεγέθους πόρων πρέπει να χρησιµοποιηθεί το διορθωµένο πλάτος πόρου Η (εξ. 4), ώστε τα θεωρητικά δεδοµένα να είναι συγκρίσιµα µε τις πειραµατικές µετρήσεις: H = H 2 z0 + σ g (4) όπου σ g είναι η διάµετρος σκληρής σφαίρας του αερίου και z 0 η ρίζα της πρώτης παραγώγου της εξίσωσης Steele, που αντιπροσωπεύει την ελάχιστη απόσταση του µορίου του αερίου από τα µόρια του γραφίτη. Παράδειγµα εφαρµογής Ο κώδικας GCMC εκτελέστηκε για το CO 2 στους 298 Κ και στους 253 Κ για πιέσεις έως 20 bar και λήφθηκαν ισόθερµες προσρόφησης για µεγέθη πόρων από nm µε βήµα 0.1 nm. Για το Η 2 οι υπολογισµοί πραγµατοποιήθηκαν σε θερµοκρασία 77 Κ για τις ίδιες πιέσεις και µεγέθη πόρων µε το CO 2. Οι παράµετροι που χρησιµοποιήθηκαν κατά την εκτέλεση των υπολογισµών συνοψίζονται στον Πίνακα 1. Πίνακας 1: τιµές παραµέτρων που χρησιµοποιήθηκαν Ζεύγος σ (nm) ε/k (K) l (nm) φορτίο CO 2 -CO 2 σ CC = σ OO = σ CO = ε CC /k=26.3 ε OO /k=75.2 ε CO /k= H 2 -H 2 σ HH =0.259 ε HH /k= C (γραφίτη) -C (γραφίτη) C (γραφίτη) -C (CO2) C (γραφίτη) -O (CO2) * Τα ε και σ υπολογίζονται σύµφωνα µε τους κανόνες Lorenz-Berthelot * Το CO 2 έχει τετραπολική ροπή q C =+0.664e q O =-0.332e Oι πειραµατικές ισόθερµες προσρόφησης του CO 2 σε θερµοκρασίες 253 Κ και 298 Κ και του Η 2 στους 77 Κ και για εύρος πιέσεων 0-20 bar µετρήθηκαν σε βαροµετρική συσκευή υψηλής ανάλυσης (Intelligent Gravimetric Analyzer IGA Hiden Analytical Ltd.). Το δείγµα που εξετάστηκε είναι ενεργός άνθρακας ΑΧ-21 (Amoco Co.) ο οποίος υπέστη απαέρωση στους 623 Κ µέχρι να µη παρατηρείται µετολή στη µάζα του. Η εκρόφηση του CO 2 ήταν πλήρης και στις δύο θερµοκρασίες, κάτι που δε συνέβη στην περίπτωση του Η 2 (πιθανή χηµειορόφηση), όπου η εναποµένουσα ποσότητα αποµακρύνθηκε µετά από θέρµανση. Η διαδικασία επανελήφθη για δύο τουλάχιστον φορές, ώστε να επιβεβαιωθεί η εγκυρότητα της µέτρησης της φυσικά προσροφηµένης ποσότητας Η 2. Η διαδικασία προσδιορισµού της βέλτιστης κατανοµής µεγέθους πόρων ξεκινά µε την υπόθεση ενός αρχικού όγκου V j για κάθε πλάτος πόρου H j και την κατασκευή µιας

4 θεωρητικής ισοθέρµου που προκύπτει από την αρχική υπόθεση. Εν συνεχεία, η ισόθερµος αυτή συγκρίνεται µε την πειραµατική και µε επαναληπτικές τροποποιήσεις των στοιχείων του πίνακα V j, του οποίου το άθροισµα των στοιχείων πρέπει να είναι µονάδα και οι τιµές τους µη αρνητικές, εξάγεται η βέλτιστη κατανοµή. Η παραπάνω διαδικασία αποτελεί ένα πρόβληµα ελαχιστοποίησης, η επίλυση του οποίου πραγµατοποιείται µε χρήση της ρουτίνας επίλυσης γραµµικών ελαχίστων τετραγώνων Ε04ΝCF (NAG library). H τεχνική αρχικά εφαρµόστηκε ξεχωριστά για κάθε αέριο και θερµοκρασία (CO 2 253K, CO 2 298K, H 2 77K). H υπολογιζόµενη κατανοµή πόρων της κάθε περίπτωσης παρουσιάζεται υπό τη µορφή ιστογράµµατος στο Σχήµα 1α. Η κατανοµή που προέκυψε από τα δεδοµένα προσρόφησης του Η 2 περιλαµβάνει ουσιαστικά τρεις περιοχές µεγέθους πόρων, οι οποίες εντοπίζονται γύρω από τα 0.5, 1.6 και 2.8 nm. Οι θεωρητικά υπολογισµένες ισόθερµες προσρόφησης του Η 2 στα µικρά µεγέθη πόρων (H'<0.8 nm) είναι τύπου Langmuir, ενώ για µεγαλύτερους πόρους σταδιακά χάνεται η καµπυλότητα, και τείνουν να γίνουν ευθείες γραµµές (τύπου Henry). Αυτό αποδεικνύει ότι στο εύρος πιέσεων που χρησιµοποιήθηκε οι πολύ µικροί πόροι γεµίζουν, ενώ στους µεγαλύτερους πραγµατοποιείται επιφανειακή κάλυψη και συνεπώς σ αυτά τα µεγέθη πόρων η προσροφηµένη ποσότητα δεν είναι συνάρτηση του πλάτους των πόρων, αλλά της ειδικής επιφάνειας του υλικού. Εποµένως, δεν υπάρχει µια µοναδική κατανοµή που να αναπαράγει ικανοποιητικά την πειραµατική ισόθερµο, αλλά ένας συνδυασµός λύσεων που προκύπτουν από καθεµία θεωρητική ισόθερµο. Ένα απλό συµπέρασµα που εξάγεται από τη µέθοδο είναι ότι οι ισόθερµοι προσρόφησης του H 2 δεν µπορούν να χρησιµοποιηθούν στο χαρακτηρισµό πόρων δειγµάτων που περιέχουν πόρους πέρα από την περιοχή των πολύ µικρών πόρων (ultramicropores), εκτός αν είναι διαθέσιµα τα πειραµατικά στοιχεία προσρόφησης σε πολύ µεγαλύτερες πιέσεις. Το CO 2 αντίθετα και στις δύο θερµοκρασίες παρουσιάζει µια πολύ διευρυµένη κατανοµή, η οποία καλύπτει σχεδόν όλο το εύρος πόρων που µελετάται. Οι κύριες διαφορές µεταξύ των δύο θερµοκρασιών παρατηρούνται στα κάτω και πάνω όρια της κλίµακας πλάτους πόρων. Η κατανοµή του CO 2 στους 253 Κ αποκαλύπτει την ύπαρξη µεγάλων πόρων (περίπου 2.6 nm) κάτι που δε συµβαίνει στους 298 Κ, όπου εµφανίζονται πόροι µεγέθους 0.4 nm περίπου. Το φαινόµενο αυτό µπορεί να εξηγηθεί αναλογιζόµενοι όπως και στην περίπτωση του υδρογόνου ότι οι πειραµατικές ισόθερµες καλύπτουν εύρος πιέσεων από 0 έως 20 bar και εποµένως στους 298 Κ έχουν µετρηθεί µάλλον χαµηλές σχετικές πιέσεις (p/p 0 <0.55), µε αποτέλεσµα η ακρίβεια της πρόβλεψης να περιορίζεται στους µικρούς πόρους. Η ισόθερµος στους 253 Κ περιέχει το πλήρες εύρος σχετικών πιέσεων (p/p 0 =0.94) και άρα αναµένεται οι πληροφορίες για τους µεγάλους πόρους να είναι πληρέστερες CO2 (253K) CO2 (298K) H2 (77K) H2 (77K) + CO2 (253 K) CO2 (298K) + CO2 (253 K) H2 (77K) + CO2 (298K) + CO2 (253 K) Vj/Vt 0.2 Vj/Vt H' j (nm) H' j (nm) Σχήµα 1: Κατανοµές µεγέθους πόρων προσδιορισµένες από α) επιµέρους ισόθερµες (CO 2 253K, CO 2 298K, H 2 77K) και β) διάφορους συνδυασµούς των δεδοµένων.

5 Για τους προαναφερθέντες λόγους οι κατανοµές µεγέθους πόρων που υπολογίζονται µε βάση τις µεµονωµένες ισόθερµες έχουν γενικά περιορισµένη δυνατότητα πρόβλεψης. Αυτό είναι προφανές στο Σχήµα 2, όπου κάθε κατανοµή χρησιµοποιείται αντίστροφα, για να προβλέψει όλες τις ισόθερµους προσρόφησης. Όπως αναµένονταν, όλες οι κατανοµές προβλέπουν µε ακρίβεια τις αντίστοιχες πειραµατικές τους καµπύλες, εντούτοις όταν γίνεται προσπάθεια να αναπαράγουν ισόθερµες διαφορετικού είδους µορίου ή/και θερµοκρασίας, αποδεικνύονται ανεπαρκείς και εσφαλµένες. Η αποτυχία µπορεί να αποδοθεί στο γεγονός ότι το H 2 (77 Κ) και το CO 2 (298 Κ) δεν περιέχουν επαρκείς πληροφορίες για τους µεγαλύτερους πόρους και συνεπώς δεν µπορεί να προβλεφθεί η πλήρωση τους που πραγµατοποιείται στις υψηλότερες σχετικές πιέσεις. Αντίθετα, η κατανοµή της πλήρους ισοθέρµου του CO 2 (253 Κ) µπορεί εύλογα να προβλέψει όλες τις πειραµατικές ισόθερµες H2 77 K experimental CO2 298 K experimental PSD H2 77K PSD CO2 253K PSD CO2 298K CO2 253 K experimental uptake (mmol/g) pressure (bar) H2 77 K experimental CO2 298 K experimental PSD H2+CO2 253K PSD CO K PSD all CO2 253 K experimental uptake (mmol/g) pressure (bar) Σχήµα 2: Πειραµατικές και αναπαραγόµενες (από τις κατανοµές µεγέθους πόρων του Σχήµατος 1) ισόθερµες Επιλύοντας το πρόβληµα ελαχιστοποίησης µετά από εισαγωγή διαφόρων συνδυασµών πειραµατικών και θεωρητικών αποτελεσµάτων λαµβάνονται νέες προβλέψεις κατανοµών (Σχήµα 1β). Αντίθετα µε τις κατανοµές που προκύπτουν από τις µεµονωµένες ισόθερµες, αυτές που εξάγονται µετά από "συνδυασµό" είναι παρόµοιες µεταξύ τους, ενώ επιπλέον αναπαράγουν ακριβέστερα όλες τις πειραµατικές ισόθερµες. Όπως αναµένεται, η βέλτιστη κατανοµή λαµβάνεται από το συνδυασµό όλων των πληροφοριών (CO 2 253K, CO 2 298K, H 2 77K). Μπορούµε να συµπεράνουµε λοιπόν, πως η κάθε ισόθερµη προσρόφησης δίνει ακριβείς και έγκυρες πληροφορίες για κάποιο συγκεκριµένο εύρος πόρων. Γενικεύοντας, η κατάταξη της ακρίβειας της µεθόδου σε σχέση µε το πλάτος των πόρων θα είναι H 2 (77K)>CO 2 (298K)>CO 2 (253K) µε σειρά από τα µικρότερα προς τα µεγαλύτερα µεγέθη. Προκειµένου συνεπώς να εξαχθεί η καλύτερη δυνατή πρόβλεψη κατανοµής µεγέθους

6 πόρων, είναι απαραίτητη µια ισόθερµος σε σχετικά υψηλή θερµοκρασία (υπό την έννοια ότι η ισορροπία είναι εφικτή) και µια που να περιλαµβάνει όλο το εύρος πίεσης (προκειµένου να προστεθεί η συµβολή όλων των µεγεθών πόρων). Επιπρόσθετη πληροφορία σχετικά µε τους λεπτότερους πόρους µπορεί να δώσει κάποιο αέριο το οποίο να µπορεί εύκολα να εισχωρήσει σε πόρους µη ανιχνεύσιµους από ογκώδη µόρια, παραδείγµατος χάριν το H 2. Εποµένως, ο κατάλληλος συνδυασµός των δεδοµένων προσδίδει αρκετά σαφή εικόνα της νανοπορώδους δοµής του υλικού.

Η ρόφηση H 2 σαν αποτελεσματικό μέσο χαρακτηρισμού νανοπορώδους άνθρακα

Η ρόφηση H 2 σαν αποτελεσματικό μέσο χαρακτηρισμού νανοπορώδους άνθρακα Η ρόφηση H 2 σαν αποτελεσματικό μέσο χαρακτηρισμού νανοπορώδους άνθρακα Μ. Κωνσταντάκου 1,2, Σ. Σάμιος 2, Θ. Α. Στεριώτης 1, Μ. Καινουργιάκης 1, Γ. Κ. Παπαδόπουλος 3, Ε. Σ. Κικκινίδης 2 και Α. Κ. Στούμπος

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

Διαχωρισμός του Η 2 σε εμπορική μεμβράνη Pd-Cu/V

Διαχωρισμός του Η 2 σε εμπορική μεμβράνη Pd-Cu/V Διαχωρισμός του Η 2 σε εμπορική μεμβράνη Pd-Cu/V Δ. Κουτσονικόλας 1, Σ. Τόπης 3, Σ. Καλδής 2, Γ. Σκόδρας 1,2,3 και Γ.Π. Σακελλαρόπουλος 1,2,3 * 1 Εργαστήριο Γενικής Χημικής Τεχνολογίας, Τμήμα Χημικών Μηχανικών,

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

Δείτε εδώ τις Διαφάνειες για την Άσκηση 8. Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ

Δείτε εδώ τις Διαφάνειες για την Άσκηση 8. Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ Δείτε εδώ τις Διαφάνειες για την Άσκηση 8 Περιγραφή υπολογισμών της Άσκησης 8 του Εργαστηρίου ΜΧΔ Διάγραμμα Ροής Βήμα 1. Υπολογισμός της πραγματικής αρχικής συγκέντρωσης του διαλύματος κιτρικού οξέος στη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I. ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005. Μαίρη Τζιράκη, Κουνής Γεώργιος

ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I. ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005. Μαίρη Τζιράκη, Κουνής Γεώργιος ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005 Μαίρη Τζιράκη, Κουνής Γεώργιος Σκοπός της εργαστηριακής άσκησης είναι η µελέτη των εξισώσεων

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ

ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΚΙΝΗΤΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ ΘΕΡΜΙΚΗΣ ΑΠΕΝΕΡΓΟΠΟΙΗΣΗΣ Μαρία Γιαννακούρου ΤΕΙ Αθηνών, Σχολή Τεχνολογίας Τροφίμων και Διατροφής, Τμήμα Τεχνολογίας Τροφίμων Νικόλαος Γ. Στοφόρος Γεωπονικό

Διαβάστε περισσότερα

2H 2 (g) + O 2 (g) 2H 2 O(l) Η = -572 kj,

2H 2 (g) + O 2 (g) 2H 2 O(l) Η = -572 kj, ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 3.1 Γενικά για τη χηµική κινητική και τη χηµική αντίδραση - Ταχύτητα αντίδρασης 1. Τι µελετά η χηµική κινητική; Η χηµική κινητική µελετά - Την ταχύτητα (ή το ρυθµό) που εξελίσσεται µια

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

Άσκηση 2 : Μέτρηση Διαπερατότητας πλαστικών στους υδρατμούς

Άσκηση 2 : Μέτρηση Διαπερατότητας πλαστικών στους υδρατμούς ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ Εργαστήριο Συσκευασίας Τροφίμων Άσκηση : Μέτρηση Διαπερατότητας πλαστικών στους υδρατμούς Πειραματικές Μετρήσεις Χρόνος (h) Βάρος σάκου La Πίνακας βάρους σακιδίων συναρτήσει

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες

Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Χημικές αντιδράσεις καταλυμένες από στερεούς καταλύτες Σε πολλές χημικές αντιδράσεις, οι ταχύτητές τους επηρεάζονται από κάποια συστατικά τα οποία δεν είναι ούτε αντιδρώντα ούτε προϊόντα. Αυτά τα υλικά

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

Συνδυασµός θεωρητικών και πειραµατικών

Συνδυασµός θεωρητικών και πειραµατικών Συνδυασµός θεωρητικών και πειραµατικών τεχνικών για τον χαρακτηρισµό νανοϋλικών Μ.Ε. Καινουργιάκης, Γ.Χ. Χαραλαµποπούλου, Α.Κ. Στούµπος Ε.Κ.Ε.Φ.Ε. ηµόκριτος Ε.Κ.Ε.Φ.Ε. ΗΜΟΚΡΙΤΟΣ ΘΕΡΙΝΟ ΣΧΟΛΕΙΟ 25 Υλικά

Διαβάστε περισσότερα

2. Επίλυση μη Γραμμικών Εξισώσεων

2. Επίλυση μη Γραμμικών Εξισώσεων 2. Επίλυση μη Γραμμικών Εξισώσεων Ασκήσεις 2.4 Έστω (x n ) n2n η ακολουθία των προσεγγίσεων, την οποία δίνει η μέθοδος της διχοτόμησης για την εξίσωση f (x) = 0 με f : [ 1; p 2]! R; f (x) := x 3 3 2 x2

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ

ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΠΕΡΙΛΗΨΕΙΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ της Χαρίκλειας Βαϊκούση, Γεωπόνου με τίτλο: ΑΝΑΠΤΥΞΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΚΙΝΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΣΥΝΤΟΜΗ ΠΕΡΙΛΗΨΗ Αντικείμενο της μελέτης αποτέλεσε

Διαβάστε περισσότερα

Α. 200 C B. 100 C Γ. 50 C

Α. 200 C B. 100 C Γ. 50 C ιδακτική ενότητα: Βρασµός Β' Γυµνασίου Σχέδιο µαθήµατος Α) ιδακτικοί στόχοι Οι µαθητές θα πρέπει: 1. Να αναγνωρίζουν πότε ένα υγρό βράζει 2. Να διακρίνουν το βρασµό από την εξάτµιση 3. Να διατυπώνουν τον

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Εισαγωγή στη Μοριακή Προσοµοίωση

Εισαγωγή στη Μοριακή Προσοµοίωση Κεφάλαιο 6 Εισαγωγή στη Μοριακή Προσοµοίωση 6.1. Μοριακή Μηχανική 6.1.1. Εισαγωγή στη µεθοδολογία του «απ αρχής» διπλώµατος της πρωτείνης. Η ενέργεια κάθε µορίου µπορεί θεωρητικά να υπολογιστεί µε την

Διαβάστε περισσότερα

1bar. bar; = = y2. mol. mol. mol. P (bar)

1bar. bar; = = y2. mol. mol. mol. P (bar) Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ 5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΟΦΑΕΙΑΣ 5. Η συνάρτηση μέγιστης πιθανοφάνειας Έστω µία τυχαία µεταβλητή η οποία αντιπροσωπεύει την µέτρηση κάποιας συγκεκριµένης ποσότητας µε πραγµατική αλλά άγνωστη τιµή θ σε ένα

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις

Ασφάλεια Πληροφοριακών Συστηµάτων. Επαναληπτικές Ασκήσεις Ασφάλεια Πληροφοριακών Συστηµάτων Επαναληπτικές Ασκήσεις ιάγραµµα Pareto Τα προβλήματα ασφάλειας σε δύο εξυπηρετητές μίας εταιρείας απεικονίζονται στο παρακάτω πίνακα: α/α Κωδικός Προβλήματος Συχνότητα

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Απορρόφηση Αερίων (2)

Απορρόφηση Αερίων (2) Απορρόφηση Αερίων (2) Λεπτομερής Ανάλυση Θεωρούμε έναν πύργο απορρόφησης που μπορεί να περιέχει δίσκους ή να είναι τύπου πληρωτικού υλικού ή άλλου τύπου. Τελικός σκοπός είναι να βρούμε το μέγεθος του πύργου.

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία

Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 1 Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 2 Μετωπικό φραιζάρισμα: Χρησιμοποιείται κυρίως στις αρχικές φάσεις της κατεργασίας (φάση εκχόνδρισης) Μεγάλη διάμετρο Μεγάλες προώσεις μείωση

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Σχήμα 1: Εφαρμογές υπερδιακλαδισμένων πολυμερών.

Σχήμα 1: Εφαρμογές υπερδιακλαδισμένων πολυμερών. Τίτλος διατριβής : «Θερμοδυναμική μελέτη διαλυμάτων υπερδιακλαδισμένων πολυμερών» Υποψήφιος Διδάκτορας : Δρίτσας Γεώργιος Περίληψη Διατριβής Τα μακρομόρια δενδριτικής μορφής όπως τα υπερδιακλαδισμένα πολυμερή

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Θαλής ΤΕΙ Καβάλας - Nanocapillary. Αναφορά 1 ου Πειράματος MIS P a g e

Θαλής ΤΕΙ Καβάλας - Nanocapillary. Αναφορά 1 ου Πειράματος MIS P a g e Θαλής ΤΕΙ Καβάλας - Nanocapillary Αναφορά 1 ου Πειράματος MIS 375233 1 P a g e Εισαγωγή Το Πρώτο πείραμα (1 ο ) αποτελεί μέλος του Πακέτου Εργασίας 3 (Π.Ε. 3), το οποίο αναφέρεται στα επί τόπου πειράματα

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Διάλεξη 9: Στατιστική Φυσική

Διάλεξη 9: Στατιστική Φυσική Στατιστική Φυσική: Η μελέτη της θερμοδυναμικής συμπεριφοράς ενός συστήματος σωματίων σε σχέση με τις ιδιότητες των επί μέρους σωματίων. Αν και δεν μπορεί να προβλέψει με απόλυτη ακρίβεια την θερμοδυναμική

Διαβάστε περισσότερα

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ

Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ 1 Πιστοποίηση των αντηλιακών µεµβρανών 3M Scotchtint της εταιρίας 3Μ Οι αντηλιακές µεµβράνες 3M Scotchtint της εταιρίας 3Μ µελετήθηκαν

Διαβάστε περισσότερα

ΜΟΡΙΑΚO ΚOΣΚΙΝΟ ΖΕOΛΙΘΟΣ NaX

ΜΟΡΙΑΚO ΚOΣΚΙΝΟ ΖΕOΛΙΘΟΣ NaX Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Εργαστήριο Χημείας Υλικών Γεράσιμος Αρματάς ΜΟΡΙΑΚO ΚOΣΚΙΝΟ ΖΕOΛΙΘΟΣ NaX ΖΕΟΛΙΘΟΙ Οι ζεόλιθοι (από το ζέω και λίθος) είναι μικροπορώδη, κρυσταλλικά

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000

Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου 2000 Ζήτηµα 1ο Θέµατα Χηµείας Θετικής Κατεύθυνσης Β Λυκείου ΕΚΦΩΝΗΕΙ τις ερωτήσεις 1-3,να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. ε καθαρό

Διαβάστε περισσότερα

10 ο ΠΑΝΕΛΛΗΝΙΟ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ, ΠΑΤΡΑ, 4-6 ΙΟΥΝΙΟΥ, 2015.

10 ο ΠΑΝΕΛΛΗΝΙΟ ΕΠΙΣΤΗΜΟΝΙΚΟ ΣΥΝΕΔΡΙΟ ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ, ΠΑΤΡΑ, 4-6 ΙΟΥΝΙΟΥ, 2015. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΕΡΓΑΣΙΩΝ ΠΡΟΣΡΟΦΗΣΗΣ ΜΕ ΒΑΘΜΙΔΩΤΗ ΜΕΤΑΒΟΛΗ ΤΗΣ ΠΙΕΣΗΣ (PSA) ΓΙΑ ΤΗ ΔΕΣΜΕΥΣΗ ΔΙΟΞΕΙΔΙΟΥ ΤΟΥ ΑΝΘΡΑΚΑ (CO2) ΑΠΟ ΑΠΑΕΡΙΑ ΚΑΥΣΗΣ Γ.Ν. Νικολαΐδης, Μ.Χ. Γεωργιάδης Τμήμα Χημικών

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ Ι Ακαδ. έτος Εαρινό εξάμηνο Δ Σειρά Ασκήσεων

ΦΥΣΙΚΟΧΗΜΕΙΑ Ι Ακαδ. έτος Εαρινό εξάμηνο Δ Σειρά Ασκήσεων Παράδοση : Παρασκευή 20 Μαΐου 2005 Κεφάλαιο : Επιφανειακή τάση ΦΥΣΙΚΟΧΗΜΕΙΑ Ι Ακαδ. έτος 2004-05 Εαρινό εξάμηνο Δ Σειρά Ασκήσεων. Δύο παράλληλες γυάλινες πλάκες εμβαπτίζονται σε δοχείο με νερό στους 20

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις.

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περίληψη Η επιβάρυνση του περιβάλλοντος που προκαλείται από την παροχή ηλεκτρικής ή θερµικής ενέργειας είναι ιδιαίτερα σηµαντική.

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Αστικά Υδραυλικά Έργα Μέρος Α: Υδρευτικά έργα Άσκηση E9: Εκτίµηση παροχών εξόδου κόµβων, υπολογισµός ελάχιστης κατώτατης

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4)

[FeCl. = - [Fe] t. = - [HCl] t. t ] [FeCl. [HCl] t (1) (2) (3) (4) Μιχαήλ Π. Μιχαήλ ΚΕΦΑΛΑΙΟ 3o ΧΗΜΙΚΗ ΚΙΝΗΤΙΚΗ 1 3.1 Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-34 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το αντικείµενο µελέτης της χηµικής

Διαβάστε περισσότερα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα

Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Διάλεξη 3: Ενέργεια σύνδεσης και πυρηνικά πρότυπα Ενέργεια σύνδεσης Η συνολική μάζα ενός σταθερού πυρήνα είναι πάντοτε μικρότερη από αυτή των συστατικών του. Ως παράδειγμα μπορούμε να θεωρήσουμε έναν πυρήνα

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΝΑΝΟΣΩΛΗΝΩΝ ΑΝΘΡΑΚΑ ΜΕΣΩ ΘΕΡΜΟΛΥΣΗΣ ΟΡΓΑΜΟΜΕΤΑΛΛΙΚΗΣ ΕΝΩΣΗΣ ΣΕ ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ

ΣΥΝΘΕΣΗ ΝΑΝΟΣΩΛΗΝΩΝ ΑΝΘΡΑΚΑ ΜΕΣΩ ΘΕΡΜΟΛΥΣΗΣ ΟΡΓΑΜΟΜΕΤΑΛΛΙΚΗΣ ΕΝΩΣΗΣ ΣΕ ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ ΣΥΝΘΕΣΗ ΝΑΝΟΣΩΛΗΝΩΝ ΑΝΘΡΑΚΑ ΜΕΣΩ ΘΕΡΜΟΛΥΣΗΣ ΟΡΓΑΜΟΜΕΤΑΛΛΙΚΗΣ ΕΝΩΣΗΣ ΣΕ ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ Α.Μ. Νέτσου 1, Ε. Χουντουλέση 1, Μ.Περράκη 2, Α.Ντζιούνη 1, Κ. Κορδάτος 1 1 Σχολή Χημικών Μηχανικών, ΕΜΠ 2 Σχολή

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Υψηλών Τάσεων ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΥΨΗΛΩΝ ΤΑΣΕΩΝ (Αριθμητικές μέθοδοι υπολογισμού

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

υνατότητες βελτιστοποίησης των εργαστηριακών αντιδράσεων- Βασικοί κανόνες για βιώσιµες συνθέσεις

υνατότητες βελτιστοποίησης των εργαστηριακών αντιδράσεων- Βασικοί κανόνες για βιώσιµες συνθέσεις υνατότητες βελτιστοποίησης των εργαστηριακών αντιδράσεων- Βασικοί κανόνες για βιώσιµες συνθέσεις Στην πορεία της αναζήτησης µερικών αντιδράσεων για το ΝΟΡ έγινε δυνατόν αναγνωριστούν κάποια γενικά ασθενή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 2 1. Β.2 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση 1 atm και θερμοκρασία 27 C). Το μπαλόνι με κάποιο τρόπο ανεβαίνει σε

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Χημικές Διεργασίες: Εισαγωγή

Χημικές Διεργασίες: Εισαγωγή : Εισαγωγή Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση - Αφυδρογόνωση - Πυρόλυση - Ενυδάτωση κλπ Ορολογία Μοναδιαίες Διεργασίες ( Unit Processes ) - Οξείδωση - Υδρογόνωση

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Στατιστική των µετρήσεων και εύρεση του νεκρού χρόνου ενός απαριθµητή Geiger-Müller

Στατιστική των µετρήσεων και εύρεση του νεκρού χρόνου ενός απαριθµητή Geiger-Müller AΣΚΗΣΗ Στατιστική των µετρήσεων και εύρεση του νεκρού χρόνου ενός απαριθµητή Geiger-Müller. Εισαγωγή. Στατιστική των µετρήσεων Η ραδιενεργός διάσπαση είναι στατιστικό φαινόµενο και συνεπώς ο αριθµός των

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤHΣ ΘΕΡΜΙΚΗΣ ΙΑΣΠΑΣΗΣ ΚΑΙ ΑΝΑΓΩΓΗΣ ΤΟΥ V 2 O 5 ΚΑΙ TΩΝ ΠΡΟ ΡΟΜΩΝ ΕΝΩΣΕΩΝ ΑΥΤΟΥ ΣΤΗΡΙΓΜΕΝΩΝ ΣΕ TiΟ 2

ΜΕΛΕΤΗ ΤHΣ ΘΕΡΜΙΚΗΣ ΙΑΣΠΑΣΗΣ ΚΑΙ ΑΝΑΓΩΓΗΣ ΤΟΥ V 2 O 5 ΚΑΙ TΩΝ ΠΡΟ ΡΟΜΩΝ ΕΝΩΣΕΩΝ ΑΥΤΟΥ ΣΤΗΡΙΓΜΕΝΩΝ ΣΕ TiΟ 2 ΜΕΛΕΤΗ ΤHΣ ΘΕΡΜΙΚΗΣ ΙΑΣΠΑΣΗΣ ΚΑΙ ΑΝΑΓΩΓΗΣ ΤΟΥ V 2 O 5 ΚΑΙ TΩΝ ΠΡΟ ΡΟΜΩΝ ΕΝΩΣΕΩΝ ΑΥΤΟΥ ΣΤΗΡΙΓΜΕΝΩΝ ΣΕ TiΟ 2 Λ. Ναλµπαντιάν Ινστιτούτο Τεχνικής Χηµικών ιεργασιών, ΕΚΕΤΑ, Τ.Θ. 361, 57001, Θέρµη,Θεσσαλονίκη

Διαβάστε περισσότερα

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Χημικός Διδάκτωρ Παν. Πατρών 4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Τι ονομάζεται θέση χημικής ισορροπίας; Από ποιους παράγοντες επηρεάζεται η θέση της χημικής

Διαβάστε περισσότερα

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΑΣΚΗΣΗ - ΣΥΜΠΕΡΙΦΟΡΑ ΝΕΡΟΥ ΟΜΑΔΑ:. ΗΜΕΡ. ΠΑΡΑΔΟΣΗΣ: 2 ΠΕΡΙΕΧΟΜΕΝΑ ΥΠΟΒΟΛΗ ΕΡΓΑΣΙΑΣ... ΠΕΡΙΛΗΨΗ... 1.0 ΕΙΣΑΓΩΓH... 2.0 ΑΣΚΗΣΕΙΣ 2.1. ΝΕΡΟ ΕΛΕΥΘΕΡΟ ΣΤΟ ΠΕ ΙΟ ΒΑΡΥΤΗΤΑΣ...

Διαβάστε περισσότερα

Σχεδιάστε τύπους ανακλίντρων για τις ενώσεις Α και Β και εξηγήστε σχετικά. Yπόδειξη : Η αντίδραση Μichael θεωρείται γενικά αντιστρεπτή αντίδραση.

Σχεδιάστε τύπους ανακλίντρων για τις ενώσεις Α και Β και εξηγήστε σχετικά. Yπόδειξη : Η αντίδραση Μichael θεωρείται γενικά αντιστρεπτή αντίδραση. 1 1 H 3 C H 3 C αναγωγή H 3 C H 3 C H H ± A B Η διφαινυλική κετόνη Α εµφανίζει ατροποϊσοµέρεια και σε συνήθη θερµοκρασία µπορεί να αναλυθεί σε δυο σταθερές έναντιοµερικές µορφές. 1. Χαρακτηρίστε τις πλευρές

Διαβάστε περισσότερα

Ρύπανση-Ενέργεια και Τεχνολογίες Αντιρύπανσης

Ρύπανση-Ενέργεια και Τεχνολογίες Αντιρύπανσης Ρύπανση-Ενέργεια και Τεχνολογίες Αντιρύπανσης Τόμος A Κυριάκος Μπουρίκας Επίκουρος Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Προσροφητικές Διεργασίες Αντιρύπανσης Το έργο υλοποιείται στο πλαίσιο του

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης Σφάλματα Μετρήσεων 4.45 Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης Διάστημα εμπιστοσύνης βρίσκονται εκτός του Διαστήματος Εμπιστοσύνης 0.500 X 0.674σ 1 στις 0.800 X 1.8σ 1 στις

Διαβάστε περισσότερα

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005

Απαντησεις στις ερωτησεις της εξετασης της 24 ης Ιουνιου 2005 ΑΤΜΟΦ Απαντησεις στις ερωτησεις της εξετασης της 4 ης Ιουνιου 005. Ερωτηση που αφορα στις ασκησεις του εργαστηριου. Α) Με βάση τη σχέση που συνδέει τις αποστάσεις α και b με την εστιακή απόσταση του σφαιρικού

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ

ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΘΕΡΜΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ ΓENIKA Θερµική κατεργασία είναι σύνολο διεργασιών που περιλαµβάνει τη θέρµανση και ψύξη µεταλλικού προϊόντος σε στερεά κατάσταση και σε καθορισµένες θερµοκρασιακές και χρονικές συνθήκες.

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 4 Συνδεσµολογίες Παράλληλων Αντιστάσεων και Χρήση Ποτενσιόµετρου στη ιαίρεση Τάσης

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

Έδαφος. Οι ιδιότητες και η σημασία του

Έδαφος. Οι ιδιότητες και η σημασία του Έδαφος Οι ιδιότητες και η σημασία του ΕΔΑΦΟΣ : Είναι το χαλαρό επιφανειακό στρώμα του στερεού φλοιού της γης. ΕΔΑΦΟΓΕΝΕΣΗ: Το έδαφος σχηματίζεται από την αποσάθρωση των μητρικών πετρωμάτων με την επίδραση

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Ποσοτική και Ποιoτική Ανάλυση

Ποσοτική και Ποιoτική Ανάλυση Ποσοτική και Ποιoτική Ανάλυση ιδάσκων: Σπύρος Περγαντής Γραφείο: Α206 Τηλ. 2810 545084 E-mail: spergantis@chemistry.uoc.gr Κεφ. 14 Χημική Ισορροπία Μια υναμική Ισορροπία Χημική ισορροπία είναι η κατάσταση

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ος θερμοδυναμικός νόμος 1. α. Αέριο απορροφά θερμότητα 2500 και παράγει έργο 1500. Να υπολογισθεί η μεταβολή της εσωτερικής του ενέργειας. β. Αέριο συμπιέζεται ισόθερμα και αποβάλλει

Διαβάστε περισσότερα

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής

Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Υπολογισµός ιδιοτήτων ροής ιδιοτήτων µεταφοράς µε µεθόδους Μοριακής υναµικής Η έρευνα χρηµατοδοτείται από τη ΓΓΕΤ, στο πλαίσιο του προγράµµατος ΠΕΝΕ 03Ε 588. Φίλιππος Σοφός Υποψήφιος διδάκτωρ Επιβλέποντες:

Διαβάστε περισσότερα

Προσανατολισμού Θερμοδυναμική

Προσανατολισμού Θερμοδυναμική ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 60 Ον/μο:.. Β Λυκείου Ύλη: Κινητική θεωρία αερίων Προσανατολισμού Θερμοδυναμική 8-2-2015 Θέμα 1 ο : 1. Η απόλυτη θερμοκρασία ορισμένης ποσότητας αερίου διπλασιάζεται υπό σταθερό όγκο.

Διαβάστε περισσότερα

Α. Στοιχειοµετρικός προσδιορισµός του απαιτούµενου αέρα καύσης βαρέος κλάσµατος πετρελαίου. Συστατικό

Α. Στοιχειοµετρικός προσδιορισµός του απαιτούµενου αέρα καύσης βαρέος κλάσµατος πετρελαίου. Συστατικό Α. Στοιχειοµετρικός προσδιορισµός του απαιτούµενου αέρα καύσης βαρέος κλάσµατος πετρελαίου Για τον παραπάνω προσδιορισµό, απαραίτητο δεδοµένο είναι η στοιχειακή ανάλυση του πετρελαίου (βαρύ κλάσµα), η

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Λυκείου 1 Μαρτίου 11 Θέμα 1 ο Α. Η οκτάκωπος είναι μια μακρόστενη λέμβος κωπηλασίας με μήκος 18 m. Στα κωπηλατοδρόμια, κάποιες φορές, κύματα τα οποία δεν έχουν μεγάλο πλάτος μπορεί να

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Θυρόφραγµα υπό Γωνία

Θυρόφραγµα υπό Γωνία Ολοκληρωµένη ιαχείριση Υδατικών Πόρων 247 Θυρόφραγµα υπό Γωνία Κ.. ΧΑΤΖΗΑΘΑΝΑΣΙΟΥ Ε.. ΡΕΤΣΙΝΗΣ Ι.. ΗΜΗΤΡΙΟΥ Πολιτικός Μηχανικός Πολιτικός Μηχανικός Αναπλ. Καθηγητής Ε.Μ.Π. Περίληψη Στην πειραµατική αυτή

Διαβάστε περισσότερα