rs tà t r r tt 3 t t s t r t r r tr s r t r t st ss s r
|
|
- Ἕκτωρ Αναγνώστου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 rs tà t r P t 3 s r tt 3 t t s t r rs r str str s 3 3 t r r tr s r t t t2 t r r t st ss s r t r Pr s r s r r t P s tr
2 t r st t s s s r r st s tt è r ù s r t s t r t s r rò
3 t ts tr t r t t s st s q t s r t t s s t r 3 st q t r t t s ts s r t ss str 2s s r s rst s r s P r s r s t st s r s t t t s s tr 2 s s rs r tr s r t s r t r r t rs r2 r s t r t t rs r t r r t r s r t r r t r t t rs s t r r t r r t t s t t s s r s s s r s t s t r ss r r t s2st r2 P r t t s P r r 2 rr r rr rs s s s tr s2st r t r r
4 t r r tr s s r s t r q r ts t r r t r t r s tr s2st r t r t r r r t 3 s2st ss t r t r t t s t t t s s s r ts s ts s r t s s r ts t t r s t tr tr s2st s s st t2 r s r q s r s r rr r r s r q s s r ts t 2 t 1 s t2 t r rr r tt r 2 tt r 2 r tt r 2 Pr ss r r s t r r s ts s s r 2 r 3 t
5 st r s t st t s r 3 t r t t t r t 3 t r rt t t r t t ss t r 3 t t r rt t t r t t ss t 1 r 3 t t r s s t s s t t t r s t r t t s r s t r2 s2st t r t s t 2 t r t r t tr t2 t r t t t2 r t r t t t r t t s r t 2 r2 s2st t r t t s s r t s t r r s t t t r t t r r t r r t s t s s t s t 2 t s t r2 P r t t2 r r 2 s t r2 P r t r t s r 2 s r 2 s t r2 P r t r t s r t r t s r s t r s t r r s t t s t r r t r r t s r r s t t t r q 2 r t r r t r t λ = 1064nm L = 3km s t t2 r tr t s s r P r s tr s t2 t s t rs t ss m = 1g r s r q 2 ω 0 = 1s 1 Q = 100 s t s s s s t str t r ts t x 1 s r s 1 t y 1 s r cm 2 /Hz t 2 t r ts t r s r 1 t t 1t s t r2 P r t t2 tr t r tr s ss r t r s t t t s t r t r s t ts r s r tt t r t t r r s t tr r s r s st st rr r s s s s t t2 r s r r t t t t t s s s r t s r t s r 2 t2 t 3 r r2 tr s2st
6 s st t2 r s r r r t 2 rs t 2 t r t r t t r r t r s s t 3 s2st tr s2st s r t rst r t r 3 t t t r r t r s t r s t t r t t s s t t t s s t t r t r r t r s tr s t2 s r t s s t t s tr 23 r r s t t s s t t s t r t t t t s r t r s s s t r q r s s t t2 t r q 2 t r st s s t t s r r s t s s t t2 t s t r t r t t t r t s st t r r s tr s r t s V/V 1 V/V 2 r t t t r t s st t r r s t tr s r t s V/V 1 V/V 2 t r t t t r t s st t r s r ts t s s t t t t r r t 3 s2st s t t r t r r s t t t t s t t t t t r s r ts t s s s t2 t s t t tr s r s s s t t s t s t r t str t r s t tr s2st r t s2st t 2 t r t s t rr r r t r r t s t r s t t t t t r s r s t t t st t t tr s2st t t t r t t 3 s r ts t s s t t2 t s2st t t t t P t r r t s tr 23 r s t r r t s t tt r 2 r t s t tt r 2 r t s t tt r 2 5 r t s t tt r 2 r t r 2 s tr 23 r 1 s r ts tt r s r ts tt r s r ts r 2 1 s r ts tt r 2 5 2
7 1 s r ts tt r 2 2 str t t t r s r s r tt r 2 str t t t r s r s r tt r 2 str t t t r s r s r r str t t t r s r s r tt r 2 5 str t t t r s r s r tt r 2 s t t r r s t t t r ss r r P > 10 3 mbar s t t r r s t t t r ss r r P < 10 3 mbar r s t t r s t t r sq r s t r r s t st rs
8 st s r r t r t t r q 2 t r t s t t s r s st t s r tr st r r t r s r t s r t r r t rs st r s t rs t t r t r s s t r s r q s t t2 t r t rr r sr t r s r s tt r 2 s r s tt r 2 s r s r s r s tt r 2 5 s r s tt r 2 s r ts t r t tt r 2 t r ss r s r q s t rs s r t r t r
9 tr t r t r2 r t t2 r t 2 rt st r s s t 1 st r t t s s t rt r t r 2 s2 tr r ss s st 2 t s r t s 1tr 2 rt t s t r t s t str 2s ts r t s s t r s t2 s s tr st rs t r t t r t r t t r t s t t rst rs t ts t ts str t r rst r t 1 st r t t r t s 2 2 r s r 2 s r t r t r t s r P t 2 t t t t 2 t r t q t t t 1 t s s t ss r 2 s t r t t ss t st t st 2 rs s t r t t t t s r t r t s ts t s t2 r t 2 rs t r r 2 1 r ts t t r r t s r s t s t r rt s t r t t s t 2 t st t t ts rst s t t t r t t r t s t r s t r r s str t 2 s r t t r r r t t t rs s t s r rt ss t 2 t st s t t rs s t s r t r r t r t r r r t s t t rs r t r r r s t t r t t s t t rs t r t r t t r t s r r 2 s t r r t r t r2 P r t r s t t s t t tr2s s r P s ts r s r 3km t s t r r t t s t s t s r 95km t s s s t t r q 2 r Hz t t t r t t r t t t r t 2 2 r t r 12 t r st r s t r r t r 2 s r s t t r ss r t t t t r r t r s r t r s r ss r t r r mbar t s t r r tr r t r s r s s t s s s t r q 2 s r ts s t s r r s s t s2st s 2 t rs s r tt t r t r t r r s t r s s r r 2 rr r s r s t r r t rt t t t 1 t r t t s t s rr r r ts r s t t t t r r t r s t t s t r s t r s s s st t Hz 1/2 t s r t r t t r t t t r r r t s s t t2 t r r t tt r t t r 2 r rst s t s r s t s r ts t t2 s r t s t s s s s
10 s r s t rr r s t s s t r t t r s r r t t r s t2 ss r s t t t t r s t 267km t r s t r t s r r s t s t s t s rt t r s t s2st s t r t ts t t r s t r r s s t s s t r s s r s st r r ss s 1 t t st rt ts t t s r s r s t r s t s s t t2 r t s rt r t t r s t s t s t r t r ss r s s t r t r t s s t ts t t r r t r s s t r s t r t s r t s rt r r 2 t2 t s r rr rs t r t t t r s t s r r r t s t s t rt r t2 s t t 3 t t r r t r r str 2s s r t rr rs r r t r ss r s t r s r s s t t s r s r t r q 2 r 5 100Hz s t s rt t t r t r r t tt r s s t t2 t s r 1 t t t r s s 2 t q t2 t r t rr rs s t r t t t r 2 st r t r 2 ss t r t r rr rs s s r t t r t r r t r t rs t t t r t s t t s r t t s s t t2 r t ss 2 t rr rs r r s r s 2 t r t r 3 t st s t t t2 t t s s s sts t r 3 t t r r tr t s s t t2 s t s r t t r s rr r s t s s t t2 s s t t s r s ts t r r m t r q 2 5kHz r r t s r t 2 t t r s s t t r t st r s r t t rs t rr r r r r 2 s r t r r r t r s r r r s ts t s r t t t s t t s s t r r t r t 10cm r s s r t 1064nm t s t 2 r r t r t t t t t 1 t t s 2 t t s r r 2 t rr rs s tt 3 tr t t s t tr ts ts r s µm t t r s t rr r t r t r 3 s t r t t s t t t s st t s s t s s t r t t t r t t s t s r tr s2st s t t st t t r r t r s s 2 r t t t r t s t s t s t r t t t s s s t t r t r t r t t s s t t 3 rr t t s t t rr r r r t t t r t t t r r t r s t 1 s s t t2 t s t s t rr r s s s t r r tr t r r t rr t t s t t rr r rr t s s s t t r s r t rr t t s t t r r ts tt t rr r t r r tr s s r s ss s r r t r2 r
11 t rst r t r 3 t t t st rr r t s r r2 t st s t s r r t r q r s s t t2 t s s r s t s str t r r t r rr r s s s t r t r tt t r s rs s t s r t t t t t r s s s str t r s r r r t 3 r2 s t t r ss r t t s r t t r s t ts s s s s r r t r2 s r ts t rs r 2 1 t t r s t rr r s r t 2 t t r t t 1 t 2 t r q 2 r t r st 2 10kHz t rr r s t r r t r t tt r 2 t tt r 2 r s t rr r s t s rs t rt r t s r r s t s t r t 2 s2 tr s t t tt r 2 s t r t r t t s 2 23 r t s t r t tt r 2 t tt r 2 t tt r 2 5 t tt r 2 1 st r t t s t r r t t r2 t r r t t2 s s ss t r r t t t ts t t t 2 t s t s r t ss s r s t s r s r t t r t t 2 t t t t t r s t t t r t r r t r t t r s ss rst t t r r s t s r s s t s r t r r t r t t rs t t t ts t t 2 t r s 2 t t r s t s r s t s r t r r t r t t rs t r q 2 r 5 100Hz t r t r s t t t rst r t r 3 t t t r r tr s s r s r rst t r q r ts t r r t t r s t t r r t r t tr s2st r rt t s r ts t s t t tr s2st t r s s t t2 r r t r 2 t t t s t s r rr r s ts s s r t st ts t s ts r r t r s t s s t t2 rt t r s t t t s r ts t r rr r rst s r t tr s2st t t t t 2 s t s r t t t t r t rr r t 2 t t r s r q 2 2 t s r ts r r rt t r r s 1 t 2 s ss t t s t r r s t t r s ts t t t r t r r t r t t s t
12 t r r t t s r t r2 r t t2 s r t 2 rt st s r r r t täts r t t r s t r2 r t t2 t t r s t r r s t s r r t t s t s r t tr t t r2 s t r t st s q t s r s s t 1 st r t t s s t rt r t s t s t r s r t t s r r t t2 t st s q t s r t t s r r t t st s q t s t s s t t st t t ts s ds 2 = c 2 dt 2 dx 2 dy 2 dz 2 = η αβ dx α dx β, r η αβ s t tr t s r r t t s t r s s t η αβ = s r r t s2st r r r t s r t q t t r r rt t t 2 t r r s s d 2 ξ α dτ 2 = 0 r τ s t r r t s 2 dτ 2 = η αβ dξ α dξ β. t st tr 2 r rt s 2 t s q t d 2 x λ dx µ dx ν dτ 2 +Γλ µν dτ dτ = 0, r Γ λ µν t t r r st s2 s s ( Γ λ µν = xλ 2 ξ α ) ξ α x µ x ν.
13 r t t s t r t s s t r t t r st s2 s r s t t 2 tr g µν Γ λ µν = 1 2 gσλ (g νσ,µ +g µσ,ν g νµ,σ ). r t t t s r R λ βµν = Γλ βν,µ Γλ βµ,ν +Γσ βν Γλ σµ Γ σ βµ Γλ σν s r t s t t s r t r r t s t t s R λ βµν = 0. t s r ts t t 2 r t t t t t s t s r rt s s2 tr2 R αβµν = R µναβ, t s2 tr2 R αβµν = R βαµν = R αβνµ = +R βανµ, 2 t2 R αβµν +R ανβµ +R αµνβ = 0, t t s R αβµν;σ +R αβσµ;ν +R αβνσ;µ = 0. tr t t s t t s r t t s t s r R βν = g αµ R αβµν t r rt r tr t t t s r R = g βν R βν. r t t s tr t t t s t s t t q t ( R µν 1 ) 2 g µνr = 0 ;µ r r t s r Tµν t t t T µν,σ s2 3 s t s r t T µν,σ = Tµν x σ t r s s t t t T µν;σ t t s2 3 s t r t r t s T µν;σ = Tµν x σ Γα σµt αν Γ α σνt αµ r t s r rt s s r t 2 r t r R αβµν g αλ R λ βµν
14 s t t r r ts s st t t s st t s r G µν G µν = R µν 1 2 g µνr. r t s s t tt r s tr2 r 2 t q t s r t t r st q t s G µν = R µν 1 2 g µνr = 8πG c 4 T µν, s t str t tt r t s q t s s s t t t tr t s s t t tr2 s t T µν s t r 2 t t s r s T µν = n s t r rt s p µ np ν n E n δ 3 (x x n (t)) T 00 s t r 2 s t2 t s2st T µν s s2 tr t s r s 2 t ts r t s G µν s r rt t t t st s2 tr t t 2 q t s r r2 t t s 2 t t r s s s r r 1 t t t r ts t 1 st r t s s t t t 1t s t r t t s s t r 3 st q t r r 2 s r t s t r t t tr t s s s tr t r t 1 t t t s t st s q t s s t s 2 r 3 t q t s s r s rt r t r t t s t s r t tr g µν = η µν +h µν, t h µν << 1 r η µν s t t s t s tr s r q t s t s tr r t t r st s2 Γ ρ µν = 1 2 ηρλ (h νλ,µ +h λµ,ν h µν,λ ), t t s r q t R µνρσ = η µλ Γ λ νσ,ρ η µλ Γ λ νρ,σ = 1 2 (h µσ,ρν +h νρ,σµ h µρ,σν h νσ,ρµ ), t t s r R µν = 1 2 ( h σ µ,σν +h σ ) α ν,σµ hµν,α h,µν
15 t s r r t tr t t s r s R = h µν,µν h α,α, h = g µν h µν η µν h µν. 2 r t st q t s ( α α α hµα,ν +hνα,µ hµν,α h,µν η µν h,αβ t t r t t s r αβ h µν = h µν 1 2 η µνh. h β,β ) = 16πG c 4 T µν q t s α hµν,α η µν h αβ α αβ +hµα, ν +h α να, µ = 16πG c 4 T µν. t s 2 s t s q t t s t t s t t t t s r q t t r t3 A α,α = 0 s t tr t t r2 s h µα,α = 0, s q t s α hµν,α = 16πG c 4 T µν. s r t s t2 s T µν = 0 s t q t s t s r r t { α h µν,α = 0 h µα,α = 0 s st s t t s q t s s t r t { ( h µν (x) = R A µν exp ik λ x λ)} r t t A µν t t r k µ st s t s 2 t t s k µ k µ = 0 A µν k µ = 0. rst t s t s t s t t k µ s t r t s st t s t t A µν s rt t k µ s t s t q t r t s t t s t t r q 2 ω k 0 = ( k 2 x +k 2 y +k 2 z )1 2 r r2 s t r t t r s t r r t s tr s r t s t s r t t t s t s q t s t t r t s A µν u ν = 0, t r s t r t 3 r r t t s t r t r 3 r
16 r t st t s r 3 t r t t t r t 3 r u s t r t2 A µ µ = 0. t s st r r t t r h µν s q t s r s t 2 h µν,ν = 0, h µ0 = 0, h µµ = 0. s t s t s tr s rs tr ss t s t t h µν = h µν r q t h µν s s2 tr t s r s t s 2 t ts r rt s r t t t rst r rt2 s str s t s t s t s s t s 2 t r s t st r rt2 s s2st t t r r t t r r s t t t st t s r 3 t t s r r t 3 1 s h µν t s h TT µν = 0 h + h 0 0 h h eik λx λ r h + h r r s t t t st t s r 3 t t s s r ss r t t t r t s s s t r s r s t s r t t ts t r q 2 q t t r q 2 t h s s ss q t t2 t r r s ts t r t t r t t s ts tt r rst t ts t ss r t t st s r t t t s t t r st S µ = x µ A xµ B s q t t s s s D 2 S µ dτ 2 = R µ dx ν dx ρ νρσ dτ dτ Sσ
17 r t r rt t t r t t ss t r 3 t r t r rt t t r t t ss t 1 r 3 t r D dτ s t r t r t t s s r t t t t rt s t r s t t t s t q t s 2 t 2Sµ = 1 2 Sσ 2 t 2hTTµ σ. s t s t s q t t r t s s h + 0 h = 0 S 1 = (1+ 12 h +e ikσxσ ) S 1 (0) S 2 = (1 12 h +e ikσxσ ) S 2 (0), s rt s s r t t r t x 1 s t t r t x 1 rt s s r t t r t x 2 s t t r t x 2 h + = 0 h 0 S 1 = S 1 (0)+ 1 2 h e ikσxσ S 2 (0) S 2 = S 2 (0)+ 1 2 h e ikσxσ S 1 (0) t s s t t rt s s t r t t ( x 1,x 2) t2 s t r rt s t s t s s s r s
18 s r t ss t r2 t ss r t t s s 2 2 t t t r2 ss t r t tr t s r t r t t ss tr t s t r t s tt 2 r t r rt s t tr t s r t tr t d em dvρ q (r)r r ρ q s t r s t2 t t r s t t s r tr t tt r t s E = 1 ) ( d n Rc 2 n, r R s t st r t s r n s t t t r t r t s r t t s r r s 2 t t r t t t r2 ρ s t ss s t2 t s d g dvρ(r)r, r t t t ts t r t rr s s t t t t s2st r t t s r t t t d g = 0 s t r r r t s r t s t r t t 1 s t t t ts r t t q t s µ g = dvρ(r)r v(r) t t s st t r t s r t r t t s s t t t r s r t t r t t s t st t st s r t q r t s I µν dv (x µ x ν 13 ) δ µνr 2 ρ(r) t t t r t t q t q t s h µν = 2G Rc 4ϵν. t s s t t s s r r2 s2st s t st rs ss M r t r t r t r ss t r r q 2 ω q r t s cos 2 ωt 1 I µν = 2Mr0 2 3 cosωtsinωt 0 cosωtsinωt sin 2 ωt ts s r t s cos2ωt sin2ωt 0 Ï µν = 4ω 2 Mr0 2 sin2ωt cos2ωt
19 2 t t t t r t t t st R r t s r h µν = 8G cos2ωt sin2ωt 0 Rc 4ω2 Mr0 2 sin2ωt cos2ωt t t2 s r r2 s2st t tr st rs t r st r M = 1.4M r 0 = 20km ω = 2.5rad/s R = 15Mpc h h µν s t t 1 r q 2 r t t s r t t s r t r s s r t ts r3s r s t r ss t s rt r t t t t 2 t t tr ts r r t 1 r q 2 s f max = c3 4πGM 104 Hz M M. r r t r r q 2 r tt 2 ss t ts tr st rs s str 2s s r s r t t s s r s r t t2 s r t t r t r r rst s r s r 1 s ts st t r r2 s r t r2 s r r s r s ts r t t s t r 2 st t r q 2 t r ss s s rt r t t t s r t tr st rs s rs r2 s2st s st st s r s r ts ss t t r 2 st t t r r s t t t t s r t t t r 2 r r r rst s r s rst s r s t r t ss s rsts t t r2 t r2 rst s r s r rsts r t t t h µν = 0 r t r t rst h µν 0 t r t t t t t r r3s r s s R S = 2GM c 2 t s t r s 2 t ss M s s q t t s t
20 s rsts t r2 h µν = 0 2 r t t t t r t rst t r s r s st t h µν rst r2 P 2s 2 rsts t r2 s r s 2 s r s t r r t t s t r t s s t t 2 rsts t t r2 t t t t rt s t st t t t r2 s t r2 s2st s r s 2 tr st rs r s r t r s r t t r s t ss r t t s t st t t t ts t s2st s r2 s s 2 t s tr st rs r t r q 2 s r2 t 500Hz s r q t r t t t s t r t ss r 2 t r r t t r t t st rs r t r t s r t t t s t t r s s s r s r t st t t t s r s s r 2 s t t r t t r s s t t r s t r t r q 2 s t t r s t st s r t r s r s r r t t s r s t t r s t t t 1 2 t s t s 2 t r r s t s r t t t r s q r st t t r t ss s s s t 1 t 2 t rst s t r s r s s ts r q 2 ts t t t s r t t ssm 1 M 2 r2 s st t r t r q 2 f t st r r t s r r t t r t s t r q 2 s f M 5/3 c f 11/3 + ( ) relativistic corrections t t s r M c s t r ss s A k orbit Mc 5/3 f 2/3 r, M c = (M 1M 2 ) 3/5 (M 1 +M 2 ) 1/5 k orbit s st t t t t s t t t t r t r s t t t s t 2 t t t t t r t t tt s h k orbit M 5/3 c f 2/3 r r s s t r 2 st t t t t r q 2
21 r t r s s t s s t t t r s t r t t s r r s t r2 s2st t r t s t 2 t r t r t tr t2 t r t t
22 t s2st s s 2 t tr st rs t ss M 1 = M 2 = 1.4M r t r q 2 f orbit = 50Hz ( ) 100Mpc h f = 100Hz r t r 2 r t s f r s s t 200Hz s r E M n s n f2 f s t r 2 s 2 t s2st t t r s t s2st s s 2 tr st r ss M 1 = 1.4M ss M 2 = 10M ( ) 100Mpc h f = 100Hz r E M n s. s s r t 1 t t 1 t s t s r t t t r t r s t t s t t t r k orbit t t r t r t s tr t r s r t s r t t t t s t ss 2 t t ss s r r r t r 3 2 t s 2 r s t r s tr rt r r 2 s s str t 615nm 2 t t s t 2 r r t s t rst s s str s 2 s r st r s ts str 2 r s t 2 s r t t r t r s 2 P P st t s r t t 1 s t2 2 st st t r s t t r s t t 2s t r t 1 t t r r s t 2 st t s r r t s r s t s r t2 s t t t t r r r t 2s s s t t r 2 s r r r t r t ss t r st r r2 s2st t s s r s t r ss t t r t ss r s r t t r s 2 r r r st rs t ss M > 8M t t t r t r2 r t 1 s r t t s r tt 2 r 2 r t r 2 tt t s s t ss t 1 s2 tr2 t s 2 t r t t s t s ( ) E 1/2 ( ) 1kHz 1/2 ( ) 10Mpc h M c 2, f r r f s r q 2 r t t t s t r s t st t t s r t s r r E s t r 2 tt t r r t t r t ss r s r s t 1 ss t t t r t t s t r r s t t t t tr r 2 r ss r s t r t r t t ttr t ts s M Ch = 1.4M
23 P r s r s tr st rs s rs tr st rs r st rs t ss s s r t t s r ss t t s r r s s t r s t s 2 r t r2 r t s t s t t s t t 2 r r 2 rt r t2 tr st r r t s r r r s 2 t t s t 2 t tr t r t t r t r q 2 q t t r t t r q 2 2 r t t t r 1 s t t t t r s t s r t r t 1 s s2 tr2 t s s2 tr t r s t s r st r t r t t s t r q 2 t t r t t r q 2 r t ss s s t r s r t t st r s t r st t st t t t t r t t tt s r t t t st r s r t t r r s s r 0.1ms t 1ms t r r t st r ts r 2 E M c 2 r t s t s τ t r q 2 t r t r s s r 300Hz t 3 r 2 t ( ) h E 1/2 ( )( ) 300Hz 1months 1/2 ( ) 15Mpc 10 3 M c 2. f τ r r2 s2st s r r2 r2 s2st s r r t s s t r t t r t t s t r r r t t t t t s tt s s s t t t t t t rt 2 2 t 2 r t s rt r t r r q 2 f 10 3 Hz s r t t ss r t s s r s 2 2 r s r t r 2 rs s r t t r2 s r P 2 t t t r t r 2 s t s 1 t t s s r r 2 ss t r t t s ss t s rt r s t r t r t r t 1 t r t t r2 r t t ss st P = ( 2.403±0.005) t 2s s t s r t t 2 P = ( 2.30±0.22) s s st t t t t r t t st s r s st rt t st st s r r t t r t s t st st r t s t r t t q t t s r r t s r 2 t 2 s t r 2 rs t s r2 t t t t s t s r r t rr t s r s s s t t r t t t s r2 rt t s t s t s r t s t r t s t r s t s s s t st t r2 s tr s t s s r 2 t r t r Ω gw (f) = 1 ρ crit dρ gw dlnf,
24 f 3 t t s r s t 2rs s tr 2 r r t 2rs t s s rs t 10 1 t t t r tr s r t s r t r r t rs s s r t r r t rs rt r2 r s t r t t rs r r s str s r2 st rs s r ss s s r s s r s r r t r t t r q 2 t r t s t t s r s st t s r tr st r r r ρ crit s r t s t2 t rs ρ gw s t r 2 s t2 t st s t r f s t r q 2 t r t r t t t s h f Ω 3/2 gw (f) f, r f s t r q 2 s r t t t t s s s t t r r 2 t s t t t r t t s r t t r r q s t r r s t r 2 t t s t s s tr 2 r t t s t r2 r q s Hz ts t r r t s 3 t rs s t 2 r r t r t t r r s t t r r s t r 2 s t E infl t s ( ) 2 Einfl h rms, r m P s t P ss t t s 2 t s s s s t t r t t s ts s t s tr 2 st t 1 r ts t t s r t s s tr s r r s t t r t s t2 t rs s s m P r H 0 s t st t ρ crit = 3H2 0 8πG,
25 t t rt t s t s t s r t r t r s t r t t s ts s s t t s s st rt t 1 r t r t r r t r t t t s t t s q t 1.4m r t2 t s t r r s t ss r t s t r q s t 3 s s rs t s s r t s r r t t s s s t s r t t r q 2 t tr t r t t r t t s r s r s r t t ts s tr t r t r t t t s t r s t s s t r t t t r q s t r r 10 9 Hz q t t t r 2 t t tr t x 1 s s cdt = dx t r s r t t t s q t cdt = [1+ 12 ] h(t,x) dx. t s t s s r tt t t t 1 t 2 r t cdδt = 1 2 [h(t 1,x) h(t 2,x)]dx, r δt s t t t r s r P t t t λ tr st L t t h(t)p L, L λ δt λ h(t)p, L λ s r s t t t r r t r t t s r tt 2 r2 s2 t r t r t r t t t t t t s s s t δt hτ, r τ s t r t r t r2 s2st s s r t r q r s 1tr 2 r s s t st ts t t t s r rt2 r t s s rs t t s s t t2 r tr s r t r t t s t r q s t Hz t t t r t r tr s r t s t s s t r t t r t t s r t 2 t r t t s sts t s r s r t 2 st st r s t r r t rt t s t t t t s s t s t t rt r s s t r ts r q 2 s r t t t t r s t r q 2 s t δf t t s r t t t r t t t δf f 0 h TT µν.
26 r t2 r t r t t t r t t s r t 2 r2 s2st t r t t s s r t s s r ts r s r t s r ts 2 r P r P r t s 2ss s t s ss t s r s r t s t t t t t s s s r t r r t rs s r t r r t rs r s t t t r t t t r r q s t Hz t r r t rs rr t 2 s s r t t t t 2 r t t r t t s tr s t t r t t t s s t r r t r s r s s 2 s tt r t t s t t t t rt s t t r r t 2 t rr rs s t t t t t r s t s t r t r t s s r t s tt r s t t t s t r t t t r r r t 2 q t s r t 2 t rr r rr t t s tt r t t s s t t 2 r r t t s t t s r t t t t r s t t r r s r t t s 1tr 2 s ts r 1 t t r t L = 10 4 m t r t t t L = hl m. r r r t r t s s r t s r t r r t r t t rs s r r r t r s t t t t s r2 r s 2 r2 P r t t s t r t t t t 1 ts r t t rt r r 2 rr r s t t 1t t r t r s r t t s t t rs t r s s r t r r t r rr t 2 r t r r r st t r s s t r r t s r t r r t r t t r t t st s t r t s t s s r t r r t r t r t t s r t r2 t s r t 2 t s s t t2 t r2 r q s t 0.1mHz 0.1Hz ss t t rt s t s t s s 2 t r s r ts t t rt s q t r tr t s s
27 r s t r r s t t t r t t r r t r r t s t s s t s t 2 t s t r2 P r t t2 r r 2 s t r2 P r t r t s r 2 s r 2 s t r2 P r t r t s
28 s t s t 2 st s rt r s t rst t r 2 t t t r r r s t s r r s r t r q 2 3 s s t t2 t 3 Hz 1 2 t 2 r r 2 r r 2 s t r2 P r t r t s r r 2 s t r2 P r t r t s r 2 s t 2 r t r t r t r 2 s t r2 P r t r t s r t st t s r r r t r t t r s r t s r t r r t rs
29 r r t r t r s r s t r km r t t s s r t t r r s r t s r r t s r 2 t t r t st s 2 r t t ss r s t r t r t t t r2 r s t r t t rs t rst s t t t r t t s s t r s t r r s 2 r s t s s s 2 t ss tt t s r s r s r s r t s r st t k t r t l 0 r t r t t s r t x 1 s r t t tr z 1 s t q t t s m d2 ξ dt 2 +mω 0 dξ Q dt +mω2 0ξ = 1 2 ml 2 h + 0 t 2, r ξ s t s r t m s t ss t t s Q s q t2 t r t s t t ss t t s2st t t t t t 1t t r ω 0 s t r r s t r q 2 t s s t r s 2k ω 0 m. q t rr s s t t t r s t r s 2 r t t s t r t t s r 2 t r t s t r s
30 s t P r t3 r r t r 3 r s t t 2 r t r 3 r t 2 rs t2 st r str str s t t rs t2 t r ss t r q 2 3 t r t r s s t t2 Hz st r s t rs t t r t r s r s t r st r r t s r s r s t t s r t t t r t t ss 2 rs t r s r r s t r rt t r s s r ts s t s 2 t t r s t rs t r st t t 1000km t r t r t r2 t t rs t2 r2 s r t s r r t t t t r s st r t t s t t r r 2 1 r ts t r s t rs t 2 t t r st r t st t t t r t r s t
31 t r r t r r t r s r t r r t r t t rs s t r r t r st 1 r 2 t s t r r t r r t r s t r t s t t t s s r t r r t s r r s t s t s t r r t r t t r s s t t t s r q 2 f r k t r t s t x 1 s ts tr s E in = E 0 e i(2πft kx). s r s tt r t r t t r BS = 1/ 2 tr s ss t t BS = i/ 2 t s tt tr s r E t = i 2 E 0 e i(2πft klx) E r = 1 2 E 0 e i(2πft kly), r L x L y r t t t t r s t r t s t t t r s t s r r t 2 t rr r t s r 1 = 1 r 2 = 1 s t tr s r t s r t r t r t t t s t t s tt r t 2 r r s t 1 t tr s E out = t BS r 2 E r +r BS r 1 E t = i 2 ( 1 2 E 0 e i(2πft 2kLy) ) ( i 2 E 0 e i(2πft 2kLx) ) = i 2 E 0e i2πft( e i2klx +e i2kly ). r t t s q t r s r 2 t 2 2 e k L t L = L x L y t E out = ie 0 e 2ikLx e i(2πft k L) cos(k L). st t t t t t s t t s tt r t 2 r r t t t t t t s r
32 r s t r r s t t s t r r t r ts tr t t t s r ss s t E back = ie 0 e 2ikLx e i(2πft k L) sin(k L). r s t rs t t 1 t s r P out = E out 2 = P in cos 2 (k L) s P back = E back 2 = P in sin 2 (k L) P out +P back = P in ( cos 2 (k L)+sin 2 (k L) ) = P in s 1 t s t r 2 s r t q t s t s t t t r t s 1 t r t x y r t s t r t t t r s t s t r t t s s t t r s t t s φ = 2k L. r r t t t t 1tr s s r str t t r r { Pout = P in, φ = 2nπ P back = 0; str t t r r φ = (2n+1)π { Pout = 0, P back = P in.
33 t n N t q t t2 out Pout min Pout max +Pout min, C = Pmax tr st t t r r t r t q t s q t s P out = P in 2 C = 2r 1r 2 r1 2, +r2 2 (1+Ccos φ). t tr st t s t r r 2 ss s t rr rs t s s2 t r q t t t r s2st t s C = 1 r t t s t t s t r t ts r t t s t t r r t r s r s rst s r t r t x 1 s r t ds 2 = g µν dx µ dx ν = (η µν +h µν )dx µ dx ν = c 2 dt 2 +(1+h 11 (2πft k x))dx 2. r t s q t t r t t τ out t 2 t t tr t r r t s tt r t rr r s τout 0 dt = 1 c 1 c L 0 L 0 1+h11 dx ( 1+ 1 ) 2 h 11(2πft k x) dx, r s r st t t r t r t 1 s h 11 τ out = L c + 1 2c L 0 h 11 (2πft k x)dx. t t τ rt t 2 t t t r t rr r t t s tt r r τrt τ out dt = 1 c 1 c 0 L 0 L 1+h11 dx ( 1+ 1 ) 2 h 11(2πft k x) dx, t t 2 s τ rt τ out = L c 1 0 h 11 (2πft k x)dx. 2c L t t t t t 2 t t t t x r s τ rt = 2L L c + h 11 (2πft k x)dx 1 0 h 11 (2πft k x)dx. 0 2c L
34 t t t t t r s r t s t s x t t r tr t s t = x c t r tr t s t = L x c r t t q t s 2 τ rtx 2L c + 1 2c L 0 h 11 ( 2πf x c k x ) dx 1 2c 0 L ( h 11 2πf L x ) k x dx. c t t s t t t t t 2 t t t t r t y 1 s τ rty 2L c + L 0 h 22 ( 2πf y c k x ) dx 1 2c 0 L ( h 22 2πf L y ) k x dx. c s r r t t r t s t z 1 s t r 3 t r q 2 f gw t q s t r t t r s h 11 (t) = h 22 (t) = h(t) h(t) = he i2πfgwt, q t s τ rtx 2L c + τ rty 2L c h ( ) e i2πfgwl/c 1 i2πf gw h ( ) e i2πfgwl/c 1 i2πf gw t tt r t t t r t tr t t t t r s s τ = 2L ( L c heiπfgw c sinc 2πf L ) c t r s s t s φ = 4πL ( L λ heiπfgw c sinc 2πf L c ). r t r t t t r s t t r r t r r t s s st t2 t t t r t t 1 t tr φ(f) s s r s s t t t r t t rt r t s r 1 t 2 st t r t tr t t t s 2πf gw τ rt 1 t s x s r s s s s x = sinx x
35 r r t s r r s t t t r q 2 r t r r t r t λ = 1064nm L = 3km t r t tr t t t t r s r 1 t t τ (t) = 2L c h(t) t r s s t s φ(t) = 4πL λ h(t) s s r s s s t st t r t2 r t t s r2 s t s t t t t t r s r2 s t st t r t s r s s s r t r r t r t t r t t s t t s s t r s s s s tr t s r r t t t r r q 2 f < 5Hz r t r s s s r r q 2 5Hz < f < 100Hz r t r t r s r r q 2 f > 100Hz r t r s t s s t t s s tr t s s s s s s 2 r s t t t t r s s s r 2 t s r s t r q 2 r 1 r t s r ts t t t s tr t ts t t s s s t s x(f) f 2 m Hz.
36 r s t t2 r tr t s s r t t t r r t r t r t q t L rr s s t t t r t t h seism (f) = 2 2 L x(f). s t 1t s t t s s s r r t r t s r tt t r r s t r s s t t r t r s rt s s s t s r s r r q s t 5Hz 100Hz r s r t r r t r t t rs r t r t s s r 2 rt r t 2 st 1 t t t s sts r t rt s r s t t r t r F frict = ηẋ t η t t s s t2 st rst t t t s r t s t t s s t rt s t t t t t t t s t t t ss t t t r 2 st t t s s t s x 2 th = k BT 1 3πaη τ, r a s t r s t rt s τ s t r t s r t s r s t s r2 rt t s t r t rst t t t t t t ss t
37 s r ss s s s s t ts t t rt s s s t r 1 r t r t ss m r ss s t r A s s t r r t r s r q 2 f 0 s t t r t r T r s t2 rt s n r ss r p = nk B T k B s t t3 st t r t t s r s t s F = pa = nk B TA t r t s s s N = 1 4 nva = na k B T 2πµ, r v s t t2 t rt s s µ s t ss t s 2 t t t r ss 2 t P ss st t st s s rt s rr t rr t s t t t t t t r rt s t t s t t t s σ Nτ = Nτ r t t t t r t t s σ 2 F = 4(k B T) 2 na vτ, rr s s t r s tr s t2 t r 2 r t t r t r s F 2 (f) = 4(k B T) 2 na v. F frict = ηv p = 1 4 navv p, r v p s t t2 t t t s r t s t r t r ss t F 2 th = 4k BTη. t t ss t t r t t ss t t r s t r t s t t r s ss t s2st t r 2 q r r 1 t t r t s s t t t s t Z(ω) t tt Y (ω) Z F ext v Y Z 1 t t q rt t t r 1 2 mv2 = 3 2 kbt
38 r F ext (ω) s t r t r s s t2 t v(ω) t s2st t t ss t t r st t s t t t r s tr t t t r s2st s 2 F 2 th (ω) = 4k BTR(Z(ω)) r t r t s2st s t t t x 2 (ω) = 4k BT ω 2 R(Y (ω)). s t r s r2 s s t s t t t t t t t t t t t r s 2s s t s2st s s str t r s 1 s t t t s t r t tt r rst ts t t2 s r t s s t r t r r rt t t2 s s t st t r t r str t r r t rst s s r s s ss t s s r F vis = ηẋ t q t t s mẍ+ηẋ+kx = F. s q t s s2 t s s t r r tr s r s 2 mω 2 x+iωη x+k x = F t tt Z(ω) = η +iωm k iω Y (ω) = 1 η +iωm k iω = η iω + ik ω η 2 + ( ωm k ) 2. ω t s tr s t2 t s t s t s x 2 th (ω) = 4k B Tη (k mω 2 ) 2 +η 2 ω2. r t s r t r s r q 2 s k ω 0 = m t t r t s q t s s 2 t t x 2 th (ω) = 4k BT mq Q = ω 0m η ω 0 ( ω 2 ω 2 0) 2 +ω 2 ω 2 0 /Q2
39 r ω ω 0 x 2 th (ω) = 4k bt mqω 3 0 = constant, r ω ω 0 x 2 th (ω) = 4k btq 1 mω 0 ω 2 1 ω 2, r ω ω 0 x 2 th (ω) = 4k bt ω 0 mq ω 4 1 ω 4. str t r t t r s r t r 3 r t r r t r 3 2 ss φ(ω) F fric = k[1+iφ(ω)]x(t), t q t t s t s mẍ(t)+k[1+iφ(ω)]x(t) = F (t). s t s r ss s r s r t t r t str t r t t r s Q = 1 φ(ω 0 ), t r s tr s t2 t t s s 2 t t x 2 th (ω) = 4k BT ω0 2 ( mqω ω 2 ω0) 2 2 +ω 4 0 /Q 2 r ω ω 0 x 2 th = 4k BT 1 mqω0 2 ω 1 ω, r ω ω 0 x 2 th = 4k BTQ 1 m ω 3 1 ω 3, r ω ω 0 x 2 th = 4k BTω0 2 1 mq ω 5 1 ω 5. r s t 1 s t tr x 2 th (ω) t2 t r t r s s ss s r t t st t s t t r s t t t s s r t ss t s t s2st t t r s r q 2 t s s r 2 st r Q = 2π r 2 st 2 t t t r r q 2 r t s Q = ω 0 ω,
40 r P r s tr s t2 t s t rs t ss m = 1g r s r q 2 ω 0 = 1s 1 Q = 100 s t s s s s t str t r ts t x 1 s r s 1 t y 1 s r cm 2 /Hz r ω s t t r t r s t t 1 s ω st t r 2 s r t r s Q r r r t 2 t s r 1 t s r t t t s t s r r s r ts 2 t ss s s r { F 0 cos(ω 0 t+δ), r t < 0 F (t) = 0, r t > 0 t F 0 δ t r tr r2 st ts t s2st tr t r s t r t q t r t > 0 t s t mẍ+ηẋ+kx = F (t) x(t) = A 0 e t τ sin(ω0 t+φ 0 ), r A 0 φ 0 r t st ts 2 t t τ = η 2m. t t > 0 t t t s t s s t 2 t 1 t A(t) = A 0 e t τ, r τ s t t t A(τ) = A 0 e. 2 t t t t r t s s s Q = ω 0τ 2.
41 1 s t t r 2 t t t t r s s2st s t s 1 s t t s s t ss t t t t t t s r t s t r t s t s2st ss s r s t rs s r 2s q t t2 X s2st s s X(t) = u(r,t) P(r)dV, r u s t s t P s t t t 2s q t t2 s r t s t t t s2st s r r F (t)p(r) t s t s u(r,t) = n w n (r)q n (t), r w n (r) q n (t) r t s t t t r t n t r s t t s2st q t t r t s r s t r ss m n r s t r q 2 ω n m n q n (t)+m n ω 2 nq n (t) = F (t), t ω n t r s t r q 2 t n t s X(t) s t s r s t X(t) = w n (r)q n (t) P(r)dV = q n (t). n n r 1 t s s s r q t t s x 2 th (ω) = 4k BT n ω n 1 m n Q n (ω 2 ωn) 2 2 +ω 2 ωn/q 2 2 n r t str t r q t s x 2 th (ω) = 4k BT ω n 1 m n φ n (ω)ω 2 n (ω 2 ω 2 n) 2 +ω 4 nφ 2 n(ω). t t t t r s st t ss m n t r s t r q 2 ω n t t r r s t t r r t rs t r s t t r r t r t t rs r t tr t s t t r s s t t ss r 2 s 2 t 1 r ss t s φ p (ω) = φ w (ω) E el E el +E grav φ w (ω) E el E grav, r s t t wn(r) P(r)dV = 1, t 2 t t t t w n(r) s t t rt t s2st t st r 3
42 r φ w s t ss t r E el E grav r t r s st r 1 r r t t t s r st t k el = N TEI 2l 2, r N s t r r s T s t t s E s t s I s t t rt t r r ss s t l s t t t r t t s r st t s s k grav = mg, l E el E grav = k el k grav φ p (ω) = φ w (ω)n TEI 2mgl t q t t t r s tr s t2 t t t t r s s t t x p (ω) 1 Nm, s t r s r s t r s ss r r s rt t r s s s q t s r t2 t rt t rt t t rr rs t t r r t r t r t r t r 2α t rt t r 3 t t 2 y 2 (ω) = α 4k BT mω ωvφ 2 v (ω 2 ωv) 2 2, +ωvφ 4 2 v r ω v s t r s t r q 2 rt l r E r t r s s s t N r s t s πen ω v = r. ml s t r s r t t s t s r s t 2 r r t s r s t r q 2 t r s s ω n = nπ mg l πr 2 ρn (1+a), r n s t r s r l r r t t t r s t r s m s t rr r ss 2 t r s ρ s t s t2 t r s a = 2 l πer 4 N 4mg.
43 t r s tr t s x viol = N 4k BT ω 2ρr 2 l 1 πm 2 n 2 t t ss 2 φ n = n ωnφ 2 n (ω 2 ωn) 2 2, +φ 2 nωn 4 aφ(ω n ) 1+ a 4 n2 φ 2 (ω n ), s t r s r t tr t t t r s 2 t r s r q s s r t t t t r s t rr r s r s 2 st t s t t x 2 th (ω) = 8k BT ω U strainφ(ω), r U strain s t str r 2 st r t t ss t t t rr r s r s r r t t s t t s U strain = 1 σ2 2 πyw 0, r σ Y r t P ss r t t s t rr r w 0 s t r s t 2 t s tr s t2 t rr r t r s x 2 th (ω) = 8k BT ω 1 σ 2 2 πyw 0 φ(ω) t ss t r s t ss s φ(ω) = φ mat (ω)+ [ ] U i (ω) φ i, U i strain r φ mat s t ss t t r t rr r s φ i U i r t ss t r 2 t i t ss t s r ss t s s t s s r t s t s t t t t t t s t t r t t r t rr t s t s r ts t r τ s N = nτ r n s t t s r t s t 2 rr s r t t 2 t r t2 str t s t P ss str t P (N) = NN e N N!. N 1 t r 1 t t ss str t t st r t σ N = N. t r t r s s r t t t rr r t s t s σ N N = nτ nτ = 1 nτ.
44 t t t r t s s t t 2 t t t t r 2 t r t n = λ 2π c P out s r t s s t r r t r r q t δl = λ 2π arccos ( Pout P in ), t s r t P out r q t δl = λ 2π arccos 2π cn. λτp in r q t s t s t r t t σ δl = dδl dn σ N = cλ 4πτP in s δl = hl t t r t t t t σ h = σ δl L = 1 cλ, L 4πτP in rr s s t t s tr s t2 h shot = 1 L λc 2πP in. st t t t s t s r s s t r s t r r t t s ss t str t t t t s t s r t r r t t s t s s r t st t t t t s t r r t r ss r t r ss r s t t t s t t s r t rr rs r 1 rt 2 tr t t r P s F rad = P c t s r r s t t t t t r r t t t s tr s t2 s Pin h rad = 4π2 mω 2 L 2π 3 cλ, r m s t rr r s ss t s s t s r t s t s t s r s s t t r s t r s st t P in t t r s s t t s t 2 r s t t r s st s t s 2 t r t t s s tr r h rad (ω 0 ) = h shot (ω 0 ) P opt = 4π 3 cλmω.
45 r t 2 t r ts t r s r 1 t t 1t r r s s r t r r t r t t 2 r P s t tr2s s t s t 2 r t t t t r t t s rt r r t t s r t r2 r r t s r t t r r t t t t r ts str t s s t 2 t r t s s t r P r2 r s r r 2 s t r r t r t r s 3km r2 P r t r s t t s t t s s s r t s2st t s r t 1064nm r 20W t s r t 2 t s r Nd : YVO 4 t r t s r Nd : YAG t r 1W t s rs r t r st t r t t s t s t r q MHz t r tr t t r t r t s t t s r t rs t rt t s2st t t s t s s t r t r s t t r t2 t t 144m ss F = 1000 s s t r t r t t t r2 P r t t s s r 2 s r s 2 s s t t r s t t t r s t r t s s t t2 t t r r t rs t 1tr 2 t 1t s t r t t t t ss st t s r r s rs tr t s
46 r s t r2 P r t t2 r s r t t tr r r t r s t t t t r t r r t r t t r s r2 P r t t s s st t rr rs t st L = 3km t rr rs st t rt t r r s t 2 r st rt r r rr rs t 2 ss 21.2kg t r 350mm t 100mm r t t2 r i = 0.88 rr rs t t t r s st rt r t s ss s s t t rr rs t t 2 r rr rs t r t r r s R c = 3450m r t t2 r E = 0.99 s r t r t t t s tr s t E 0 t s rt 2 r t rt 2 tr s tt 2 t rr r t r s t t s r 1 E 0 t 1 E 0 tr s tt r rr r t s rt 2 r t rt 2 tr s tt t t s t 1 r 2 E 0 e ikl t 1 t 2 E 0 e ikl t s tr s ss s t t t r t tr s ss t t2 s r c = r 1 +t 2 1r 2 (r 1 r 2 e i2kl) n = r 1 + n=0 t 2 1 r 2 1 r 1 r 2 e i2kl t c = t 1 t 2 e (r ikl 1 r 2 e i2kl) n = n=0 t 1 t 2 e ikl 1 r 1 r 2 e i2kl t 1 1 t r 2kL = 2nπ t s s t t t t2 s s t r s s r t2 t L t t t s L ott = L 2F π,
47 r tr t r tr s ss r t r s t t t s t r t r s r F s ss t s s r t s r ss t r s t2 t s s F = π r 1 r 2 1 r 1 r 2 r r 1 r 2 r t r t ts t rr rs t s r t t2 t t L = 3km ss F = 50 s r s t t L ott 95km P r r 2 rr r s s r s s t t t r r t r s t r r str t t r r t rt t t t 1 t r t t s r t t s r t r t r r t r t s r r 2 rr r P r t r t s r t s2st 6m r t s tt r t t t t s r t t 1 t t s t t t r r t r r 2 rr r r s ss 750g t t r 120mm t ss 30mm r t t2 r r = 0.92 t r r s s t G PR t r t tr s s ts t r 2 rr r r r t r t r t t t t r r t r r int G PR t 2 r (1 r r r int ) 2. t t r s rt t s s t s q t t r s t s t s r r G PR = 50 h shot (f) = 1 ( ) λc f 2 4π , 8LF ηg PR Pin r L = 3km s t t r r t r r t F = 50 s t ss η = 0.93 s f p
48 t t 2 P = 10W s t s r r t r t t s t r2 P r t t r q 2 rr rs s s s f p = c 4LF 500Hz t r q 2 t s r s s t s s s t t rs rr rs r s t r t r s s t t r r t s s s r tt t r s r t r s s s t 10m t r s s s t r q 2 r t r3t t s s 2 rt t t rs t 2 rt rt s s 2 t r rs 10m t t t r t r 1 ts t t t r s t r t r r s s s rs t t s r s t r t t t s ss t r t t r q 2 f0 IP = 1 k 2π m g l, r k s t t st st t m s t s s ss l s t t s r r f IP 0 30mHz t rs t r s tt t t r t rt t s s 2 t rs t t r st 2 rs t r t r st r t t tr r s r s s r t t t t t rs s 9m t s r s r q Hz s t r s r 3 t s t s t r r q s s r s t t r rt t t t r q 2 1.5Hz t rt r r t r t s t s r s t s2st s 2 t ts t 2 rt r t t 2 r r t 2 t r s r s s t t r s s t y t r s r s F y d, r d s t st t t t ts t 2 s r s t t st st t rt 2 t t r q 2 t r s t s r t 0.4Hz P 2 2 s t st st t s s s t s s 2 t r t ss t r tt t rr r s r r tt s s st st tt t t st t r t r t r st r t t r 1.85mm t 1m rr r
49 r t ts r s r tt t r
50 r t t r r s t tr r s r s r st st rr r s s s
51 t r t ss r s s r t r tt t st r 0.3mm 0.6mm t r r s t 2 t t t s r tt t r t r tt t r t ss t r r s t t rs r r t rr t 2 t t rr r r t r s t 1µm t t rs t t t r s t t t s r tt t r t s t r tt t r t ss s st s t 2 rr ts r t t tr s t t t ss 2 t ts tt t t r tt t t rr r tr t r t s r r r t t s t t r2 P r t t r r 2 r s t t t t t r r t s t s t t tr s t t r r t r t r s t t r t t r 2 t2 P t r t st s t t s tt r t t t rr rs l 1 l 2 t t r t t t t r s L 1 +L 2 L 1 L 2 tr t s s t t t t t t r r t tr P t t t t s r s t t t s t r str t t r s s t t 2 t s r t t t rt t t r r t r s r s2st r r t r 2 s r s t r ss r t t r t t r s t ts t t r r t r s r r r t r t s2st r t t rs r t r r t s r tt t rs r t t t t s t t r s t r r ss r t r r 10 7 mbar r H 2 O 10 9 mbar r H mbar r 2 r r s mbar r t t r s t t r t t r t r ss r s 10 6 mbar r t t t t r s s t s t r t s s t t2 r s rst r t s r r ss t r r r r s t r s t r r r s s t t2 r s t 1t s t 1 s t st rt t s t t
52 r s t t2 r s r r t t t t t s s s r t s r t s r 2 t2 t 3 r r2 tr s2st r r s s t t2 t s r s2st r t s s s t rr r t s s s s sts s r s t rr r t s t t s ss t r t t r s r r t t t r s r s r 4W t 17W t t s q t r t t s t s t r s t s2st s tr r r t s t t r ts t t r s t r t t s ss s r r t s t t r s r 95km t 267km r s s t s s t t2 r s s t rst r ss r r t s st r str t t r t r r s r t t r r t r t s t s r r t rs t r s s t t2 t r r t tt r t t r 2 r s r
53 r s st t2 r s r r r t 2 rs t r r t r t r t s r r rt r r 2 t2 t t t r r 2 t r s r 2 t t s tt r t t t r t t s t s s t t2 r t 3 t t t r r str 2s s r t r s ts t s s t t2 t r q 2 r s t r t t s ss t r s t s t ts st t t t r t r2 P r t t s r r t r s t s t r t s r r r 17W t 200W rr r t rr r t s r s t s r t ss 42kg st 20kg s t r t r ss r s r s t t r r r t t rr r t t r s Ta 2 O 5 r t t t Ta 2 O 5 t t r s t q t2 t r t rr rs r r s s r s 2 t r t r 3 t t r r tr s s r t s r t t r t t st ss s r st t t t r r t r
54 r t 2 t r t t t s s s t t 2 s s r st s rr r s s s r tr s2st t ts t z 1 s r s t t t r r st ss s r t rr r s s 2 s s rs r ss r H 2 O t r r s r 10 7 mbar t 10 9 mbar t 2 t r s s r
55 t r t r r tr s s r s t s s t r s t r t s t t tr r s t rr rs t 2 t r r s t t t s r r r t r s t r t r ss r s t r t t r r t r t r s t t r s 1 t t r s t s t t ss t2 t s r t r r t s r r t ss 2 t rr rs t t t s r t t s s t r r tr s s r t s s t t2 t t s r ts t r t rr r t st t 2 s r t t r t rr r r s r 2 s r t r t s 2 r t t s t t 2 t s s r t s t r s r t s r t s r t t t r t r r2 t sts r ts r t r 3 t t r t ss 2 s s r ts t t st rr r r r t s r r ss t r ts s s t t2 r q r ts t r r tr r t t t t rs t r s t r q s t s s rr rs t r t r q 2 r rr r s 1 t t t r s t r q s t rr r s t r t t s r t t t 2 s t t t t r s s r t t t q t2 t rr r r q t t t t r s t r s t rr r t r s r r s t s t r r tr t t r s t s r t s ts t rr r ts t rr r t 1 t t r t r s t r q s r s t r t s t 1 t t r t r s r s r t s r t s r t t t t t q t r rst st t t r r t t 1 t r t t t s r r 1 t r r r s t r q 2 ν 0 5.7kHz t r Q 10 6 t 1 t t r t F N t t s s r t s t q t t t t rr r ts t s A 0 = F 0τ 2ω 0 m = F 0Q 4π 2 ν 2 0 m m.
56 t t t s r ts t s r t t t = 6τ = 300s s s t t2 x = A 0 e t τ m. rr r r s r q s t 2 10kHz s t s s s t t2 t s r t r t st s r s t t r q t t t t s s t t2 t r r t r s dp out dl = 2kP incos(k L)sin(k L) s t s r ts t r s t st ss s s t t2 t t t t r r t r s s t t2 s 1 t k L = π 4 r dp out dl = 2kP in. s s t t t 1 s s t t2 t t r r t r s r t r r P out = P back = P in 2, r s q t r s r ts t r rr r s r r t r t r r t r s s s t r s t r t s r t rr r r r s t s rr r s t r r r s ts t r s s r ts r r t t r t r r t r r 2 t 2 r r st t t r r t r t r rr r rst r t r 3 t t t t t st rr r r r t r 2 ts r r s t r r t r t r s t r r t r s t r s r ts s s t r r t r s r t r t 10cm t t s r t t r2 s r s s t r t t 1 t t s t r r t r s s 2 s r t t 1064nm 1 r 250mW r 3 s tt r t s A = (25.40 ± 0.25) mm r t R = 50%±5% t 3 r s r t 1064nm rr r t t r 12.7mm r t t2 99.5% tt 3 tr 3 s2st t tr s s r t s s 2 t r 3 r t t rs 2 tr t s t r 12µm t s t s t r s s t2 t 1064nm α 0.6A/W
57 r t r t t r r t r r s s t 3 s2st
58 r tr s2st s r t rst r t r 3 t t t r r t r tr s2st rst r t r 3 t t t r r t r s t r tr s2st t s r t t rr ts t t t s r 2 q t s I 1 = αp out I 2 = αp back, r α s t r s s t2 t t s P out P back r 2 q t s s t t r t r st s t ts t tr s2st r t s t r s t rt t t t rr ts t t t s t s t t r r s s t r s t r t t t st t s s s s t r t t t t r t s r t s t t 1 t r t t s r s t t r s P P r t r t s t r s s r rr t t t 1 t r t t ss s t r tr s r r r t rt t t s t s rt r t t t t s s t s s rst st s t r q 2 f 01 = 45.15kHz t t t t s V 1 = R 1 αp in cos 2 (k L). 1+ f2 f01 2 rr t t t 1 t r t t ss s t r rst st 2 q t t t t s V 2 = R 3 αp in sin 2 (k L). 1+ f2 f01 2
59 r s t r s t t r t t s s t t t s t t t t r t t t s s t t t t t s t ss t r rt r st t t r q 2 f 02 = 72.34kHz r r t t s t t 2 t t s s ss t r st t t r q 2 f 0 = 72.34kHz 1 t t r s t t s s 1 V = 1+ f2 f0 2 V 2 1+ f2 f 2 02 V 1, r s r t t R 2 = R 4 = R 6 = R 8 = R 9 = 1kΩ s t s t t t t t r C 4 t s r r r t r t r q 2 t r s q t r t s 1 V (V 2 V 1 ). 1+ f2 f0 2 s rt r st r r t t ss t2 t 2 t t t r 100 t r t r t t V s s t t t r t r s t s t s rr t s t t 3 r r t t t r t t r r t s s t t2 s st t r t r s r t t s r t s t t t t r t t t r s t t t V out = 1 RC V g dt. y(t) t t t t r t s r t t e(t) = r y(t) t rr r
60 r s t t r t r r t s 2 t t r t t rr r s t 2 t s2st s ẏ(t) = 1 τ y(t)+ K t i ( ( r y t )) τ 2 dt, r τ s t t t st t K i s st t t t s t t r s t t r t r s t s2st r q t t ÿ(t) = 1 K i τẏ(t)+ (r y(t)), τ2 s st 2 st t s t r y(t) = r(t) t t t r s2st r t s t r rr s t t t s q s t V = R 1 αp in cos(2k L) = 0, s t t r s t rr r s 2 t t t t r t r r r t s t t2 r q 2 s 1 t t 5Hz r r t 3 s2st s rr t s s s t t t 3 t r t 3 r r ss t r 3 r r s r t t 10±0.1 t s t r t s t t t t r t 20V 120V t t tr 2 r 2 tr s s 3 t s r rt t t t δl = K pzt V, t st t K pzt r s s K pzt = 1µm/V t t r 3 r t π/3rad r t r t r t s t t tr s t ts 3 t r t t rr r s 2 x 1 sinα 1 cosα 1 ( ) x 2 = R sinα 2 cosα 2 sinθ, sinφ x 3 sinα 3 cosα 3 r R = 13.9mm s t r s θ s t r t r t rt 1 s φ s t r t r t r 3 t 1 s α 1 α 2 α 3 r t r s t t t r 3 r r t s r ts s t 3 t t st t s s t r t st t t r t
61 t s rr t s s t rr t 2 t tr s t t L t t r s t t rr r ss t r t t t t r s s s t r q s st r s t s2st t ss ss t r t t r q 2 f 0 = 32.29Hz t t ts t s2st s t r s s t r t r q 2 s t r s ts t r t r st t t r r t r r t r rr r s r r2 s r ts t t st rr r r r t r 2 ts 2 rst st s t t t t r r t r t t r r t r s t t r s t s r t t s t s t t tr sts t s s t t t s r 1 tr2 t t 2 2 st t s t t t st rr r t t t s t s r t s r s t t t 3 s s s s s t s t t rr r r s t r r r s r s r ts s t s r t r 11mW t t t s s t r s { V1max = 7.9V, V 1 V 1min = 0.7V; { V2max = 8.5V, V 2 V 2min = 0.7V; { Vmax = 7.5V, V V min = 6.8V; s r tr st C 1 = V 1max V 1min V 1max +V 1min = 0.84 C 2 = V 2max V 2min V 2max +V 2min = r r t s t r r C = r r t t s r ts t r s t t t r t t r r t q t s t r s t V 1 = V 1min + V 1max V 1min 2 = V 1min + V 1max V 1min 2 V 2 = V 2min + V 1max V 1min 2 = V 2min + V 2max V 2min 2 cos 2 (k L) (1+cos(2k L)) sin 2 (k L) (1 cos(2k L)).
62 t t t V s r V = V 1 V 2 = V max V min 2 rr s t cos(2k L) = 1 + V max V min 2 V max = V 1max V 2min, V min = V 1min V 2max cos(2k L), rr s t cos(2k L) = 1 2 r q t 2 t r t t r s d V d L = 2k V max V min sin(2k L) 2 K cal = 1 k( V max V min ) = m V. 2 t 2 t s r ts t t r t s t r s r t t s ts t rr r t s t t t s s s r s 2 t s t s s s t t t t s t t r t t t t r r s t t s t s r t s t t rr t t t t s σ I = 2qI, r q s t t r2 r s r t t s t s σ Itot = σi 2 +σ2 I = 2 qi. rr t t t 1 ts r t t t r r t r s t r s I = V R r V = V max V min 2 s t t t t t r R s t r s st t rst st t r s t s t s s σ δl = σ Itot di d L = σ Itot di d V d V d L t s r t r k L = π 4 t s 4qI = 1 R 2k Vmax V min 2 sin(2k L) sin(2k L) = 1 r q t t s t s s σ δl = λ qr π 2( V max V min ) = m Hz.
63 s s r ts t t s r ts t s t t tr s2st t s s r ts 1 t r 1 t 2 t r t s r q 2 F s = 100kHz r s N = t t r t s r ts s r t s 2 t r t t r K cal 2 q t r r rt t r r r t t s r ts t r s s t t r s s s t r q r s s t t2 t r q 2 r t r st s tr 23 r rst t s r t t t s tr 23 r s r t s r ts t s t s r s s r s t t t r s s r ts t t t s VX100 r s t t t s t s t t ts t s2st t t t s tr 23 r t s s s r t t t s tr 23 r s t s r q 2 F s = 81920Hz r s N = t s r t t t s s s t s r q 2 F s = 500kHz r s N = t t r s tr s t2 t t t r t t t P1 1 s t s t s r s tr s t2 t t r 1 t t t t t r s s ts s 2 ts t t r t s t s t 2 t t r t 0 st t s t t t r r r t t t t s ts s s r t r t t s st t s r r tt t r t t s s 2 s s t 1 t VX100 r r t tt r r s t P r s s t r t t t t s s s t s r 2 t r t s r s tr s s r s t t t t t r t s s2 t rst t t t s s t s t r V s s r ts r t t r t t 3 s r s t t r r t t t t r t r t r s r rt t t t t s s t r t st t r t t ss t r s t s s r t t t s V t t t s s t 2 s r t t r r t s V V 2 t t P s r t s V V 1 t t P s r t t t t 2 r r t 2 r s t s s r ts t r t t 3 s s r t r s r rt t t t t s r s 2 s r t s r ts t s s t t2 t s2st r t t t t r r s s r s t t r s s t r q s > 5kHz
64 r r s tr s t2 s r t s s t t s tr 23 r r r s t t s s t t s t r t t t t s r t r s s s t r q r s s t t2 t r q 2 t r st
65 r s s t t s r ss s r t s s t t s t s t t t s r t t t r r r t t t s s t s t s s r t s r ts t tr s r t s t t t s s r s t t t r r t t t t t tr s t t t P tr s s 2 t t t r t s 2 t t r t s st t s t P t r t r q 2 r 72.34kHz t 7.234MHz s r r t t r r t r t s s r ts r t s r q 2 F s = 100kHz s r t tr s r t V/V 1 t r P s s r rs r tt t s V/V 2 t r ts s r r t r t t t tr s r t V/V 1 s s s s s t r s s t s s t t2 t s t s s s r P 3 r r s 3 s2st s r r s t tr 3 2 t s s r s t s rt t t s t s s t s r t r t t 3 s t r t s t s t s t t t s s r r t r t s r ts t s s s s t t t r ts t tr s2st t t t t t r r t 3 s s r t r r s s t 2 rs s t s s t t2 rt r 2 t r q s t t s t t t r r r tr s r t G(s) s2st s s G(s) = Y(s) X(s), r X(s) X(s) r t tr s r t t t t s r s t 2
66 r r s t s s t t2 t s t r t r t t t r t s st t r r r s tr s r t s V/V 1 V/V 2 r t t t r t s st t r
67 r r s t tr s r t s V/V 1 V/V 2 t r t t t r t s st t r r s r ts t s s t t t t r r t 3 s2st
68 r s t t r t r t r t r s s s r t s t t r t r 2 r ts t t s tt t t rt r s st r t r t 50Ω r s ts s s r r t t t s s t 2 t r t t r K pzt r tt t t r r r t t s t r s s t t rr r t t 3 t s st s r t t r s2st t r t t r t r t r s ss t r t t r q 2 f 0 = 32.29Hz t 2 t t t s r t tr s r t t t r T (f) = 1+ 1 ( f f0 ) 2. t r t r s t r t st s r s t t t s2st t t s s t s rt t s t s t r t t t t r ss t r ss t r s st t t tr s2st s s t r t s ts s s r r t s s s 1 t s t 3 r r t t t t t r r tt t r t t t s s t r K pzt 2 10 r r t s r t t t r r tr s s s r t s t t s r t t s t s t r r s ts t s t t tr ts t r r s s t s s r ts r t t 1 t s t s t s r s s t t2 t s2st s t s
69 r r s t t t t s t t t t t r r s r ts t s s s t2 t s t t tr s r s s s t t s t s
70 s ts s r t s rst r t r 3 t t s t s t st rr r s r r s s st t r 2 t t ts s s t t2 s t s r t s ts t t rr r t r s r t r t r 3 t s st t t ts t r s r r t r t s s t t2 2 t t t r q 2 r t r st 2 10kHz t s s t t2 t t r r tr s s r s 2s tt r t t r q r t s r rt r s s t t2 t s tt r t 2kHz t s tt r t 10kHz s s t r s ts s t t t r t st t s s t 1t t r t t t tr s2st s r t s r t t r rr r s tt r t r t s s 1 t tt r t s s t t2 r s t t s s s t t2 r tt r t t r q r ts t 1 t s t s t r2 r s ts s t t t r tr s2st t 1t t r t t t s s r s t t rr r r ts s r ts t q t2 t r
71 t r s r ts t t r s r ts t t r t r rr r r r r t t r r t r2 r t rr r s t r r r t r t r t s s t s s t r t s t r rst t t t tr s2st s tt r t r t s r t r t r 3 t t t t s r t t q s t r s ts t s t t r r t r s t s str t r r t r rr r r r rr r s s s t r t r tt t r s rs SiO 2 t t r 0.3mm s t s r t r t ss s s s t r r r s st t t r 0.66mm t 0.7m s t s r t rt tr s t r t r s t t rr r tr s2st s r t t s r t r t r 3 t s t t t r r t r t r t t r s z t t rr r tr t rr r s s s t r ts r s t t r s r rr t s r t r t s s r z t tr s t ts z s t rr r t 1 s t r s r q 2 0.6Hz θ y t r ts r t rt 1 s t r s r q 2 6Hz θ x t r ts r t r 3 t 1 s t r s r q 2 9Hz
72 r t r t str t r r s t tr s2st
73 r r t s2st t 2 r r t r t s ts s2st s s rs t t rs r tr t rr r ts tr s s s 2 t r s P t r t ts t rr r t t t rs r t rr t s s r s t s t t ts tt t rr r t t rr r t rr t ts s t s t s t s ts r s r r s r s r r2 s s t t2 s s rs s t t t t t r t r s t rr r r t t r t r t t s t2 t t t s t st t t r t s t rt t s t s s s r r s t t t s s s r 2 t r r 0.1mm r s r t 0.3mm 0.6mm r s r t t r s t s st r r t s s t t2 s rst t r t r r t r t r s t r t t r t r str t t r z ts t rr r s rr t t t t rs t t s s t r s s s t t t s t r t t r s 2 t t r2 t rs s rst s t r t t ν 1p = 90Hz 3 r t ν 1z = 0.15Hz t s s
74 r t r t s t rr r r t r r t s t r s r t t t t t r s r s t t t st
75 r t t tr s2st 3 r 2 2πν 2p ±2πν 2p 1 4Q 2 p p = 2Q p z = 2πν 2z ±2πν 2z 1 4Q 2 z 2Q z r Q s t q t2 t r r r r s s { ν2p = 25Hz, Q p = 0.7, ν 2z = 300Hz, Q z = 0.5. t t tr s r t s2st t s t rs s t r t t tr s r t t r t tr s r t t tr s H = K (s 2πν 1z) ( s 2 +2πν 2z /Q z s+ ( 2π 2) ν2z 2 ) ( ), (s 2πν 1p ) s 2 +2πν 2p /Q p s+(2π) 2 ν2p 2 r K 2.7 s t t t2 r q 2 s 0.2Hz t t s2st s 2 t s t rs s s r s t r t t r 2 r t s t s t r q s t Hz s 2 s t rr t s s t t s r 1 t r t ss t 2 r t t r t ts tt t rr r rr ts ts s t s rr ts z t 2 r ±10µm θ y t 2 r ±5mrad θ x t 2 r ±50µrad
76 r t t t r t t 3 s r t rr t t P s t s st t s t s s s t 1 t t r s t rr r s t s ss t r tr s2st t t s s t t t s r t s t t s r s r t r t r 3 t ts t r s r s r t r r t t t V s s t t t t t rs t rst s s 3 r t s s 3 r t tr s r t t tr s2st s s r t t t t tr q t t t t s { ν1p = 0.001Hz ν 1z = 100Hz { ν2p = 15Hz, Q p = 5, ν 2z = 14.86Hz, Q z = 0.5, K = 0.5 t t2 r q 2 s 65Hz t t s s2st s s r rst t r ts s t r t r t t r q 2 ν = 100Hz r t s t ss t r t r t s r q 2 t t t t t rs s ts t s s s t s r t r q 2 ν = 15Hz s t r s t r q 2 t rt t t r t ss r s s t t r s s t r t ts t r s t t t r s t t s s t t t t 3 r r s r t r r t t ss t r t t r q 2 f 0 = 98Hz t s 2 s t 2 s t t 3 t rr t s s r t r t r 3 t t t r r t r
77 t t s V t t r ss s t r ss t r t r q 2 t f 0 = 3.79kHz r t r t s tr 23 r r r t r s ts 2 r t s t r ts r s t s s t t2 t s2st t s rs t r q s r t s r ts s 2 r t s t t t s r q s r t t t 2 r t s r r t t ss t2 t s t s tr 23 r t tt r r s t t t t r s r ts t r q 2 r r t s s r ts st t s s r s tr 23 r t t s r ss r t t s r s r s r r t s r ts t t s2st s t r s t r t r s t rst s r t r2 P r 3 rs s t r mbar t s s t r r P r P r r t t tr r 2 s s t r r t r2 s t t t t r r r r t r tt r t t s s2st s r t r r ss r t r r 10 4 mbar s st t2 rst r t s t s r t t s s t t2 t s2st r r t s r t t t s t s s t r q r ts s s t t m/ Hz t r q 2 r 2 10kHz t r t ss 2 t rst r t t t t r r t r 1 3 t tr st 2 2 t t 3 t t s t t t t t t r { V1max = 3.8V, V 1 V 1min = 1.4V; { V2max = 3.5V, V 2 V 2min = 1.4V; V { Vmax = 2.4V, V min = 2.1V; s r tr st C 1 = 0.46 C 2 = 0.43 t r t t r s K cal = m/v 2 r s s s t r t t t 1 t s r
78 r s r ts t s s t t2 t s2st t t t t P t r r t s tr 23 r r s s t s r ts t s s s t t2 t t t t ss t r r t s tr 23 r s s t r s r q 2 tr t t t t s s s ss r s s t s s r ts r t t t ss t r s ss r2 t r t r q r s s t t2 t t t t ss t r t s r t s t 2 t s tr 23 r r s r s r q s r s r s2st s s t r t r t ts t s2st s t t t s r q 2 r r r s r q 2 r2 s2st s r t r s r q s r t r s t ss r t s t s2st r t s t s r s t s2st s 1 t t r s r q s t t t r t r s s s s t 1 t t r s r s t rr r r 2 t t t (n,m) r n st t s r t r t rs m st t s r t r r r s s t r s r t r t s t rr r t r q 2 r t r st < 10kHz t r r s r tt r 2 tt r 2 t r r t s rs tt t rr r t s t s2 tr s t t tt r 2 s t r t r t t s t s r t t s r s r r s s s t t r t s t r t t
79 r s t r r t r s t tt r 2 r t r rr r r rr r s t rr r t t2 t st r t t r r t r t s r s t t Ta 2 O 5 t s ss 20kg t r 35cm s r ts ts t2 t rs r r r t t r t r r t r t r s ts r st t r s t s r t r t r t r r t r t r s r q s t rr r tt r t s t t s s r t 1t r r r s r q s t t t r s ts s t r s r r r t t r s r q s t rr r r s t 1 t t t t r s
80 r s t tt r 2 r t r s t tt r 2 5 r t r s t tt r 2 r t
81 r q 2 3 tt r 2 (13.5±0.1) 10 6 tt r 2 (3.6±0.2) 10 6 r (1.5±0.9) 10 6 tt r 2 5 (4.6±0.1) 10 4 tt r 2 s t r s r q s t t2 t r t rr r sr t r r q s t s r r t r q s s r t r s s r s r r t s t t t rr r t r t r s t r t t 1 t r s r q 2 r s t t t s s t s s s s t t rr r t r q s rr s t t s s t t r t r q 2 rst t t t r q 2 s r t t t t s s t s 2 r s t t 1 t t s s s t t t r q 2 t r s r q s r t r r s r t 2 t t r s s r ts t 2 t r r t t r t q t2 t r s t r t s ss s t s t s r t 2 t s t t r t s s s t t r s r q 2 ν 0 t t rr r t r s t t s t st t 1 t t s st rt t s r s r t t s s t s t 2 A(t) = A 0 e t τ cos(ωt). s r ts s t r s r q s t 3kHz 8kHz t s t 2q st s t r t s r t t s r q s t 6kHz 16kHz rr s t s t s t 133ms 5ms t s s t s r t s rt t t t t 2 r t s r 2 t t t s t t s tr 23 r r s s t r 2 s tr 23 r t s t s t rs t 23 r t ss s t r ss t r t t s rt t s s t s s s s t r q 2ω d st q t t r s r q 2 r s t t 1 r 2q st t r st t s t t t r2 s 1 t 2 r str t t s r q 2 s t st t t 1 r q 2 t s r s t s tr 23 r s N 800 s t = N ν, r t s t s t ν s t s r q 2
82 r r 2 s tr 23 r t t t A(t) = A 0 e t τ cos(ωt)cos(ωd t) = 1 2 A 0e t τ (cos(ω ωd )t+cos(ω +ω d )t). t s rt t t t t t t 1 s t r t t s s t 3 t s t s s s s t t s s t t t s s s r2 st r t s t 1 q 2 st r t t r r t t t rs t rst s ss t s s t t r t ss t rs t r q s r ω i = ω 0 ω d t t t r r s t r s s s ω ω d A(t) 1 2 A 0e t τ. 2 s r t s t 1s t t t s t s r r 2 st t r t s r t t t 2 t t t t r s s t r str t s s 1 t 2 r t st t t 2 t τ 2 r r t t t t 1 s 1 s t s s r ts r r s r s t t 2 s t r r t t t t q t Q = πν 0 τ, t t s r q t t s s s t s r s s r t r ss r mbar t t r s ts ν 0 = Hz tt r 2 τ = s Q = ν 0 = Hz tt r 2 τ = 540.6s Q =
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ
ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΤΖΩΡΤΖΗΣ ΔΗΜΗΤΡΗΣ Επιβλέπων καθηγητής:αναγνωστοπουλοσ Κ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ-ΣΕΜΦΕ 26 Σεπτεμβρίου 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
UNIVERSITE DE PERPIGNAN VIA DOMITIA
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)
"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA
ω θ ω = Δθ Δt, θ ω v v = rω ω = v r, r ω α α = Δω Δt, Δω Δt (rad/s)/s rad/s 2 ω α ω α rad/s 2 87.3 rad/s 2 α = Δω Δt Δω Δt α = Δω Δt = 250 rpm 5.00 s. Δω rad/s 2 Δω α Δω = 250 min rev 2π rad rev 60 1 min
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
VISCOUS FLUID FLOWS Mechanical Engineering
NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel
Piégeage et accumulation de positons issus d un faisceau pulsé produit par un accélérateur pour l étude de l interaction gravitationnelle de l antimatière Pierre Grandemange To cite this version: Pierre
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Conditions aux bords dans des theories conformes non unitaires
Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
A hybrid PSTD/DG method to solve the linearized Euler equations
A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Μαθηματικά Μοντέλα Συστημάτων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
r q s r 1t r t t 2st s
r q s r 1t r t t 2st s ss rt t 3 r r s s r s s t r r r r tr r r r r r sí r s t t r Pr r Pr r ã P r st s st Pr r sé r t s r t t s ö t s r ss s t ss r urn:nbn:de:gbv:ilm1-2017000099 t t t t rs 2 s r t t
Pathological synchronization in neuronal populations : a control theoretic perspective
Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control
ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse
χ (1) χ (3) χ (1) χ (3) L x, L y, L z ( ) ħ2 2 2m x + 2 2 y + 2 ψ (x, y, z) = E 2 z 2 x,y,z ψ (x, y, z) E x,y,z E x E y E z ħ2 2m 2 x 2ψ (x) = E xψ (x) ħ2 2m 2 y 2ψ (y) = E yψ (y) ħ2 2m 2 z 2ψ (z)
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Φυσική Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου27 Τµήµα Π. Ιωάννου& Θ. Αποστολάτου Απαντήστεσεόσαπερισσότεραερωτήµαταµπορείτε.Ησαφήνεια,ακρί εια,λακωνικότητακαι
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ
Ó³ Ÿ. 2018.. 15, º 6218).. 467Ä475 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ.. Ê 1 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± μ± μ, ÎÉμ ³μ Ë ± Í Ö ³³ É Î ±μ, μ ² μ μ ƒ ²Ó ÉÊ μ² μ ²μÉ μ É É μ Ô -
Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί
1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης
1 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης Ο Ένα υλικό σημείο κινείται επάνω σε μια ευθεία έτσι ώστε η απομάκρυνση του να δίνεται
Άσκηση. υπολογιστούν τα Ω, F, T, φ, So, και P. Λύση: Το σήμα πρέπει να τροποποιηθεί ώστε να έλθει στη μορφή S(t)=So sin(ωt+φ)
Ένα σήμα περιγράφεται από τις σχέσεις: S(t)= sin(ωt+φ) (πλάτος) με Ω κυκλική συχνότητα Ω = πf = /R (ισχύς) με R αντίσταση φόρτου. Επίσης ισχύει Ι(t) = Io sin (Ωt +φ) και = Io R. και Άσκηση Δίνεται σήμα
La naissance de la cohomologie des groupes
La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.
Langages dédiés au développement de services de communications
Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10
9// ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 - η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 6// Άσκηση A) Θεωρούµε x την απόσταση της µάζας m από το σηµείο ισορροπίας της και x, x3 τις αποστάσεις των µαζών m και m3 από το
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1
Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014
Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 7 Μαίου 014 Στόχοι διάλεξης Πώς να: υπολογίζει την μεταβολή της μαγνητικής ροής. εφαρμόζει το νόμο του Faraday για τον υπολογισμό της επαγόμενης
Εισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
Κατεύθυνσης. Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων & Γενικών Λυκείων. Θέμα Α. A.4. Σωστή απάντηση είναι το γ
5 Μαΐου 0 Φυσική Θετικής & Τεχνοογικής Κατεύθυνσης Απαντήσεις Θεμάτων Πανεηνίων Εξετάσεων Ημερησίων & Γενικών υκείων Θέμα Α A.. Σωστή απάντηση είναι το γ A.. Σωστή απάντηση είναι το β A.. Σωστή απάντηση
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 1 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 10/11/09. ασκούνται οι δυνάµεις των ελατηρίων k
//9 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9- ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθεσµία παράδοσης //9 Άσκηση Α) Θεωρούµε µετατόπιση της µάζας m, από το σηµείο ισορροπίας του ελατηρίου k, κατά και αντίστοιχα
Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1
6 Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση 6.1.1 Ελατήριο σε οριζόντιο επίπεδο Υποθέτουµε ότι το ελατήριο έχει αρχικό µήκος µηδέν, ιδανικό ελατήριο. F=-kx x K M x Σχήµα 6.1 ιαστάσεις µεγεθών
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,