Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τ.Ε.Ι. ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ και ΘΡΑΚΗΣ Σχολή Διοίκησης & Οικονομίας Τμήμα Λογιστικής και Χρηματοοικονομικής"

Transcript

1 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ - Α Εξαμήνου Διδάσκων : ΦΛΩΡΟΥ ΓΙΑΝΝΟΥΛΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ A ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ 31 / 01/ 2014 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2,0 ώρες ΟΔΗΓΙΕΣ Η εξέταση γίνεται με κλειστά βιβλία / σημειώσεις. - Τα θέματα να επιστραφούν στο τέλος της εξέτασης. Το νωρίτερο που μπορεί ο/η εξεταζόμενος/η να αποχωρήσει είναι 20 λεπτά από την παράδοση των όλων θεμάτων. Απαγορεύεται η χρήση κινητών τηλεφώνων. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1. α) Ποια συνάρτηση ονομάζεται γραμμική; Δώστε ένα παράδειγμα μιας γραμμικής συνάρτησης. β) Ποια είναι η οικονομική ερμηνεία της παραγώγου μιας συνάρτησης; γ) Πότε ένα σύνολο Β ονομάζεται υποσύνολο ενός συνόλου Α; (Μονάδες 3) α) Γραμμική συνάρτηση πρόκειται για συναρτήσεις πρώτου βαθμού της μορφής f(x)=αx + β Ευθεία με «κλίση» α Αν α>0 αύξουσα («ανεβαίνει») Αν α<0 φθίνουσα («κατεβαίνει») Αν α=0 σταθερή (οριζόντια) Παράδειγμα f(x)=10x + 2 β) ΟΙΚΟΝΟΜΙΚΉ ΕΡΜΗΝΕΊΑ: ρυθμός μεταβολής γ) Ένα σύνολο Β ονομάζεται υποσύνολο του Α όταν ΟΛΑ ΤΑ στοιχεία του συνόλου Β βρίσκονται και στο σύνολο Α. 2. Δίνονται οι παρακάτω συναρτήσεις προσφοράς (S) και ζήτησης (D) που χαρακτηρίζουν μία αγορά. D(p)=p 2-15p+40 S(q)= 20+6p. α) Να βρεθεί το κοινό πεδίο ορισμού των δύο συναρτήσεων και να γίνει η γραφική τους παράσταση στο ίδιο διάγραμμα. β) Να βρεθεί το σημείο ισορροπίας της αγοράς για την τιμή p και τη ζήτηση D(p). α) ΘΑ ΠΡΕΠΕΙ ΟΙ ΠΟΣΟΣΤΗΤΕΣ ΝΑ ΕΙΝΑΙ ΘΕΤΙΚΟΙ ΑΡΙΘΜΟΙ, ΑΡΑ p>0 ΑΛΛΑ ΚΑΙ D>0, S>0, ΟΠΟΤΕ ΓΙΑ ΝΑ ΒΡΟΥΜΕ ΤΟ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΛΥΝΟΥΜΕ ΤΙΣ ΑΝΙΣΩΣΕΙΣ p 2-15p+40 >0 ΚΑΙ 20+6p >0 6p>-20 p>-20/6

2 ΟΙ ΛΥΣΕΙΣ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΒΡΙΣΚΟΝΤΑΙ ΜΕ ΤΗ ΔΙΑΚΡΙΝΟΥΣΑ ΕΙΝΑΙ p= 11,5 p=3,5 ΤΟ ΤΡΙΩΝΥΜΟ ΕΠΕΙΔΗ Ο ΣΥΝΤΕΛΕΣΤΗΣ ΤΟΥ p 2 ΕΙΝΑΙ ΘΕΤΙΚΟΣ, ΠΑΙΡΝΕΙ ΤΙΜΕΣ >0 ΕΚΤΟΣ ΤΩΝ ΡΙΖΩΝ ΔΗΛΑΔΗ p<3,5 Ή p>11,5 ΑΚΟΜΗ ΘΑ ΠΡΕΠΕΙ Η ΣΥΝΑΡΤΗΣΗ ΖΗΤΗΣΗΣ ΝΑ ΕΙΝΑΙ ΦΘΙΝΟΥΣΑ, ΟΠΟΤΕ ΚΡΑΤΟΥΜΕ ΜΟΝΟ ΤΙΣ ΤΙΜΕΣ ΟΠΟΥ Η ΠΡΩΤΗ ΠΑΡΑΓΩΓΟΣ ΕΙΝΑΙ ΑΡΝΗΤΙΚΗ, ΔΗΛΑΔΗ, 2p-15<0, p<15/2, p<7,5 ΑΡΑ ΠΕΔΙΟ ΟΡΙΣΜΟΥ [0,3.5] β) D(p)= S(p) Άρα p 2-15p+40 = 20+6p p 2 15p 6p=20 40 p 2 21p= - 20 ΠΡΟΚΕΙΤΑΙ ΓΙΑ ΤΡΙΩΝΥΜΟ p 2-21p+20=0, ΚΑΙ ΒΡΙΣΚΟΥΜΕ ΤΙΣ ΡΙΖΕΣ ΜΕ ΤΗ ΔΙΑΚΡΙΝΟΥΣΑ 21^2-4(+1)(20)= =361 ΟΙ ΛΥΣΕΙΣ ΕΙΝΑΙ (21+-19)/(-2)=20 Ή +1 Η πρώτη ΑΠΟΡΡΙΠΤΕΤΑΙ ΑΦΟΥ ΕΙΝΑΙ ΕΚΤΟΣ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΕΝΩ Η δεύτερη ΡΙΖΑ ΓΙΝΕΤΑΙ ΔΕΚΤΗ. Άρα για p=1 έχουμε: D(p)=p 2-15p +40 p 2 15p + 40 = =1^2-15*1+40=26 Άρα σημείο ισορροπίας έχουμε σε p=1 και p=26 3. Η συνάρτηση ζήτησης ενός μονοπωλητή που επιδιώκει μεγιστοποίηση των κερδών του είναι Ρ=12/Q+2/Q 2 και η συνάρτηση του συνολικού κόστους της επιχείρησής του είναι TC=13-12Q+3Q 2, όπου Ρ είναι η τιμή, και Q η ποσότητα του προϊόντος. α) Να υπολογισθεί η παράγωγος του κόστους και να προσδιορισθεί το ύψος παραγωγής στο οποίο το κόστος παραγωγής ελαχιστοποιείται. β) Να γραφεί η συνάρτηση εσόδων, η συνάρτηση κερδών και η συνάρτηση του μέσου κόστους. α) Ρ =12/Q + 2/Q2 TC=13-12Q+3Q2 F(x)=13-12Q+3Q2

3 F (x)=6q 12 Για να προσδιορίσουμε το ύψος της παραγωγής όταν το κόστος ελαχιστοποιείται βρίσκουμε το F (x)=0 6Q-12=0 6Q=12 Q=2 ΒΡΙΣΚΟΥΜΕ ΚΑΙ ΤΗ ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟ =6 ΚΑΙ ΕΠΕΙΔΗ ΕΙΝΑΙ ΘΕΤΙΚΗ ΕΧΟΥΜΕ ΕΛΑΧΙΣΤΟ Άρα το ύψος της παραγωγής που ελαχιστοποιείται το κόστος είναι ΤC=1 β) Συνάρτηση Εσόδων ΤR=TR(Q) PQ (12/Q + 2/Q2)Q = /Q Συνάρτηση Κέρδους Π=Π(q)=ΤR TC = (12 + 2/Q) Q 3Q2 = 3Q2 + 14Q 1 Mέσο Κόστος =ΤC/q=13/Q-12+3Q 4. Να υπολογισθεί η το εμβαδόν που περικλείεται μεταξύ του άξονα των p και της συνάρτησης ζήτησης Q(p)= -4p 2 +6p+80 στα σημεία p=3 έως και p=5. (Μονάδες 1) ΤΟ ΕΜΒΑΔΟΝ ΕΙΝΑΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ από 3 έως 5. ΥΠΟΛΟΓΙΖΟΥΜΕ ΤΗΝ ΤΙΜΗ ΤΟΥ. 3 5 (-4p 2 +6p+80)dq=(-4/3p 3 +3p 2 +80p) ) 3 5 =(-500/ ) ( )=925/3 693/3=232/3 5. Δίνεται η συνάρτηση κέρδους για δύο αγαθά Χ και Υ Π(x,y)= 36x-5x 2 +2xy-2y α) Να βρεθούν οι ποσότητες x και y που μεγιστοποιούν το κέρδος. Ποιο είναι το μέγιστο κέρδος; β) Να γραφεί η εξίσωση της ισουψούς καμπύλης όπου τι κέρδος είναι 160 μονάδες. α) Π(x,y)=36x-5x 2 +2xy-2y F(x)=-10x + 2y +36 F(y)=2x 4y Λύνουμε το σύστημα F(x)=0 και F(y)=0, και βρίσκουμε χ=4 και y=2. Επομένως έχουμε μέγιστο κέρδος όταν χ=4 και y=2

4 ΥΠΟΛΟΓΙΖΟΥΜΕ ΚΑΙ ΤΙΣ ΠΑΡΑΓΩΓΟΥΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΚΑΙ ΕΠΕΙΔΗ Η D=F XX *F YY -F XY *F XY =(-10)(-4)-2 2 >0 KAI F XX <0, F YY <0 ΕΧΟΥΜΕ ΜΕΓΙΣΤΟ και η τιμή του μέγιστου υπολογίζεται από Π(4,2)= =376 Β) Η ΕΞΙΣΩΣΗ ΤΗΣ ΙΣΟΥΨΟΥΣ ΕΙΝΑΙ Π(x,y)=36x- 5x2+2xy-2y2+300=160 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

5 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ - Α Εξαμήνου Διδάσκων : ΦΛΩΡΟΥ ΓΙΑΝΝΟΥΛΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ A ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ 31 / 01/ 2014 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2,0 ώρες ΟΔΗΓΙΕΣ Η εξέταση γίνεται με κλειστά βιβλία / σημειώσεις. - Τα θέματα να επιστραφούν στο τέλος της εξέτασης. Το νωρίτερο που μπορεί ο/η εξεταζόμενος/η να αποχωρήσει είναι 20 λεπτά από την παράδοση των όλων θεμάτων. Απαγορεύεται η χρήση κινητών τηλεφώνων. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1. α) Ποια συνάρτηση ονομάζεται εκθετική; Δώστε ένα παράδειγμα μιας εκθετικής συνάρτησης. β) Ποια είναι η γεωμετρική ερμηνεία της παραγώγου μιας συνάρτησης; γ) Η τομή Α Β δύο συνόλων ποια στοιχεία περιέχει; (Μονάδες 3) Α) Εκθετικές είναι οι συναρτήσεις στις οποίες η ανεξάρτητη μεταβλητή βρίσκεται στον εκθέτη. Β) Η παράγωγος είναι η κλίση της εφαπτομένης στο εν λόγω σημείο x. Γ) Η τομή Α Β περιέχει τα κοινά στοιχεία του Α και του Β. 2. Δίνονται οι παρακάτω συναρτήσεις προσφοράς (S) και ζήτησης (D) που χαρακτηρίζουν μία αγορά. D(p)=p 2-14p+40 S(p)= 6+5p. α) Να βρεθεί το κοινό πεδίο ορισμού των δύο συναρτήσεων και να γίνει η γραφική τους παράσταση στο ίδιο διάγραμμα. β) Να βρεθεί το σημείο ισορροπίας της αγοράς για την τιμή p και τη ζήτηση D(p). Α) D(p)=p 2-14p+40 S(p)= 6+5p Θα πρέπει οι ποσότητες να είναι θετικοί αριθμοί Άρα p>0 και D>0,S>0οπότε λύνουμε p 2-14p+40>0 και 6+5p>0 5p>-6 p>-6/5 ΟΙ ΛΥΣΕΙΣ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΒΡΙΣΚΟΝΤΑΙ ΜΕ ΤΗ ΔΙΑΚΡΙΝΟΥΣΑ ΚΑΙ ΟΙ ΡΙΖΕΣ ΕΙΝΑΙ p= 10, p=4 ΤΟ ΤΡΙΩΝΥΜΟ ΕΠΕΙΔΗ Ο ΣΥΝΤΕΛΕΣΤΗΣ ΤΟΥ p 2 ΕΙΝΑΙ ΘΕΤΙΚΟΣ, ΠΑΙΡΝΕΙ ΤΙΜΕΣ >0 ΕΚΤΟΣ ΤΩΝ ΡΙΖΩΝ ΔΗΛΑΔΗ p<4 Ή p>10

6 ΑΚΟΜΗ ΘΑ ΠΡΕΠΕΙ Η ΣΥΝΑΡΤΗΣΗ ΖΗΤΗΣΗΣ ΝΑ ΕΙΝΑΙ ΦΘΙΝΟΥΣΑ, ΟΠΟΤΕ ΚΡΑΤΟΥΜΕ ΜΟΝΟ ΤΙΣ ΤΙΜΕΣ ΟΠΟΥ Η ΠΡΩΤΗ ΠΑΡΑΓΩΓΟΣ ΕΙΝΑΙ ΑΡΝΗΤΙΚΗ, ΔΗΛΑΔΗ, 2p-14<0, p<14/2, p<7 ΑΡΑ ΠΕΔΙΟ ΟΡΙΣΜΟΥ [0,4] B)D(p)=S(p) p 2-14p+40=6+5p -p 2 +19p=34 ΠΡΟΚΕΙΤΑΙ ΓΙΑ ΤΡΙΩΝΥΜΟ -p 2 +19p-34=0, ΚΑΙ ΒΡΙΣΚΟΥΜΕ ΤΙΣ ΡΙΖΕΣ ΜΕ ΤΗ ΔΙΑΚΡΙΝΟΥΣΑ 19^2-4(- 1)(-34)= =225 ΟΙ ΛΥΣΕΙΣ ΕΙΝΑΙ ( )/(-2)=17 Ή 2 Η ΠΡΩΤΗ ΑΠΟΡΡΙΠΤΕΤΑΙ ΑΦΟΥ ΕΙΝΑΙ ΕΚΤΟΣ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΕΝΩ Η ΔΕΥΤΕΡΗ ΡΙΖΑ ΓΙΝΕΤΑΙ ΔΕΚΤΗ. p=2 και S(p)=6+5*2=16 3. Η συνάρτηση ζήτησης ενός μονοπωλητή που επιδιώκει μεγιστοποίηση των κερδών του είναι Ρ=60/Q+3/Q 2 και η συνάρτηση του συνολικού κόστους της επιχείρησής του είναι TC=50-30Q+5Q 2, όπου Ρ είναι η τιμή, και Q η ποσότητα του προϊόντος. α) Να υπολογισθεί η παράγωγος του κόστους και να προσδιορισθεί το ύψος παραγωγής στο οποίο το κόστος παραγωγής ελαχιστοποιείται. β) Να γραφεί η συνάρτηση εσόδων, η συνάρτηση κερδών και η συνάρτηση του μέσου κόστους. Ρ=60/Q+3/Q2 TC=50-30Q+5Q2 Α) F(x)=50-30Q+5Q2 F (x)=10q-30 F (x)=10 Άρα επειδή είναι θετικός αριθμός το κόστος παραγωγής ελαχιστοποιείται. Β) Συνάρτηση Εσόδων ΤR=TR(Q) P*Q (60/Q + 3/Q2)Q =60 + 3/Q Συνάρτηση Κέρδους Π=Π(q)=ΤR TC =(60 + 3/Q) Q 5Q2=-5Q2 + (30Q2 + 3)/Q -50 = (-5Q3 + 30Q2 + 3)/Q 50

7 Μέσο Κόστος ΤC/Q= (50-30Q+5Q2)/Q = Q(5Q 30) +50/Q = 5Q Να υπολογισθεί η το εμβαδόν που περικλείεται μεταξύ του άξονα των p και της συνάρτησης ζήτησης Q(p)= -3p 2 +5p+70 στα σημεία p=2 έως και p=5. (Μονάδες 1) ΤΟ ΕΜΒΑΔΟΝ ΕΙΝΑΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ από 2 έως 5. ΥΠΟΛΟΓΙΖΟΥΜΕ ΤΗΝ ΤΙΜΗ ΤΟΥ. 2 5 (-3p 2 +5p+70)dq=(-p 3 + 2,5p2 + 70p) 2 5 =( , ) ( )=287,5 142=145,5 5. Δίνεται η συνάρτηση κέρδους για δύο αγαθά Χ και Υ Π(x,y)= 18x-5x 2 +2xy-2y α) Να βρεθούν οι ποσότητες x και y που μεγιστοποιούν το κέρδος. Ποιο είναι το μέγιστο κέρδος; β) Να γραφεί η εξίσωση της ισουψούς καμπύλης όπου τι κέρδος είναι 150 μονάδες. A) Π(x,y)=18x-5x2+2xy-2y2+200 F(x)=-10x + 2y +18 F(y)=2x-4y Λύνουμε το σύστημα F(x)=0 και F(y)=0, και βρίσκουμε y=1 και χ=2. Υπολογίζουμε τους παραγώγους δευτέρου βαθμού και επειδή D=F XX *F YY - F XY *F XY =(-10)(-4)-2*2=36>0 F XX <0 F YY <0 έχουμε μέγιστο. Και η τιμή του μέγιστου υπολογίζεται από Π(2,1)= =218 Β) Η ισουψής καμπύλη είναι Π(x,y)= 18x-5x 2 +2xy-2y =150 ΚΑΛΗ ΕΠΙΤΥΧΙΑ

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.93.4.450 Πεδίο Ορισμού Οικονομικών Συναρτήσεων Οι οικονομικές συναρτήσεις (συνάρτηση Ζήτησης, συνάρτηση

Διαβάστε περισσότερα

1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση

1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση 1 η Εργασία ΕΟ 13 014-015 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) 1

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης δύο μεταβλητών Ισουψείς καμπύλες Παραγώγιση Μερικές παράγωγοι πρώτου και δευτέρου βαθμού Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΜΑΘΗΜΑ ΟΓΔΟΟ-ΜΕΓΙΣΤΑ & ΕΛΑΧΙΣΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΒΑΣΙΚΑ ΕΡΩΤΗΜΑΤΑ Ποια η ποσότητα που μεγιστοποιεί τα κέρδη μιας επιχείρησης

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ)

ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) ΜΑΘΗΜΑ ΤEΤΑΡΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ ( ΙΑΦΟΡΙΚΟ-ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΕΩΣ- ΕΦΑΡΜΟΓΕΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ) A. Κανόνας de L Hospital (Συνέχεια από το προηγούµενο µάθηµα) Παράδειγµα 1. Να βρεθεί το

Διαβάστε περισσότερα

Εφαρμογές οικονομικών συναρτήσεων

Εφαρμογές οικονομικών συναρτήσεων Εφαρμογές οικονομικών συναρτήσεων Μεγιστοποίηση κερδών Διάθεση προϊόντος με δύο συναρτήσεις ζήτησης Οριακά έσοδα σε σχέση με ελαστικότητα Εύρεση πεδίου ορισμού Επιβολή φόρου Σημείο μεγιστοποίησης κερδών

Διαβάστε περισσότερα

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ.

2.0. , κ R, η γραφική παράσταση της οποίας διέρχεται από το σημείο Ρ=(1,1). Να βρεθεί η τιμή του αριθμού κ. Άσκηση. α Να βρεθεί η εξίσωση της ευθείας που διέρχεται από τα σημεία (,y, Α=(, και Β=(0, β Να βρεθεί η εξίσωση της ευθείας που διέρχεται από το σημείο B(0, και έχει κλίση -0.. Να βρεθούν τα σημεία που

Διαβάστε περισσότερα

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x

Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία

Διαβάστε περισσότερα

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις

Παράγωγος συνάρτησης. Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου. ελαστικότητα Οριακές συναρτήσεις Παράγωγος συνάρτησης Έννοια παραγώγου Υπολογισμός Χρήση παραγώγου ελαστικότητα Οριακές συναρτήσεις Έννοια Στην οικονομική επιστήμη μας ενδιαφέρει πολλές φορές να προσδιορίσουμε την καλύτερη επιλογή, π.χ

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2008-2009 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά

Διαβάστε περισσότερα

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Πέμπτη 5 Ιανουαρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω η συνάρτηση

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Αν έχουμε m εξισώσεις (ισότητες) που περιγράφουν μαθηματικά

Διαβάστε περισσότερα

Βελτιστοποίηση συναρτήσεων

Βελτιστοποίηση συναρτήσεων Βελτιστοποίηση συναρτήσεων Παράγωγοι εκθετικών λογαριθμικών συναρτήσεων Ποσοστιαίος ρυθμός μεταβολής Παράγωγοι ανώτερης τάξης Εύρεση μεγίστων-ελαχίστων Οικονομικές συναρτήσεις Παράγωγοι εκθετικών λογαριθμικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 22Νοεμβρίου 2015 ΑΥΞΟΥΣΕΣ ΦΘΙΝΟΥΣΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Αν μια συνάρτηση f ορίζεται σε ένα διάστημα

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ

ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΤΥΠΟΛΟΓΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗ ΔΕΟ 13 ΚΟΣΤΗ TC = FC + VC ή TC = AC* SOS TC ATC = Το μέσο κόστος ισούται με το

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr 1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 4 ο Μάθημα: Οικονομικές Συναρτήσεις-Κατάσταση Ισορροπίας Διδάσκουσα: Κοντογιάννη Αριστούλα Μοντέλα ζήτησης και προσφοράς

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 0-0 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά Γενικές

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Σχολή Οικονομικών & Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τομέας Πολιτικής Οικονομίας Άσκηση στο μάθημα «Εισαγωγή στην Οικονομική Ανάλυση» Νίκος Θεοχαράκης

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 10/4/017 ΕΩΣ /4/017 ΤΑΞΗ: ΜΑΘΗΜΑ: B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 1 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΗ [5 μονάδες (6+6+6+7)] www.onlineclassroom.gr Δίνεται η ακόλουθη συνάρτηση των οριακών εσόδων MR μιας μονοπωλιακής επιχείρησης: MR() = 100 + 16 όπου είναι η ποσότητα παραγωγής του προϊόντος. Επίσης,

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά

Επιχειρησιακά Μαθηματικά Τηλ:10.9.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 1 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά () ΑΘΗΝΑ ΝΟΕΜΒΡΙΟΣ 01 1 Τηλ:10.9.4.450 ΚΕΦΑΛΑΙΟ Ο Μελέτη μονοτονίας (αύξουσα φθίνουσα) συνάρτησης f i) Βρίσκουμε την παράγωγο f ii)

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

Εμβαδά. 1) Με βάση το παρακάτω διάγραμμα όπου το εμβαδόν των περιοχών είναι Α1=8 και Α2=2, να. 2) Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου

Εμβαδά. 1) Με βάση το παρακάτω διάγραμμα όπου το εμβαδόν των περιοχών είναι Α1=8 και Α2=2, να. 2) Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου 1 Εμβαδά 1) Με βάση το παρακάτω διάγραμμα όπου το εμβαδόν των περιοχών είναι Α1=8 και Α=, να υπολογιστεί η παράσταση: 9 9 f ( x) dx f ( x) dx 1 6 ) Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου μέρους του

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι 2η Γραπτή Εργασία: ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΗ 1 (Μονάδες 23) Το συνολικό κόστος μιας επιχείρησης είναι TC=550 ευρώ όταν η παραγωγή είναι Q=100 τεμάχια και το σταθερό κόστος είναι FC=50

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης

ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις. ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 2 ΣΥΝΑΡΤΗΣΕΙΣ

Μαθηματικά ΜΕΡΟΣ 2 ΣΥΝΑΡΤΗΣΕΙΣ Μαθηματικά ΜΕΡΟΣ 2 ΣΥΝΑΡΤΗΣΕΙΣ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr Συναρτήσεις Συνάρτηση: Μαθηματική σχέση μεταξύ 2 ή περισσότερων μεταβλητών. y=f(x) η μεταβλητή

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος 3 σχολικό έτος 4-5) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Λιτζερίνος Χρήστος Μπούζας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΑΛΟΓΗΡΑΤΟΥ Ζ. - ΜΟΝΟΒΑΣΙΛΗΣ Θ. Τυπικές Συναρτήσεις Μικροοικονομικής Ανάλυσης Συνάρτηση Παραγωγής Q (production function):

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 1 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 1 Συναρτήσεις 1.1 Έννοια συνάρτησης Ορισμός 1 Έστω Α, Β δύο υποσύνολα του R. Μια διαδικασία με το όνομα f ονομάζεται αν σε κάθε

Διαβάστε περισσότερα

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει

Θεώρημα Bolzano. ΑΠΑΝΤΗΣΗ. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει Θεώρημα Bolzno. ΑΠΑΝΤΗΣΗ Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [, ]. Αν: η f είναι συνεχής στο [, ] και, επιπλέον, ισχύει f f 0, τότε υπάρχει ένα, τουλάχιστον, 0 (, ) τέτοιο, ώστε f( 0

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 3 ο Μάθημα: Παράγωγος Συνάρτησης Διδάσκουσα: Κοντογιάννη Αριστούλα Σχέση με τα οικονομικά Στην επιστήμη των οικονομικών

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ομάδα Α Α1. Αύξηση της ζήτησης και μείωση της προσφοράς, είναι δυνατό να μη μεταβάλλει την τιμή ισορροπίας. Α2. Η αβεβαιότητα

Διαβάστε περισσότερα

1. ίνονται τα διανύσµατα: x=(a+µ,1), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.

1. ίνονται τα διανύσµατα: x=(a+µ,1), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα. . ίνονται τα διανύσµατα: x=(a+µ,), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.. ίνονται τα διανύσµατα (x,0), (0,y), (z,0). Είναι γραµµικά

Διαβάστε περισσότερα

Πρώτη Γραπτή Εργασία. Εισαγωγή στους Η/Υ Μαθηματικά

Πρώτη Γραπτή Εργασία. Εισαγωγή στους Η/Υ Μαθηματικά Πρώτη Γραπτή Εργασία Εισαγωγή στους Η/Υ Μαθηματικά Άσκηση 3 (15%) Ι) Για να βρούμε την τιμή και τη ποσότητα ισορροπίας εξισώνουμε την συνάρτηση ζήτησης με την συνάρτηση προσφοράς: Q = Q 3P+ 8= 4 P 3P +

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή

Διαβάστε περισσότερα

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο

Διαβάστε περισσότερα

Ολοκλήρωμα συνάρτησης

Ολοκλήρωμα συνάρτησης Ολοκλήρωμα συνάρτησης Έννοια Υπολογισμός Χρήση Αόριστο και ορισμένο ολοκλήρωμα εισαγωγικό παράδειγμα οριακού κόστους Έστω η συνάρτηση οριακού κόστους μιας επιχείρησης δίνεται από τη σχέση ΜC(q)=3q 2 +4

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα:

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Μαθηματικά για Οικονομολόγους 2 ο Μάθημα: Σύνολα αριθμών-συναρτήσεις Διδάσκουσα: Κοντογιάννη Αριστούλα Σύνολα Σύνολο: Μία συλλογή διακριτών αντικειμένων

Διαβάστε περισσότερα

f(x) Af(x) = και Mf(x) = f (x) x

f(x) Af(x) = και Mf(x) = f (x) x ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ I Διάρκεια εξέτασης: ώρες και 5' (4 μονάδες) (α). Η συνάρτηση f() έχει το παραπλεύρως γράφημα με πλάγια ασύμπτωτο. Να δοθούν, στο ίδιο σύστημα συντεταγμένων, τα γραφήματα

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1.4. 5 ο ΜΑΘΗΜΑ ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Σκοπός της ενότητας Σκοπός της ενότητας είναι ο ορισμός εφαπτομένης της γραφικής παράστασης μιας συνάρτησης σε κάποιο σημείο της,

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α Να βρείτε το πεδίο ορισμού της x x x x β Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν γ Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο x x f ( x), να δείξετε

Διαβάστε περισσότερα